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Abstract. The main deformation mechanisms of shape memory alloys (SMA) are related to martensitic 
transformation and/or martensitic rwrientation. These phenomena lead to heat production resulting from the 
transformation andlor from internal dissipation processes. As the SMA behaviour is strongly temperature dependent, 
its modelling has to take into account thennomechanical coupling. A 3-dimensional finite element code has been 
designed for that purpose. The quasi-static mechanical behaviour is described through the temperature dependent 
elastohysteresis model. Large displacements and large deformations are considered. The numerical problem is 
strongly non-linear and an implicit resolution scheme has been adopted. Two coupled thennomechanical calculations 
are presented. The first one deals with the one-way memory effect of a cantilever beam. The second one simulates 
the non-stationary thermal and mechanical fields of this beam during a near-adiabatic pseudoelastic bending. 

1. INTRODUCTION 
Deformation processes of any solid body represent thermomechanical processes. This is of particular 
importance for shape memory alloys (SMA) whose deformation mechanisms are,mainly related to martensitic 
transformation and variant reorientation. The thermal effects are obviously to be taken into account for SMA 
when an alloy deformed in its martensitic phase by martensite reorientation recovers its initial shape when 
heated into the stable austenitic state. In that case the thermomechanical coupling is increased by significant 
generation of heat during the martensitic and reverse transformation. For a temperature greater than the 
austenite finish temperature (Af) the interplay of stress and temperature leads also to the pseudoelastic 
behaviour for which the stressing of initial austenite results in a large straining of the material due to the 
exothermic forward transformation.The occurrence of the endothermic reverse transformation during 
unloading leads to the recovering of the initial shape. In that case, the mechanical behaviour can be 
significantly influenced by thermal effects due to the transformation heat and to a relatively large dependence 
of the transformation stresses on the temperature . Moreover heat production resulting from the SMA internal 
dissipation processes, either during martensitic transformation or reorientation has also to be taken into 
account. 
Several theoretical and experimental studies have already been published for NiTi, CuAtNi and CuZnAl [l]. 
These studies concern mostly the pseudoelastic behaviour of wires as a function of the imposed strain rate 
and the heat transfer between the wire and its surroundings. For this one-dimensional case, assuming a 
homogeneous behaviour along the length of the wire and neglecting heat transfer between the wire and the 
grips, McCormick et a1 [l] have established a heat balance analysis allowing to calculate specimen 
temperatures which are in close agreement with experimental measurements. On the other hand Leo et a1 [2] 
assume the appearance of a single austenite-martensite interface in the wire and establish a one-dimensional 
model taking into account the coupling between the motion of the austenite-martensite interface and a 
one-dimensional heat transfer including convection, radiation and conduction along the wire and between 
the wire and the grips. 
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The aim of this paper is to present a three-dimensional finite element simulation of thermomechanical 
behaviour of a polycrystalline NiTi body which is considered as a classical continuum. At each material point 
of the continuum one assumes at any moment a local thermodynamical constraint equilibrium state, i.e. rate 
dependent phenomena like viscous effects are neglected. The quasi-static mechanical behaviour of the 
material element is described using an elastohysteresis model depending on the current temperature of the 
element. Our thermomechanical model combines finally the description of the temperature dependent 
mechanical behaviour with a heat flow problem that includes both transformation heats and heat production 
resulting from internal dissipation processes. A first part of the paper deals with a brief recall of the used 
elastohysteresis model and with the heat production expressions deduced from this model. A second part 
describes the finite element model, whereas the third part is devoted to the presentation of two problems of 
practical importance, i.e. on the one hand the one-way shape memory effect modelling of a cantilever beam 
firstly deformed in martensite state and then heated, and on the other hand the influence of the deformation 
rate on the pseudoelastic behaviour of this beam. 

2. ELASTOHYSTERESIS MODEL AND HEAT PRODUCTION SOURCES 
The description of classical reversible thermodynamical processes representing a sequence of equilibrium 
state is well established since the works of Gibbs, Helmholtz and Duhem [3] and is performed by introducing 
thermodynamical state functions, as for example Helmholtz free energy F for isothermal processes. For 
processes depending on one normal variable denoted by e, the external action denoted o is calculated as the 
derivative of F with respect to the normal variable. 
Duhem considered that a study of equilibrium processes has to distinguish two other types of system, the 
frictional system and the system with hysteresis [3][4] for which Duhem suggested to modify the modelling 
of the reversible systems by incorporating another term to give: 

where the + is to be used when the normal variable increases and the - when it decreases. The quantity h may 
depend upon the state of the system (through c) and also of the external action u. The elastohysteresis model 
which is used here assumes a similar decomposition of the external action with each stress contribution, 
denoted uIr, and uF, , being defined through two tensorial schemes. In order to take into account large 
deformation, stresses and strains are described in the body coordinate system [5][6]  for which the covariant 
body metric tensors are g, and G, at initial and current time respectively. The Almansi strain tensor e and 

trace (E) its deviatoric part E, of current covariant components E~ = 1/2 (g,-GJ and E , =  E - - g , respectively, " 
are then used to describe the body deformation. For initially isotropic material Favier et a1 [7] proposed to 
consider the Helmholtz free energy density as a function of the volume variation V and of the second 
invariant 6, and phase (p, of the deviatoric strain and to obtain the isothermal reversible stress by 
identifying each term of the following expression: 

aF . aF h - a:, D.. = - V + 
aF . 

+ -  % with 2 = - and i j  = 1,3 
I /  a, 811- & a 9, dt e 

where D,- = 1/2 - are the covariant components of the strain rate tensor. 
dt 

The hysteresis contribution is not, as usually considered, totally dissipative. It is well known that very 
complex processes accompany, for example, the martensitic transformation like generation of dislocation, 
piling up of migrating dislocations at certain obstacles like grain boundaries, etc. This means that part of the 
energy due to the hysteresis stress is stored in a non-dissipative process and can interact subsequently with 
external energy supply depending on the stress path [8]. Based on the analysis of one-dimensional rheological 



models containing elastic and slip elements, Guelin [9] has showed that the hysteresis stress scheme has to 
take into account the memorization by the material of particular stress states denoted ofh, corresponding to 
load reversal point. The pure hysteresis scheme is thus of discrete memory form which is written as: 

o is the Masing parameter, with w = 1 (for the first loading) or 2 afterwards. 
The elastohysteresis model is built up using only external state variables, i.e. Cauchy stress, Almansi strain 
and temperature. This approach allows modelling of any SMA isothermal behaviour. This includes 
pseudoelasticity and rubber-like behaviour with only one equation whose parameters are temperature 
dependent. It is thus particularly interesting when a complex process like one way memory effect involving 
martensite reorientation and reverse transformation has to be modelled. However particular expressions for 
the density of Helmholtz free energy per unit of extent F and h have to be deduced from experimental results. 
Simple forms (which have to be improved taking into consideration new experimental results [lo]) 
introducing six parameters have been proposed in the tensorial case [7]. In the isothermal one-dimensional 
case [lo] (Fig.3), during first loading these forms lead to: 

a(, d& = dF = dEy, - TdSo = E + 5 th +)] de and a(,, = Yo th (E ) (4) 
@) Yo 

r 

The hysteresis contribution is assumed temperature independent; Guelin has shown that in the case the 
internal energy rate E(,, and the dissipated energy under heat form $,may be expressed as: 

aA:  E 

Q, = $ ( A :  a - - with A: x = $t) - x R  
a t  a t  

(5) 

The reversible contribution is temperature dependent through Y, which is taken as 0 for T<T, and as a linear 
function of the temperature with a slope equal to 6 MPa/K for T>To [I]. The energy-entropy equilibrium can 
not be deduced from isothermal experiments and therefore from the determination of the Helmholtz energy 
alone. It would necessary to perform adiabatic tests for which /:, Dq = F + TS(,, allowing thus the 
determination of &, = T s ( ~ )  

3. FINITE ELEMENT MODEL 
We take into account at the same time mechanical and thermal problems. Assumptions and numerical model 
for the mechanical part have already been presented in [12][13]. We are only going to recall the main ideas. 
For the presented test, we use 3-dimensional elements with C0 isoparametric interpolation, quadratic 
hexahedrons, with a Gauss numerical integration which uses 8 integration points. Concerning kinematics and 
behaviour law, the study is non-linear. Equilibrium equations have been approached using virtual power 
principle. Non-linearity of the behaviour law has been approached by the Newton method. We consider an 
implicit time formulation. For time increment, degrees of freedom rate is constant. Using implicit formulation 
for the time discretization, non-linearity of global equilibrium has been solved by the Newton-Raphson 
incremental method. So we have to calculate all the derivatives and more particularly for the both parts of 
the behaviour law, i.e. hyperelastic and hysteresis. The hyperelastic stress contribution is defined by [12]: 

y, p, and p, being constant parameters and Q, being temperature dependent. The above hysteresis behaviour 
constitutive equation is defined by a rate form [12]: 

a - (A: sii)= 2~~ qi + p, $ A: sJYi with A: sii = SJ:t t )  - 
at  

sJ! ( t ,  ) and s(,: = sk' ' gk j  + sklJ ki 
(7) 

, .  - .  - 2Ph $ = A ~ S ~  ' D '  and p 4 =  - 
a"; 
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S@j represents the Cauchy stress tensor deviatoric part. This leads to the global behaviour: a = a, + S, . 
The& approach is canied out by the Galerkine method, likewise for mechanics, with temperature as nodal 

unknown and a temperature virtual rate equilibrium. So we obtain the following weak formulation: 

with T: temperature, f: virtual temperature rate and r = en + a, 
Calculations are correct with a symmetrical stiffness matrix, in order to limit the stocking zone. 
Boundary conditions, implanted to date, are of temperature or imposed flux type. Temperature discretization 
and quadrature are identical to those used in mechanics. Transitional. phenomena have been approached by 
the finite differences method with the implicit scheme. Thermal and mechanical coupling is taken into 
account in two points. On the one hand, behaviour law depends on temperature, through the hyperelastic 
potential by the Q, coefficient; on the other hand, mechanical deformation induces a thermal source through 
r which represents the 3-dimensional power produced by mechanical deformations. 

4. EXPERIMENT 
a) Firstly, the one-way memory effect of a cantilever beam has been investigated. The mesh consists of an 
optimum numbers of elements adjusted during classical bending test: ten length elements, two quadratic 
thickness elements and two width elements. Dimensions of the beam: 1 x w x h = 200 x 40 x 10 mm. 
Values relating to the mechanical behaviour are : 

R - 1OOOMPa p ,=  15000 MPa K, -95OOOMPa Q, - IOOMPa 

A bending test with load and unload in martensitic phase (AT=O) has been carried out. Residual 
displacements are then maintained at the end of the beam, and the temperature of the beam has been risen 
(Fig. 1) slowly such as at each time temperature is uniform and equal to the surrounding one. 

Figure 1: Beam shapes during one-way memory effect 
simulation 

O Maximum deformed shape, AT = O°C, Az = 32 mm 
Q Residual deformed shape, AT = O°C, A% = 7.5 mm 
O Deformed shape after heating, AT = 40°C, 

maximum difference between Q and O 
for z deflection - 6 10" mm at x = 100 mm 

8 Initial beam shape 

Figure 2: Variation of the behaviour 
law with temperature 

length (mm) 

Figure 3: Von Mises stress repartition 
during the change from martensite to 
austenite 



Here Q,, allows to model the change from martensite to austenite such as: Qw = 0.1 + 200 tanh 
(Fig. 2). During the temperature rise, stress repartition changes (Fig. 3) and leads to beam reaction 

external temperature rise (' 

Rg;e 4: Beam end reaction during the 
change from martensite to austenite 

b) Secondly the two following tests concern the pseudoelastic behaviour. At first we identifikd the thermal 
power due to the mechanical deformation during a simple near-adiabatic tensile test. Q(* has been taken as 

a proportional to - 6 so as to obtain a rise of temperature of about 10°C for 6% elongation [I]; in this a simulation $,is neglected. From a numerical aspect, this simple test allows to bring to the fore several 
calculation particularities. In order to avoid an important external thermal loss, a very short time has to be 
used. However if this time is too short, the thermal stiffness is entirely dominated by the specific heat and 
in this case using 4 integration points, the thermal stiffness becomes singular. Due to the approximation 
errors, some acceptable temperatures have been obtained at the integration points. This is not the case at the 
nodes. 
Test conditions: material characteristics are the same as for the first test and the initial temperature is AT = 

40°C; dimensions of the parallelepipedic tensile sample (100 x 40 x 20 mm), 6 mm elongation with an 
imposed displacement for one ofthe two 40 x 20 faces. Total time for the test: 6,9 10" s. Thermal parameters: 
p = 6.5 glmm K c  = 2 10 ' Wlmm lK C p  = 0.53 JlglK . For both of the 40 x 20 faces, ambient 

temperature has been maintained so as to impose temperature boundary conditions. However test time is 
sufficiently short to avoid an important out of beam energy. Concerning the rest of the boundary a null flux 
has been imposed (adiabatic conditions). 
We were interested, secondly, in the pseudoelastic behaviour of a cantilever beam (the same as for the first 
test in a)). This part is aimed at showing the temperature rise in the case of a rapid loading test (adiabatic 
conditions). Two thickness quadratic elements are sufficient, but we used three to improve visualisation of 
the temperature evolution calculated at integration points. 

I I 

Figure 5: Initial and deformed shape for an 
adiabatic bending 

Boundary conditions: 

CB : 32 mrn imposed displacement according to z 
AD,BC : ambient temperature 
AD : clamped U, = U, = U, = 0 
AB, DC : null flux 

Calculation is carried out in large transformations (large displacements, large deformations). Material is 
identical to the one used during the tensile test. 
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Figure 6: Temperature evolution along Figure 7: Temperature evolution along 
beam length cross section 

Figure 6 shows the temperature evolution along the beam length in relation to the thickness position. Figure 
7 shows the temperature evolution of the cross section. We note a symmetrical behaviour near the clamp with 
a maximum temperature rise about 1.5"C. At the middle of the beam (x = 85 mm), this symmetry is not 
conserved. We observe the same dissymmetry concerning the Von Mises stress, which explains the previous 
result. 

5. CONCLUSION 
The aim of this work is to present a modelling of the thermomechanical behaviour of NiTi shape memory 
alloys. The proposed model is a 3-dimensional elastohysteresis type. Calculations are carried out by 3- 
dimensional finite element, taking into account large deformations and displacements, thermal transitional 
equilibrium and thermomechanical couplings. Two non-homogeneous tests have been presented. The first 
one concerns one way shape memory effect of a cantilever beam.The second one shows temperature 
repartition during pseudoelastic bending of this beam. In both cases obtained results are coherent with 
experimental observation. 
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