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Abstract 

The macroscopic model of solid-solid phase change presented makes use of internal variables 
to represent the phase fractions and the local strains. As such, it can be cast in the frame- 
work of standard materials with internal constraints. These constraints are accounted for by 
Lagrange's multipliers. Reversible or irreversible phase changes are considered in a general way. 
Material stability is also discussed. Two examples are provided to illustrate the application of 
the proposed model to brittle damage and to shape memory materials. This model enable to 
solve boundary value problems as it is shown for the anti-plane shear crack one. 

1 Introduction 

In this paper, a simple material model of phase change is presented and applied to the constitutive 
modelling of shape memory alloys and to the description of the propagation of damage in a brit- 
tle structure. Phase change is described by an  internal variable which represents the transformed 
fraction. The considered model enters the framework of internal variable description with internal 
constraints in view of the definition of the internal variable and its dependence on the macroscopic 
strain. 

Constitutive models with internal constraints have been considered in a general way by Fr6mond 
[I], using systematically the formalism of sub-differential introduced by Moreau [Z]. FrBmond's work 
could be seen as an extension of the generalized standard formalism, eg. Germain [3]. 

The constitutive equations for standard materials with internal constraints are presented in the 
second section of this paper. In the third section, the model is introduced as a simple example 
of standard materials with internal constraints. Reversible and irreversible phase changes are then 
discussed in a general way and material stability is examined. In the fourth section, attention is 
focussed on the description of the extension of damage zone in a solid with a model of partial and 
brittle damage. The last section deals with the constitutive description of shape memory alloys 
following the lines of FrCmond [I] and Miiller 151. In particular, the formation of hysteresis loops 
observed in stress-strain curves is discussed. 

2 Standard materials with internal constraints 

Consider a material defined by the collection of state variables (E, P, a ,T)  which are, the strain tensor, 
the reversible and irreversible internal parameters and the temperature respectively. For the sake of 
simplicity, the assumption of small transformation is admitted although it is not necessary. The free 
energy per unit volume is function of the state variables : 

W = W(E, p, a, T). (1) 

The state variables dependance is expressed by M equality constraints : g,(~, P, a )  = 0, with nz = 
1 to M and by N inequality constraints : h,(~ ,  P ,  a )  > 0, with n = 1 to N. 

The rates i, 8, tu are thus not arbitrary, but must be compatible with the constraints : 

ah,. ah , .  dh, 
si+ag-8+ag"6=0 and - s + - - - P + - & t o  if h , = ~ .  a€ ap acu a6 ap a@ 
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d W  
The entropy density s is given by the classical relation : s = The intrinsic dissipation per 

d T  
unit volume is, eg. Germain (31 : 

in which, the partial derivatives of energy W with respect to its arguments E ,  P and a are the 
generalized forces. It is assumed that all constraints are perfect in the sense that all generalized 
reactions are associated with the potential : 

W, = -A,g, - p,h, with p, 2 0 and p,h, = 0, (A, and /I, are the Lagrange's multipliers.) (4) 

It follows from (I) and (4) that the material has the potential energy L = W + W ,  which is the 
associated Lagrangean. The associated generalized forces are : 

The assumption of perfect constraints implies the following relations (obtained by time differen- 
tiation of equalities Xmgm = 0 and p,h, = 0) : 

dhn dh ,  . dh,  . 
pn-t- + pn-p + pn-a = 0.  

3 6  a p  d a  

Consequently, generalized reactions never work in the actual evolution. 
It follows from (6) and (7) that the dissipation can also be written as : 

Coleman's argument is now applied to this expression of the dissipation as if all variables were 
independent : by definition, P are reversible variables, then the associated force B must be zero. The 
same conclusion is available for all reversible variables. For example, if the deformation itseft is not 
an irreversible mechanism, then : a = a,. This means that irreversible stress does not exist in the 
considered model. This assumption will be maintained in what follows to simplify the presentation. 
The expression of dissipation simplifies to read : 

where A is defined in (5). 
The set of equations (5) must be completed by the evolution equation of irreversible variables. 

Standard laws of evolution relies on the existence of a dissipation potential D, which is a function 
of the rate a! and eventually may depend on the present state via the current values of the state 
variables, such that : 

d D  A = -  
ddi 

If the behaviour is time-independent as in incremental plasticity, D is then a positive, homoge- 
neous function of degree one. 

Equations (5) and (10) defines completely the reversible and irreversible behaviour of generalized 
standard models with internal constraints. The two presentations, by Lagrange formalism or by 
Moreau formalism, appear to be stricly equivalent in essence. 



3 A simple model with phase change 

3.1 A model of material 

In this section, a simple model of solids with phase change is presented as an example of standard 
materials with internal constraints. The phase transformation, depending on the physical context 
of the problem, may be reversible or irreversible. For example, in the modelling of shape memory 
materials, the martensite-austenite transformation can be considered as a reversible one since the 
observed dissipation is rather small. In the description of damage of solids, damaged and undamaged 
materials may be considered as two different phases and the extension of damage inside a solid is 
then an irreversible phase transformation. 

The phase transformation between two phases is described by the internal parameter z which is 
the local transformed fraction. 

The considered model, as shown in fig.(l), can be represented by a series arrangement of springs 
with state variables E,  el f ,  z where E denotes the macroscopic strain tensor, while e and f are local 
strain tensors of each phase and z, the transformed fraction. 

Figure 1: onedimensional model 

These variables are related by perfect internal constraints : 

( 1 - z ) e + z f  - E = O ,  Z L  0, and 1 - 2  > 0. (11) 

For the sake of simplicity the temperature is kept constant and to begin with, only isothermal 
transformations are considered. The free energy consists of the stored energy in each phase U and 
V and, eventually, of a phase interaction energy I(z) : 

The phase interaction energy must naturally satisfy the condition : I(0) = I(1) = 0. 
The associated Lagrangean is : 

The reversible variables P are elf and z if local deformations and phase change are reversible 
processes. The state equations are then : 

with additional relations related to the perfect constraints : 

XI 2 0, Xz 2 0 with Xlz = 0, Xz(1 - z) = 0 and X((1 - z)e + zf - E) = 0. (15) 

It is important to note that the relations (11) to (15) are sufficient to obtain the unknowns 
o, e, f ,  z ,  A, X1 and A2 in terms of E .  These equations are explicitely written as : 
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For example, if 0 < z < 1 then : 
lT = A  = Ure= V,f 

Hence, the reversible case leads to a nonlinear elastic material. 
If the phase change is irreversible while local deformations are reversible, then P = (e, f )  and 

a = z .  Then, state equations are : 

In this case, it is necessary to complete the description by the equation of evolution of the transformed 
fraction. Since z is a scalar, this equation can always be written as (10) with a dissipation potential 
D function of i and of the present state (E, e, f, z). For time-independent behaviour, D must be a 
positive homogeneous function of i and it is well known as in incremental plasticity that equation 
(10) can also be written in the form of the normality law : 

. df z =u- with f = f ( A , ~ , e ,  f ,z) 5 0 and vf = 0. 
d A (17) 

In (17), the inequality expresses the present domain of admissible forces in the same spirit as a 
criterion of plasticity. 

Since A is a number, the assumption of a convex domain of admissible forces leads to : 

where A+ > 0 and A- < 0 denote respectively the upper and lower limits of the admissible forces. 
The associated normality law is : 

It is important to note that, since A may be multivalued, these equations must be understood in 
the following sense. All the set of values of A must belong to the interval [A-, A+]. If there exists 
a particular value A equal to A- then 2 5 0. If there exists a particular value A equal to A+ then 
i 2 0. If all values of A are strictly inside this interval defined by the two extremities A- and A+, 
then 2 is equal to zero. The fact that Lagrange multipliers are not uniquely defined theoretically 
induces no difficulty. 

The associated dissipation potential is : 

Constitutive models with phase change involving more than two phases can be also introduced 
without difficulty following the same line of reasonning. 

3.2 Material stability 
The stability of the material model under controlled stresses is now investigated. This discussion 
follows directly from general results established in the classical contexts of elasticity [6] and of incre- 
mental plasticity [8].  

If phase change is reversible, the model obtained is one of nonlinear elasticity. It is known that for 
an elastic material of energy density W(E), the material stability under applied stresses is obtained 
from the criterion of second variation : 



Here, this criterion is difficult to apply since the explicit expression of the energy W(E) is unknown. 
This problem has been discussed however in references [6],[8] and appears as a particular case of the 
stability of an elastic structure under perfect constraints. It has been shown that in this case, the 
stability of the material under force control is ensured if the second variation of the Lagrangean is 
always positive : 

S 2 ~  = Sa.L,,, .ha > 0 

on the set of admissible rates Sa , in which a = (6, e, f ,  z) denotes the collection of state variables. 
Admissible rates must satisfy : 

if z = 0 : 66, Se, 6 f are arbitrary, 6.2 2 0 

Thus, if 0 < z < 1 , the second variation of the Lagrangean is : 

and it is strictly positive on the set of admissible rates if and only if U and V are positive-definite and 
I"(z) > 0. The existence of convex energy densities U(e), V(f) and of a convex interaction energy 
I(z)  thus ensures the stability of the material under controlled stresses. 

If phase change is irreversible, the material-stability analysis follows from the general results 
which have been established for stability and bifurcation analysis of dissipative systems 181. 

For a system with internal constraints, the general criterion of stability can be written as : 

for all admissible rates. 
For exampIe, if A = A' , 0 < z < 1 and if A+ depends only on the present value of z then 

the criterion of stability is : 

for all rates satisfying : (f - e) Sz + (1 - z) Se + z S f = 66 and Sz > 0. 
It is then clear that material stability is ensured for force control if If '(z) + ~ " ( z )  > 0 and if the 

energy functions U and V are strictly convex. 
In this case, the presence of a increasing upper limit A' with z may be sufficient to ensure the 
material stability even if I ( z )  = 0. 

4 Applications to brittle and progressive damage 

4.1 Constitutive model 

The constitutive modelling of brittle and progressive damage has been discussed by many authors, 
eg. Francfort and Marigo [9]. As shown in fig.(2), we are interested by a model describing the lost of 
stiffness of a material from its initial undamaged state in a progressive and time-independent manner 
into a residual elastic state. TKis model may be useful1 to explain the loss of stiffness due to the 
extension of local damage sush as micro-cracking or the partial debonding between fiber and matrix 
or in multilayered composites. 

Marigo and Franckfort have introduced their model to describe the problem of partial and brittle 
damage in a solid. Their parameter z is a damage variable representing the volumic fraction of 
the final state. Damage appears as a mixture of the initial and the final states at  the macroscale. 
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Figure 2: Progressive and partial damage. 

Following their ideas, a model of progressive and brittle damage is now considered to discuss a com- 
plementing aspect of the proposed model. This discussion is different from Marigo and Franckfort's 
one since an evolution law of damage is now introduced in the spirit of (17) for irreversible damage. 
This leads to a natural model of progressive damage in the sense of incremental plasticity. A model of 
nonlinear elasticity is also naturally associated with equations (14), when damage may be considered 
as reversible and leads to an explicit value of z in terms of the macrostrain E .  For simplicity, the one 
dimensional case is first considered. 

With the following choice : 

1 1 K1 
I ( z )  = 0, U ( e )  = -Kle2, V(f) = - K ~  f 2  + k with r = - > 1 

2 2 K2 

equations (13) and (14) lead to this a particuIar model of nonlinear elasticity 

if I t l S E  then z = 0  and n=K1e  

with : 

( € 1  - E  if E  5 ( € 1  5 F  then z = - 
F - E  

and a = K I E  s i g n  (E) 

if 1 ~ 1  > F then z = 1 and a = K2 E 

The associated energy density is obtained from U and V by convexification as shown in fig.(3). The 
constant k represents here the (reversible) phase change energy. 

An irreversible model can be introduced with the following modifications : 

The dissipation is then D = ki ,  the coefficient k representing the energy dissipated by damage per 
unit volume. 

In the three-dimensions case, the following laws of isotropic damage can be introduced as an 
extension of the one dimensional case. The energy functions are : 



Figure 3: Convem$cation of the energie, 
a: stress versus strain , b: associated energie. 

where K1 > K2 and b1 > p2 denote respectively various bulk and shear modulus. The Parameter 6 
takes for value 1 if the behaviour is reversible and zero if irreversible. 

With the following notations : 

the results obtained in the reversible case are : 

o2 
if X = - + - - 1 < O  then z = 0 , p = K I Q  , a' = 2 ~ 1 ~ '  

El2 E 2  

1 € ' 1 2  o2 
if Y = - + - - 1 > 0  

Fr2 F2 
then z = 1 , p =  K2Q , a '=  2 ~ 2 ~ '  

If X > 0 , Y < 0 then 

z is the unique solution in the interval [O,1] of equation 

and 

The fact that equation (23) admits only one solution in the interval 10,1] can be seen geometrically 
since it can be represented by a family of ellipses in the plane (x, y) , x = 4 E and y = 5 of principal 
axes (1 + (r - 1 ) z )  and (1 + (r' - 1)z )  when z varies. A geometrical point of coordinates (x, y) of the 
region limited by the two extreme ellipses (obtained when z = 0 and z = 1) belongs to one and only 
one ellipse of this family since the domain interior to each ellipse is increasing in size and contains 
the previous one when z increases. 

The three-dimensional behaviour is thus given explicitly and the constitutive equations are math- 
ematically consistent if r > 1, r' > 1. 

If r = r' or r = 1, or if r' = 1, the model is a straightforward extension of the one-dimensional 
case [ lo] .  

The irreversible case, with 6 = 0 and D = k i  and i 2 0,  leads to an incremental behaviour in 
a similar way as in incremental plasticity. The non-decreasing parameter z can be compared to  the 
plastic strain. 
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4.2 Illustration : mode I11 fracture. 

In this subsection, we examine the problem of a crack under anti-plane shear conditions. The material 
of the structure undergoes reversible phase change. To simplify we assume that  (r  = 1). An exact 
solution is found through the hodograph method. 

4.2.1 Governing equations 

The crack is in the plane x2 = 0 with its tip coinciding with the origin of the reference. The polar 
coordinates a t  the crack tip cf. figure (4) are ( r ,  0) . 

Figure 4: Anti-plane crack problem. 

Our attention is focussed in an anti-plane mode. This means that  the displacement satisfies : 

u, = 0, for a = 1 , 2  and ua = u = kmx2  if x: + xi tends to + co 
k m  is the amplitude of the shear at  infinity. 

Then the problem consists on finding a solution u, z(u) that satisfies : 

Klzz is the stress-intensity factor in the case of a crack in an anti-plane mode for an  elastic 
material whose mechanical caracteristics are those of the initial phase. 

4.2.2 Solution 

A formal solution to this non-linear problem is obtained by the use of the hodograph transformation 
in which the first derivatives of u are introduced as the independant variables. The details of this 
analysis is found in (101. 



The calculation leads to a number of solutions of the governing differential equations (24), each 
valid on a particular sub-domain as shown in figure (5). With : 

c2 
y z=o 

n - 
crack. 

Figure 5: Domains  of validity o f  the solutions. 

(OUI - E  
Z = 

F - E  

1 Cl is the circle with center Rl(H, 0) (If = [i (w) + - &] , 
K~ and radius .+ while C2 is the circle with center 0(0,0)  and radius K;, , 

~ P ; E  a 
( T I ,  0,) are the 

~ P I P Z ~ ~ ~  ' 

polar coordinates when the origin of the reference is changed in R1(H, 0). 
Many authors have considered the same problem, including ~ b e ~ a r a t n e  [ll], for a class of in- 

compressible, homogenous, isotropic, elastic materials whose constitutive behaviour is such that the 
equations of equilibrium loose ellipticity at  sufficiently severe deformation. The advantage of our 
model is the explicit expression of the fractions of phases. 

5 Applications to shape memory alloys (pseudo-elasticity). 

Shape memory alloys display pseudo-elastic behaviour for a certain range of temperatures. No 
residual strains are observed upon unloading, nevertheless stress-strain curves present an hysteresis 
loop. This particular behaviour is caused by martensitic transformation [5]. 
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In this section, the model proposed is applied to describe this hysteresis effect . Only the me- 
chanical aspect is discussed. The temperature is assumed constant and the one-dimensional case is 
considered only. 

Let z be the fraction of martensitic phase at local strain f and (1-2) the fraction of austenitic 
phase at local strain e.  The phase energies are : 

The hysteresis loop in the stress-strain curve indicates that the phase change process is dissipative. 
To describe this behaviour, we choose this particular expression of the dissipation potentiel : 

D = Jk(d when 0 < z < 1 (32) 

which means that dissipative force must satisfy -k 5 A 5 k, k is the dissipative energy per unit 
volume associated with phase change. The stress-strain curve obtained is presented in figure (6). 

Figure 6: Hysteresis loop. 

6 Conlusion 

In this paper a simple model of solid-solid phase change was presented. The basic hypothesis consists 
of admetting the existence of a zone in which the phases are mixed. The three dimensional extension 
is easly developed [lo]. This allow us to apply the model to solve boundary value problems with 
complex geometrie and loading. The suitable choice of the potentials (elastic energies and dissipation 
potential) allows the description of many different phenomena : partial brittle damage and pseudo- 
elasticity. 
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