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Abstract. The aim of this paper is to analyse the generation of internal stresses during the predeforma- 

tion of NiTi shape memory alloys in the martensitic state. This allows to determine the initial stress state 

in which the material will transform during the shape memory effect due to  heating coilsecutively to this 

prestrain. In that way a three-dimensional finite element model of the deformation of shape memory alloys 

has been developed, the constitutive law being defined using an elastohysteresis tensor model. The influence 

of behavioural and geometrical factors are illustrated considering the numerical simulation of different cases 

of practical importance for industrial applications : the study of the bending behaviour of a NiTi cantilever 

beam as well as the study of the swelling of a pipe connection under both uniform and non uniform internal 

displacement fields. 

1 INTRODUCTION 

Designing with shape memory alloys (SMA) is far more complicated than with non transforming 
materials. Free recovery is very often presented as the simplest of the shape memory events consisting 
of a deformation of the martensite and then heating to recover the original shape. However in most 
of the complex structure bodies, this shape memory effect has to be performed under stress, due to 
the fact that internal stresses are generated during the predeformation of the alloy in the martensitic 
state. In order to  better determine the initial stress state from which the material will transform 
consecutively to the prestrain, it is necessary to study the influence of this prestrain on the generation 
of internal stresses in shape memory parts. 

In order to feature accurately the generation of internal stresses during prestrain, the influence of both 
behavioural and geometrical aspects has to be analyzed. Below M s  the deformation occurs mainly by 
twinning and/or martensitic reorientation and specific constitutive laws have to be used to model the 
resulting non usual mechanical behaviour, including non elastic springback strain during unloading. 
In that way, a three-dimensional finite element model of the deformation of shape memory alloys has 
been developed in order to analyze and predict the mechanical behaviour of NiTi parts. According 
to the strong non-linearity of the mechanical behaviour, the formulation of the model is developed 
in the case of large geometrical transformations including large deformations. In this context, a 
general three-dimensional kinematic has been studied. The constitutive behaviour is defined using 
an elastohysteresis tensor model which is based on the splitting of the Cauchy stress tensor into 
two fundamental stress contributions of hyperelastic and pure hysteresis types respectively. Such a 
constitutive law has already shown its applicability for SMA [l] [2] [3]. The equilibrium equations 
are then deduced using the principle of virtual power, the system of non-linear algebraic equations 
being solved by the Newton-Raphson method. 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1996123

http://www.edpsciences.org
http://dx.doi.org/10.1051/jp4:1996123


Cl-236 JOURNAL DE PHYSIQUE IV 

This paper is devoted to the presentation of the 3~ finite element modelling of the deformation of 
SMA in martensitic state. In the first part, the finite element formulation concerning the three- 
dimensional kinematic, the elastohysteresis constitutive law as well as the variational formulation 
is briefly recalled for it has already been presented in [4]. In the second part, the influence of all 
the behavioural factors together with the geometrical factors are illustrated considering the finite 
element simulation of two different cases of practical importance : firstly the bending behaviour of a 
NiTi cantilever beam and secondly the swelling of a NiTi pipe connection under both uniform and 
non-uniform internal displacement fields. These numerical simulations are performed using material 
parameters which have been identified on experimental shear tests results [3]. 

2 FINITE ELEMENT FORMULATION 

The finite element formulation of the model is written using a general three-dimensional kinematic, 
no particular direction being favoured ; such a formulation allows to study any type of NiTi bodies. 
The definition of this kinematic in terms of mechanical and numerical involvement in the finite 
element program is briefly reviewed in this section. 

2.1 Three-dimensional kinematic 
Let us consider a body R, its configuration at time t being the reference configuration. The equilib- 
rium conditions are written on the final configuration, i.e. at time t + At. The position of the body 
R, see Fig.1, is defined using convected material coordinates Q', so :hat at  time t, the position of the 
material point M is written as : &?(Q\ t )  = za(8",t) L, where the I, vectors denote a fixed reference 
frame. The natural frame ( M ,  6,) is defined by the following relation : 

Figure 1: Three-dimensional kinematic : defi- 
nition of the convected matefial coordinates and 
of the local natural frame Gi. 

In the final configuration, the position of the 
body R at time t + At can be written_under the 
form &?(Qi, t + At) = za(Qi, t +.At) I, and t,he 
natural frame at time t + At is then denoted 
by g',, similarly to previous equation (1). From 
these definitions, the Almansi strain tensor is 
written as 151 161 : 

t+At , .. G represents a tensor of which components are those of the metric tensor G in the natural 
frame at time t ,  convected without modification until the time t + At. Similarly, ~ : + * ~ e ; j  represents 
the two times covariant components of the strain tensor between times t and t + At. It has to be 
noticed that for sake of simplicity, the map of material coordinate is taken as the map of coordinate 
of the finite element discretization [7], which means that the discretization of the kinematic fields 
is classically performed in accordance with the finite element method ; the current position of M is 



4 -4 -4 

then defined by the relation : M = za I, = zaT p, I,, where the interpolation functions cp, depend 
on a coordinate map J" on the reference element, i.e. cp, = y,([". The choice [h 0' implies 
that the material coordinates are not continuous between elements. As the elements are assumed 
isoparametric p, = +, (G, represents the interpolation of the unknown functions), the unknown 
displacement field Au' between times t and t + At is written as : 

2.2 Constitutive behaviour 

For SMA, the simultaneous existence of reversible processes and hysteresis [8] suggests to express the 
Cauchy stress tensor U as the addition of two partial stresses, the first one being hyperelastic U, 

[l], while the second one is related to hysteresis of elastoplastic type u h  [g] [l01 [ll]. This approach 
leads to  study two tensorial schemes of isothermal hyperelasticity and hysteresis respectively. It 
should. be noted that the pure elastohysteresis scheme allows the description of classical effects (i.e. 
superelasticity and ferroelasticity) as well as shape memory effect [l]. 

2.2.1 Hyperelastic behaviour 

Let E be the density of elastic energy. If we denote by g = det I g,, 1, the hyperelastic stress 
contribution U, can be defined by the rate form : 

D denotes the strain rate tensor for which 2Dij = dgij/dt and in the isothermal case, E is simply 
the Helmholtz free energy. In the case of SMA, it has to be noticed that the thermomechanical 
properties are related to the existence of a thermoelastic martensitic transformation which occurs 
mainly by shear-like mechanisms. From a macroscopic standpoint, if E denotes the Almansi strain 
tensor between the neutral and current states and if the material is assumed isotropic the choice 
of the intensity of the deviatoric strain 115 as a first variable of E is thus physically meaningful 
[1][2]. The set of variables is completed by the ratio of elementary volumes v and by the phase of 
the deviatoric strain tensor cp?. If we denote by G = det I Gij 1, the ratio of elementary volumes is 
defined by the relation v = (g/G)lI2. By identifying each terms of relation (4), it can be obtained : 

where the cri coefficients are functions of v, fl?, (PS, dE/az~ ,  d E / a n E  and dE/dp,. In the case of 
shape memory alloys, the form of E has been proposed to be taken as the following relation [l] [2], 
k,, Q,, p, and p ,  being parameters depending both on the alloy and on the temperature : 

k, ln2v Q2 E = -  + 2 1 x 1  cosh - 
6 2pT [ (2; a ) ] + 2 p m n E  

In the finite element code when material exhibits non-linear physical behaviour, the constitutive 
relations are used in their incremental form ; they are discretized in space with respect to time-like 
parameter. This procedure enables obtaining of so called tangent matrix elements necessary when 
Newton-Raphson implicit procedure is used to solve final equations set. The incremental form of 
relation (5) as well as its variation with respect to the degrees of freedom has been given in [4]. 
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2.2.2 Pure hysteresis bel~aviour 

From the outset, rheological models containing elastic and slip elements have been considered to 
derive a general pure hysteresis model [g]. The ma.teria1 is assumed isotropic and the hysteresis 
contribution (denoted by S )  is only deviatoric. The plastic evolution is limited by the Von Mises 
criterion which is directly included in the rate-form formulation of the deviatoric Cauchy stress tensor 
S .  Such hypotheses lead to the following constitutive relation : 

D denotes the deviatoric strain rate tensor and the deviatoric hysteresis stress tensor S is related to 
S' through 2s" = SS'; g k ~  + S'; g k 8 .  The term 4 = AfS' : D represents the intrinsic dissipation rate 
[g] and /l4 = -ph/w2S; is such as the Von Mises equivalent hysteresis stress is always lower than 

= &So For sake of simplicity, the subscript r represents a reference situation which means that 
A: describes any evolution between time t and the reference state r .  The parameter W denotes the 
Masing similarity function ; along the first loading path, W is equal to  1 and the reference state is the 
initial state. For other paths, they are equal to 2 and to the last inversion state respectively as long 
as any crossing point is not detected. The material parameters are then simply the Lamk's coefficient 
,uh and the yield hysteresis limit So which are easily determined from tensile or simple shear tests 
[12]. From a numeric standpoint, the constitutive equation is linearized and directly integrated by 
an implicit Newton method ; such a method requires a calculation of all different values at time 
t + At. The derivative of S' with respect to time leads to the following quadratic expression of the 
constitutive equation : 

with : 
~:+Ats f i  - ~;+A"fi - ~;sl; 

k - (9) 

If we denote by : 
[ F ' ~  i ] = [ p4 nik A:+At S': + (h 4 - 1) hik hij ] (10) 

where 6 represents the Kronecker symbol, the variation of the deviatoric stress tensor with respect 
to the degrees of freedom which is needed in the tangent linear form is obtained through : 

The management of inversion and crossing points is performed using the intrinsic dissipation rate 
function 4 defined previously. This value is related to a volumeelement and must always be positive ; 
thus, the stat.e at time t is an inversion point when the function 4 becomes negative. Furthermore 
the management of crossing points is performed by using an associate function W defined by the 
relation [g] [l11 : 

After each inversion point, the level reached by the W function is memorized and W is set to zero for 
the next evolution. This function represents in fact a measurement of the energy exchanged along 
the path between two inversion points. A crossing point is then observed when the current level 
of exchanged energy reaches a previous memorized level of W, reached on a previous branch. The 
crossing point represents the closure of a cycle which can then be erased. 



2.3 Variational formulation 

The weak formulation of the boundary-value problem defined by the boundary conditions and by 
the equilibrium equations, which are both written on the final configuration, is obtained by using 
the principle of virtual power. Let R be the region occupied by the material and C its boundary ; 
from the finite element discretization and taking into account an arbitrary virtual velocity field in R 
and fulfilling displacement boundary conditions on C, this leads with (3) to  the system of algebraic 
non-linear equations : 

* bs 
V corresponds to the virtual velocity of a degree of freedom ( b  coordinate of the node S ) ,  v' being 
chosen under the same form as the displacement field. Ail denotes the displacement between time 
t and t + At, ;the vector of surfacic external forces and Rb, the residuum. The previous system is 
finally solved using the Newton-Raphson method. 

3 RESULTS A N D  DISCUSSION 

This section is devoted to the numerical study of the ferroelastic three points bending behaviour of 
a NiTi cantilever beam as well as the swelling of a NiTi pipe connection under both a uniform and 
non-uniform internal displacement field. The aim is to analyze the generation of internal stresses 
during the ferroelastic deformation prior to the shape memory effect and to feature the residual stress 
distributions at the end of the prestrain process. The material parameters have been identified on an 
industrial NiTi alloy from the experimental results obtained in tension and in simple shear by Manach 
[3] [12]. In martensitic state, Q, is set to zero for it characterizes the stress-induced martensitic 
transformation in the austenitic state and the other parameters are k, = 95000 MPa, p, = 22500 
MPa, pm = 1000 MPa, ph = 15000 MPa and Soh = 200 MPa. Thus, the numerical stress-strain 
curve obtained using these parameters features the rubber-like behaviour which is characteristic of 
the nlartensitic state behaviour, see also [4]. 

3.1 Shape memory alloy cantilever beam 

The use of SMA in industrial applications necessitates to describe their behaviour, not only as tensile 
test specimen in which the stress is homogeneous but also as mechanical elements such as beams 
where the stress distribution is non-homogeneous. For example, in the case of cantilever beams 
which are used for several industrial applications [13], the SMA element is stressed in bending with a 
non-uniform stress distribution over the cross section, which produces a maximum tension and com- 
pression stress occuring at the outer fibers of the beam. Moreover, for such materials, the deflection 
of the beam is not a linear function of the force, so that mechanical engineering classical formulaes 
cannot be used. Furthermore, it is important to determine the residual stress state consecutive to 
a prestrain in the martensitic state before the shape memory effect. Thus, it is obvious that these 
problems lead the usual method of calculation to be inefficient. Different studies based on strength of 
materials' approach have already been published to model the deformation of simple beam in bending 
[l41 [l51 ; among them, the one proposed by Orgeas et al. [l61 is developed using one-dimensional 
elastohysteresis scheme and small deformation theory but takes into account large displacement and 
non-symmetric tension-compression behaviour. 

The finite element approach presented in this paper, is developed for any 3 D  body including large 
geometrical transformations and is obviously more general than the previous ones ; this allows to 
get information on quantities which are neglected in the above studies, as for example the shear 
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stress arising during bending. The beam which has been studied has the following dimensions : 
80 X 8.5 x 2.6 mm. For symmetry reasons, only the quarter of the beam, presented in Fig.2.a, has 
been used for this test. 

U 
DEFLECTION (mm) 

Figure 2: (a) Mesh of the cantilever beam used for the numerical simulation : 1. initial mesh and 
2. maxinlu~n deflection mesh. (b) Force-deflection loading and unloading curve obtained at point C. 

Therefore on faces 1 and 2, boundary conditions are symmetry type conditions, i.e. U = 0 on 
face l and 71 = 0 on face 2, U ,  v, W being the displacements along the X, y, z directions respectively. 
The beam is submitted to a linear force density along the AB line and in order to ensure isostatic 
conditions. the point 0 is completely fixed, i.e. u = v = W = 0. The mesh used for this calculation 
has 10 elements along the length, 3 elements along the width and 3 elements in the thickness, the 
elements being quadratic hexaedrons ; such a mesh leads to a weak discretization error [4]. The 
numerical force-deflection curve obtained during this test in martensitic state, is presented in Fig.2.b 
and the deformed mesh for a maximum deflection of 10 mm in Fig.2.a. The curves presented in 
Fig.3 represent the stress distributions in the thickness at the symmetry center point of the beam 
(point 0 )  for the major principal stress a1 (a) as well as for the Von Mises equivalent stress u , ~  (b). 
The numbers on curve Fig.3 refer to different increment calculation points drawn in Fig.2.b ; the 
four first curves are obtained during loading while the two last ones describe the stress state during 
unloading. The stress along the second principal direction is negligible. The minor principal 
stress distribution is not presented here for it is symmetric to the distribution with regard to 
the neutral fiber. 

STRESS (MPa) STRESS (MPa) 

Figure 3: Stress distributions a1 (a) and u , ~  (b) in the thickness obtained at point 0 for several 
deformation states. The numbers refer to the increment calculation points defined in previous Fig.2.b. 



First of all, as the force-deflection curve features the typical ferroelastic behaviour of the martensitic 
state, the residual deformation after unloading is rather important, somewhat similar to what ob- 
tained for classical metallic materials. This residual deflection depends on the material parameters, 
i.e. of the temperature at which this deformation takes place. On one hand, the value of the principal 
stress 01 represents for the bottom outside fiber, the tensile longitudinal stress due to the bending 
sollicitation. Conversely, the value of 0111 would represent for the top outside fiber, the compression 
stress. During loading, the value of a1 starts from a quasi-linear curve for the first increment calcula- 
tion point while for higher strain levels the a1 stress distribution is characterized by a rounded curve 
which is a classical shape for elastoplastic constitutive behaviour. On the other hand, the Von Mises 
equivalent stress distribution includes shear stress components which are maximum on the neutral 
fiber and vanish on the outer fibers. In that way, the Von Mises stress distribution is symmetric with 
respect to the neutral fiber, its value being equal to the axial stress on the outer fibers and reflecting 
the shear stress on the neutral fiber. 

Using strength of materials' approach [l61 and according to Kirchhoff assumption, the application of 
a bending momentum to a prismatic beam involves a rigid body rotation of a cross section normal 
to the longitudinal axis X, characterized by its curvature radius R. This leads to a longitudinal 
displacement field expressed as : U, = xz/R. Expressing the deformation (assumed as small) as : 
c,, = dt~,/dx = z/R, the longitudinal stress field a,, in a cross section can then be determined 
using the constitutive law. Due to  the inelastic behaviour of SMA, the stress is not linearly related 
to  the z coordinate and the expression of the bending momentum is rather complicated. However, 
as the E,, distribution is a linear function of z with a slope equal to  1/R, and as in the strength 
of materials' approach the shear stress is neglected, the a,, stress distribution along the thickness 
has a similar shape than that of the tensile stress-strain curve at the beginning of the first loading. 
When the deflection of the beam increases, the a,, distribution departs from a quasi-linear curve. 
This tendancy can be observed on the curves 1, 2, 3, 4 of Fig.3.a for the major principal stress. The 
observation of Fig.3.b shows that the shear stress can not be neglected as it has been done in all the 
strength of materials' approach [l41 [l51 [16]. The most interesting part of this calculation lies in the 
stress distributions during unloading for it allows to determine the springback effect as well as the 
residual stress state in the beam. It can be observed in Fig.2.a that during a progressive unloading, 
an elastic springback of each fiber is produced. The a1 principal stress decreases to  reach the value 
presented on curve 6. At the end of the unloading, the internal fibers remain constrained. For fibers 
below the neutral fiber, the value of the principal stress 01 follows a S-shape curve which is due to  the 
somewhat elastoplastic character of the constitutive law. Similarly, the Von.Mises equivalent stress 
distribution is reversed during unloading and the outer fibers of the beam as well as the neutral fiber 
remain under stress even when the force is released. 

3.2 Shape memory alloy pipe connector 

Another well established use for shape memory alloys is that of connectors for tubing and, similarly, 
pin and socket type connectors [17]. The procedure in these applications is to  manufacture a tube of 
shape memory alloy which has a somewhat smaller inner diameter in the austenitic state than the 
outer diameter of the pipes to be connected. At a temperature less than As the SMA tube is then 
deformed into partially reoriented martensite such that the inner diameter exceeds slightly that of 
the tubing. The SMA tube is placed over the pipes in this phase and then heated. As the reverse 
transformation occurs, the material attempts to recover the initial residual strain, the seal being then 
immediately effected. In this section, two analyzes are undertaken to simulate such an application 
(see Fig.4) and to demonstrate the potential of the finite element calculation. The first case concerns 
the study of a NiTi pipe connection submitted to an uniform internal displacement while the second 
consists of the calculation of a real industrial connector including slots. In this last case, the tube is 
submitted to a radial displacement field at both slots. 
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Figure 4: Schematic drawing of pipes or 
tubing connected by a shape memory alloy 
tube. 

3.2.1 NiTi  connector under  a uniform internal displacement 

The tube which is studied here has a 5 mm inner radius, a 25 mm length and a 3 mm thickness. 
Once again for symmetry reasons, only the quarter of the tube has been used for this test and all 
the displacement fields and boundary conditions are defined in cylindrical coordinates according to 
Fig.5. Therefore on faces 1 and 2, boundary conditions are symmetry type conditions, i.e. v = 0. 
The tube is submitted to an uniform radial displacement field U on its internal face and in order to 
ensure isostatic conditions, the point o is completely fixed, i.e. v = W = 0. The mesh used for this 
calculation has 4 elements along the length, 10 elements along the circumference and 3 elements in 
the thickness, the elements being quadratic hexaedrons. 

Figure 5: Mesh of the connection pipe used 
for the numerical simulation. U, o and W are 
the displacements along the e,, eo and z di- - 
rections respectively. 

.-_-̂ ji 
The pipe is submitted to a radial displacement of 0.5 Inn1 magnitude on the internal face. The 
force-displa.cement curve obtained during this simulation is presented in Fig.G.a, the principal stress 
distributions in the thickness at point A of the pipe being presented in Fig.G.h, Fig.7.a and Fig.7.b for 
ar, a I I I  and a , ~  respectively. The value, i.e. the major principal stress, is related to the tensile 
stress in the thickness and corresponds to see value, while the 0111 value, i.e. the minor principal 
stress, is related to the compression stress in the pipe, i.e. to a,, value. 

DISPLACEMENT (m) STRESS (MPa) 

Figure G: Force-displacement loading and unloading curve (a) obtained on the inner radius of the 
pipe and stress distribution 01 (b) in the thickness of the pipe for several deformation states. 

First of all, it can be observed on Fig.6.a that the tensile stress distribution a1 along the thickness 
of the tube is more important on the inner radius than on the outer surface, this variation increasing 
while increasing the deformation. Similarly, concerning the distribution, it appears that the 
elements located close to the inner radius are more compressed than those located on the free surface, 
which provides a non-homogeneous stress state in the thickness. These results are in agreement, at 
least for the first increment calculation points, with the results obtained on a thick tube by applying 



3.2.2 NiTi connector under  a non-uniform internal displacement 

the linear elasticity theory [18], where both stress distributions U,, and U00 are supposed to follow a 
1/r2 law, where r denotes the radius of the tube. During unloading, the tensile stress U I  decreases 
to reach a weak value on the outer surface, the inner radius remaining more constrained ; thus, 
even when the force is released, residual stresses persist on the inner radius face of the connector. 
Furthermore, it appears on the 0 1 1 1  distribution that the stress on the inner and on the outer radii 
faces decreases to zero. The stress distribution follows then a somewhat parabolic curve, the medium 
part of the tube remaining constrained. Finally, the a , ~  stress distribution is comparable to the or  
one for the value of 0111 is rather weak. During unloading, the a , M  stress features again that the 
inner radius remains more constrained than the outer surface of the pipe cross section. 

The industrial connector investigated here has the same dimensions of the previous one, except 
that two slots of dimensions 0.5 mm x 0.5 mm have been added to  the previous mesh. Once again 
for symmetry reasons, only the quarter of the tube has been used and all displacement fields and 
boundary conditions are defined in cylindrical coordinates according to Fig.8. On faces 1 and 2, 
boundary conditions are symmetry type conditions, i.e. v = 0. The connector is submitted to a 
radial displacement field u at both slots. Point o is completely fixed, i.e. v = W = 0. The mesh has 
6 elements along the length, 10 elements along the circumference and 3 elements in the thickness 
(another range of elements is added at the slots), the elements being quadratic hexaedrons. 

8.00 

3 7.00 

U V1 m I 
g 6.00 
b 

5.00 

Figure 8: Deformed mesh of the industrial 
connection pipe used for the numerical sim 
ulation. 
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The slots are submitted to a displacement of 0.5 mm magnitude, the deformed mesh being presented 
on Fig.8. It can be observed that the radial deformation is this time strongly non-homogeneous. It 
appears now that a simulation of the behaviour of the pipe during a heating producing the shape 
memory effect is necessary in order to analyze the efficiency of the sealing between the connector and 
the pipes. Thus, to complete this simulation, thermal effects are currently introduced in the finite 
element program. Both hyperelastic and pure hysteresis will then depend on the temperature, which 
will allows more complete studies of all behaviours of shape memory alloys and their applications, 
including one way shape memory effect. 

-200 -175 -150 -125 -100 -75 -50 -25 0 0 100 200 300 400 500 

STRESS (Wa) STRESS (Wa) 

Figure 7: Stress distribution 0111 (a) and 0 , ~  (1))  in the thickness of the pipe for several deformation 
states. The nunlbers refer to increnlent calculation points. 
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4 CONCLUSION 

The ferroelastic behaviour of NiTi shape memory alloys has been modelled in order to feature the 
generation of internal stresses during the deformation in martensitic state. A three-dimensional 
finite element model has been presented, including three-dimensional kinematic and elastohysteresis 
constitutive law. The first part of this paper deals with the theoretical formulation of the model, 
while the second part is devoted to the numerical simulation of two cases of practical importance for 
industrial applications. The numerical results obtained by the simulation of previous cases feature 
that the model allows to  describe the rubber-like behaviour of the martensitic state, during loading as 
well as during unloading. Both examples show that after such a prestrain, important residual stresses 
remains even when the force is released. For the bending test, it appears that the stress distributions 
in the thickness are characterized during loading by a third-order symmetric curve while during 
unloading, by a S-shape form which is a classical representation for elastoplastic constitutive laws. 
For the pipe connection test, it has been shown that at the end of the unloading, the inner radius 
face as well as the center part of the connector remains more constrained, the residual stresses on the 
outer radius face being weak. Finally, the deformation of the industrial case of the connector with 
slots features the strong non-homogeneity of the deformation. It seems now interesting to complete 
this test by simulating the recovery strain which is generated during a heating producing the shape 
memory effect, and to analyze the internal stress states of all parts of the connection system. 
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