
HAL Id: jpa-00254134
https://hal.science/jpa-00254134

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Microstructures
M. Chipot

To cite this version:
M. Chipot. Computing Microstructures. Journal de Physique IV Proceedings, 1996, 06 (C1), pp.C1-
27-C1-34. �10.1051/jp4:1996103�. �jpa-00254134�

https://hal.science/jpa-00254134
https://hal.archives-ouvertes.fr


JOURNAL DE PHYSIQUE IV 
Colloque C1, supplkment au Journal de Physique 111, Volume 6, janvier 1996 

Computing Microstructures 

M. Chipot 

Centre d'Analyse Non Liniaire, Universite' de Metz, Ile du Saulcy, 57045 Metz cedex 01, France 

Abstract. Minimization of energies with no minimizer produces minimizing sequences 

that could converge toward zero even though their gradients do not and oscillate. 

We analyse here this phenomenon in particular from the numerical point of view 

describing the problems faced in computing the corresponding microstructures. 

1. INTRODUCTION 

We denote by S2 a polygonal domain of Rn. If M m X n  is the space of na x n matrices, let 

be a continuous function. In various physical problems one is led to minimize energies of the type 

over some class of vector valued functions v = (vl,. . . , vm). Vv E AdnZXn denotes here the jacobian 
matrix of v whose entries are d v i / d d .  Now, to model states of low energy one assumes that the 
energy density y satisfies 

where Wi are matrices or "wells" in M m x n .  

As one can show, these problems do not admit in general minimizers. So, one is led to study their 
minimizing sequences and to analyse their relevance in describing physical phenomena. One crucial 
step toward the explanation of the physics of the problem at hand could be to discover a commun 
pattern for these minimizing sequences. If this is theoretically possible for some particular cases it is 
an other matter to drive the computer to find systematically these right patterns. Indeed, the functionals 
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that we are led to study, and more especially their approximations, experience several local minima 
which all become traps for our codes. Our efforts lately have been devoted to try to understand how 
to become more successful in this respect. Of course one expects that many physical systems could 
be described by energies given by (1.1)-(1.3). Nonlinear elasticity enters this framework in the case 
t77 = 11 = 3. Conditions like (1.3) have been introduced by several authors (see [2], 131, [4]-1141, [17], 
[18], [ZO], [21], [23], [24]). Let us quote few examples that have been investigated lately : 

Exainples : 1) 772 = 1, 11 = 2. If w ~ ' ~ ( R ,  R) is the set of Lipschitz continuous functions with 
values in R ,  vanishing on the boundary of R (see 1191 for information on these spaces), consider 

(v,.. I!?, denote respectively dv/i3x, dvli3y). In this case the function p has two wells namely 

(See [24] for the link with austenite-martensite transformation). 

2) 172 = 12 = 2. TO study the deformation of a two dimensional crystal (see [18]) J. Ericksen and R. 
James introduced the energy density 

where 

is the Cauchy-Green strain tensor, +*i elastic moduli and E the transformation strain. In this case the 
funtion y = 4 is frame invariant which leads to two "infinite" wells i.e. wi = {QW I Q E SOz}, 
SO2 denoting the set of rotations in R2. Note that this is the typical situation for nonlinear elasticity 
for materials with different natural states (see [Ill-1201). 

2. N U M E R I C A L  ESTIMATES  

From now on, for the sake of simplicity, we will restrict our analysis to problems of the type 

I = inf (2.1) 

where Vv denotes the jacobian matrix of v and w ~ ' ~ ( R ,  Rnz) the set of Lipschitz continuous functions 
with values in R m ,  vanishing on the boundary of R. 

We denote by .rh a regular triangulation of R and we set 

1.1.'; = (21 : R -+ Rm / v is continuous, v = 0 on I?, v is affine on each simplex of TI,). 

(The readers who are not familiar with the finite element method can assume 72 = 2 or 3, the element 
I< are then triangles or tetrahedrons splitting the domain R). y: is the natural space to approximate 
I / v ~ ~ ~ ( R ,  Rm) and the discrete version of (2.1) is 

Ih = inf y ( V v ( x ) )  dx. 
"h" 



We refer to [9], 11 11, [13], [14], [I87 for various numerical computations regarding these probems. 
Note that one has clearly I 5 I!,. So, one is interested to obtain estimates for I!, - I in terms of the 
mesh size 12 = maxx~, ,  hIc, lzI; being the diameter of the element I<. 

One indirect outcome of such estimate is to produce a minimizing sequence. Indeed, assume that 
(2.1) does not admit a minimizer, i.e. there is no E w ~ ' ~ ( R ,  Rm) for which the infimum I is 
achieved. If 711, E Vf is an element such that 

and if 

0 5 1 h - I < S h  

then l i n ~ ~ , ~  E J ,  = limh,o 61, = 0 will imply that v ~ ,  is a minimizing sequence. Conversely, we are 
not aware of any other method to get estimates of Ih - I  but by building up a vl, such that (2.3) holds. 
Let us see the development of the above strategy on the simple example (1.4). We refer the interested 
reader to [4]-[lo], for details on more complex situations. 

So, let us prove : 

Theorem 2.1: Assume that the triangulation of R is regular, i.e. the triangles are not allowed to 
flatten when the mesh size h goes to 0 ,  then there is a constant C such that 

Proof : First note that there is no loss of generality in assuming lz < 1. 

Then, for any cu E ( 0 , l )  one has 

when 11 + 0. 

figure 1 

17." >> 17. 
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Let 2 j l ,  be the function periodic of period 2h" in the y  direction and defined by 

y  for 0 5  y _ <  h" 
' k h ( 5 , y )  = 

- y  + 2ha for h" I y 1 2h". 

One has clearly 

l ( d h ) l  + ( ( ' kh ) ;  - I ) ~  dzdy = 0. 

However, ,iih @ VhO since the boundary conditions are not matched and also they are some triangles 
where Oh fails to be affine (see figure I) .  In order to correct this one introduces 

where A denotes the minimum of two numbers, and d i s t ( . ,  I') the distance to the boundary I7 of 0. 
Finally one sets 

u h  = the interpolate of 6; (2.7) 

i.e. the unique function of V,: that agrees with 'ki at the nodes of the triangulation. It is easy to check 
that 

0 5 ~ h ,  GI,, Ch < 11". ( 2 . 8 )  

Moreover, 
Vuh = Wl or bV2 

(see (IS),  (2.5)-(2.7)) except in a neighbourhood N1 of I' where 211, could be equal to clisf(., I') and 
in a neighbourhood lV2 of thickness 2h around the lines y  = k.ha, k E Z where interpolation takes 
place. If II'l denotes the measure of I', i.e. its lengh, and I I the area of domains in R2 one has by 
(2.8) 

IN11 I Clrlh". (2.10) 

Moreover, 
ll%l I 2Nlz 

where N is the number of horizontal lines y  = L.ha cutting the domain 0 (see figure 1). If D denotes 
the diameter of S2 one has 

( N  - 1)lz" 5 D 

so that for Iz < 1, 
N 5 Ch-" 

for some constant C so, for maybe an other constant C ,  

Since the triangulation rl, has been assumed to be regular the gradient of 111, remains uniformly bounded 
as well as the one of 'kit and GI,. So, for some constant C one has 

Now, cu A 1 - cu is minimum when cu = 112 which gives (2.4). 



Re~nark 2.1: It is clear that (2.4) implies that the infimum of (1.4) is zero. Now, clearly this infimum 
is not achieved. Indeed, if for some u  

then, u ,  = 0 and since u  is vanishing on the boundary of 0 u 0. But, obviously, u = 0 does not 
satisfy (2.15). 

Remark 2.2: This estimates is sharp (see [lo]). 

Remark 2.3: It follows from (2.8) that uh + 0 when h -+ 0. In fact it can be shown that this 
is the behavior of any minimizing sequence. Moreover, we refer the interested reader to [5], [6] for 
a rigorous statement and justification, any minimizing sequence uses -as uh does- each of the wells 
with the same probability i.e. 112. In mechanical or physical terms it seems that a material with two 
natural states will switch infinitely many times between both of them in order to achieve a minimum 
of energy. It is an interesting domain of investigation to see if numerical simulations will produce 
oscillations similar to the ones detected in the theory that we have just briefly addressed above. This 
is the topic of our next section in a slightly more complex situation, yet very far from a realistic one. 

Remark 2.4: Mathematically the coherence of the minimizing sequences is described through the 
notion of Young measure that has recently emerged in this kind of problems (see [I], [7], [15], [16], 
[221, [251). 

3. COMPUTATIONS 

In the situation studied in the previous section the wells of the density of energy p were rank one 
compatible i.e. they were differing by a rank one matrix -in fact they were themselves rank one! In 
the situation where the wells Wi (see (1.3)) are two by two rank one compatible one can get for (2.2) 
a result similar to the one of Theorem 2.1. (see [8]) and construct the minimizing sequences. 

In order to analyse what is happening in the case where the wells are not rank one compatible we 
made in [9] some simulations in the case m = n = 2. We took as wells the matrices (see [26]) 

Clearly, when i # j ,  Wi - I/Vj is not rank one. R being the unit square of R2, we considered the 
minimization problem 

inf /' p ( ~ v ( x ) )  dx (3.1) 
w;,"(n,R2) n 

where Vv denotes the jacobian matrix of v i.e. 

and w:'""(R,R~) the set of Lipschitz continuous functions with values in R2, vanishing on the 
boundary of R. As energy density we took 
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where I /  / I  denotes the usual euclidean norm of matrices i.e. I I w I I "  t t race(wT~v) .  First we have : 

Proposition 3.1: The problem (3.1) does not admit a minimizer i.e. the infimum (3.1) is not 
achieved. 

Proof : One can show (see [ 9 ] )  that the infimum (3.1) is zero. Then assume that for some .u E 
T~V;?"(Q, R ~ )  

Then one has 

p(Bu(x)) = 0 a.e. .2: E Cl 

and thus 

Vzi(z) = W; a.e. x E 0. 

In particular 

So, 21' is a function independent of x2 and u2 is a function independent of .rl. Since these two 
functions are vanishing on the boundary of R one has 

i.e. tL = 0. But, 

Hence, a contradiction. 

Denote by 7-1, a triangulation of 0 and set 

17; = {v : 0 -3 R~ 1 2' is continuous, v = 0 on I?, 2) is affine on each simplex of TI , ) .  

Then the aproximate problem of (3.1) is 

Unlike the problem studied in the previous section we have been unable so far to construct a minimizing 
sequence for (3.8) and to get estimates similar to (2.4). It can also be shown that every minimizing 
sequence to (3.1) converges uniformly toward 0 and uses each of the wells LIr, with the same probability 
114 (see [9 ] ) .  Unfortunately computers are still unable to find their way in constructing such "weird" 
minimizing sequences (see figure 2). 



figure 2 

We can show, however, that 

lirn inf p(Vv(r)) dx = O 
h-0 V,O 

Using annealing, random initial guesses and various numerical tricks we have been unable so far to 
get out of the local minima that we entcounter. Of course, due to the large number of problems of 
the type mentionned in section I ,  one understand the relevance of attacking these questions. On the 
figure 2 -magnified due to the fact that minimizing sequences converge toward 0- one can see the two 
components of a local minimum of the approximated problem (3.8). 

Acknowledgements: The above picture has been realized by V. LCcuyer (see [9]) with the gocad  
software and I would like to thank him and the gocad  team for their help. 
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