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Phase Stability of Martensitic Structures 

M. Ahlers 

Centro Atcirnico Bariloche and Znstituto Balseiro, Cornisibn Nacional de Energ fa Atbmica, 8400 S.C. de 
Bariloche, Argentinu 

Abstract: In the first part of the paper the relative stabilities of the different martensitic phases, mainly in 
Cu-Zn-Al, are compared. It is shown that the differences in enthalpy of formation between the fcc type 3R or 6R 
and the 9R, 18R or 2H structures are above all due to a lattice distortion which reduces the energy per stacking fault, 
considering 9R, I8R and 2H as a basic face centered lattice into which faults are introduced on each third or second 
plane. In the second part the factors are discussed which are important in the relative stabilities not only between 
the matrix and martensite phases, but also for the equilibrium phases in the noble metal alloys. These are: i) the 
vibrational entropy difference AS, which is a function mainly of electron concentration ela. It depends little, if at all, 
on the special alloy system, on the degree of long range order, or on temperature; ii) the stability of the average 
periodic lattice which is a smooth function of ela, without any indication of nesting effects at intermediate ela; iii) 
the pair interchange energies which depend strongly on the alloy system. They are a function of the pair distance but 
otherwise are structure independent. They determine most of the enthalpy of formation and simnltaneously account 
for the long range order contribution. 

1. INTRODUCTION 

A knowledge of the factors which control the stability of martensitic phases is not only interesting from a 
scientific point of view, but is essential for the prediction and evaluation of materials for technological 
applications. Martensite structures are the result of a martensitic transformation. The latter can be 
roughly subdivided into those which involve a large hysteresis between transformation and 
retransformation, and those for which the hysteresis is so small that equilibrium transformation 
temperatures and stresses can be defined with sufficient precision. To them belong the shape memory 
alloys (SMA), which will be exclusively considered in this paper. 

Furthermore the discussion will be restricted to alloys whose high temperature equilibrium phase is bcc. 
Among them the alloys based on the noble metals Cu, Ag and Au form a large and important group. Since 
for them most information is available, and since our own research has centered on the Cu-Zn-A1 system, it 
seems appropriate to start with a discussion of the factors which determine the martensitic transformation 
in Cu-Zn-Al alloys, followed by a comparison with other noble metal alloys. Other SME alloys as Ni-Ti 
and Ni-Al have to remain outside this discussion for lack of space. 

In the noble metal alloys the high temperature matrix phase is disordered bcc at elevated temperatures. 
At a critical ordering temperature T:' , long range ordering in first neighbors to B2 occurs. Depending on 
composition, ordering in second neighbors can also take place, leading to the L21 structure. The degree of 
long range order can be manipulated to some extent by thermal treatments. Three different martensitic 
structures are commonly observed, depending on composition andlor applied stress. They can be 
considered as different stacking sequences of close packed planes. For the 3R martensite with inherited B2 
order, the stacking sequence is A B C When L21 order is present the sequence is doubled and 6R is 
obtained. The 9R has A B C B C A C A B stacking which increases twofold in 18R with L2, order. The 
2H has the A B A B stacking for an inherited B2 and L21 order. The three types of structures can be 
considered as a basic fct lattice into which stacking faults are introduced on every third plane for 9R and 
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18R, and on every second one for 2H. This concept is very usefkl as will be shown later. Before the 
question of what determines the differences in phase stability between the high temperature bcc P phase 
and the martensites can be tackled, the differences between martensitic phases have to be evaluated. This 
will be done first, starting with the observations for Cu-Zn-Al. 

2. THE TRANSFORMATION BETWEEN THE MARTENSITIC PHASES 

Detailed measurements of the stresses which are necessary to transform one structure into the other are 
now available for a large composition range in Cu-Zn-Al alloys. From them equilibrium stresses can be 
deduced [I]. It has been shown that they depend little on temperature, which implies that the entropy 
difference, according to the Clausius Clapeyron relationship, is so small that it cannot be determined 
reliably fiom the experiments and generally is neglected [I]. It is therefore the enthalpy which mainly 
differs in the three structures. 20 7 I 

Fig. 2: Ay versus (1 - Y,,R)2 for alloys with given eta. Continuous 
lines relationship expected from eq.3 for eta = 1.48 and eta = 1.43 

Fig.1: Stacking fault energy for disordered a phase Cu-Zn and Cu-AI, and energy per fault in 18R martensite extrapolated to 
binary Cu-Zn and Cu-Al. Ay difference between both. 

Measurements of the lattice parameters in single crystals [2,3] have shown that the phase stabilities 
between the martensites cannot be understood without taking into consideration the lattice parameter 
changes. It is surprising that the tetragonality of the basic fct lattice, into which the faults are introduced, 
differ so much for the three different types of lattices. Whereas the 3R and 6R crystals are cubic in the 
absence of faults [3], the basic fct lattice for 9R, 18R and 2H is tetragonally distorted with (~/a)~,  around 
0.93, which varies noticeably with composition [2]. If the transformation had proceeded from a disordered 
A2 bcc phase, the resulting martensite would be cubic, with or without faults. It is therefore the long 
range order that leads to a tetragonal distortion. However, the long range order contribution to the 
enthalpy of formation stems mainly from the pair interchange energies due to first and second nearest 
neighbor pairs, which are not affected when the stacking sequence is modified from that of an fcc lattice. 
The reason for the differences in the enthalpy of formation between the fcc 3R or 6R and the 9R, 18R or 
2H cannot be sought in a change of order energy; because very high third neighbor pair interchange 
energies would be required. They must be related to long range order in a different and more subtle way, 
which will be dealt with below. 

The concept of considering the 9R, 18R and 2H martensites as a basic fct lattice into which a regular 
array of stacking faults has been introduced on each third or second plane is not only a formal one, since it 
has been established that the composition and long range order dependence of the energy per stacking fault 



is the same for 9R or 18R and for 2H in Cu-Zn-A1 [I], i.e. is independent of the stacking fault density. 
This suggests that a single stacking fault in the fct matrix also has the same composition dependence. 
Since, as mentioned above, the order energy does not affect, or affects only slightly, the stacking fault 
energy, it seems possible to compare the composition dependence of the energy per fault in ordered 9R or 
18R with that of a single fault in disordered a phase fcc solid solution. This is done in figure 1 for binary 
Cu-Zn and Cu-Al. The a phase stacking fault energy has been determined by transmission electron 
microscopy from extended dislocation nodes [4], and that for 9R or 18R has been extrapolated from the 
ternary Cu-Zn-Al alloys. It can be noted that the composition dependence is very different for both. It is 
tempting to associate this difference with the observed tetragonal distortion of the basic fct lattice for 9R 
and 18R. It will be shown in the following pages that all observations can be rationalized in a consistent 
way if it is assumed that by the tetragonal distortion the stacking fault energy is reduced. If the distortion 
energy between the cubic and the fct lattice is described, in first approximation, by an elastic distortion, 
then it can be expected that it is proportional to (1-(c/a)fd12, and that therefore a linear relationship 
between the difference in stacking fault energy Ay of figure 1 and (~-(c /a)~&)~ exists. 

In figure 2 are plotted experimental data of  la)^^^ Y18R for the ternary Cu-Zn-A1 single crystals [2,3] 
versus Ay. Ay has been obtained by subtracting from the measured enthalpy per stacking fault in 18R [l]  
the contribution for the disordered a phase, which has been linearly interpolated between the binary 
systems [S]. 

It can be noted in figure 2 that there is a large scatter in the data. A reason for this is that YlsR 
depends slightly on heat treatment in the P phase, and thus is amplified when (1 - Y 1 8 ~  )2 is required [3]. 
It has been argued that the highest degree of B2 order corresponds to the highest tetragonal distortion 
(1 - YlSR) of a given composition, and that this is reached only when after quenching or cooling from high 
temperatures the samples are moderately reheated [3]. Through these data points a linear relationship is 
much better defined, and from figure 2 we obtain 

Ay = 2140 (1 - Y,8R)2 [mJ/m2] (y18~ EE (c/a>fd (eq.2) 
In figure 2 we have also plotted as continuous lines the relationship that would be expected for 

ela = 1.48 and ela = 1.43, if the linear dependence between Ms and YlSR , reported in [6], holds: 
Ms ["c] = 457 - 7320 (1 - YlSR) (eq.3) 

It can be noted that these curves pass quite well through the single crystal data when no special care is 
taken to improve the B2 order. 

To derive eq.2 it has been assumed that Ay becomes zero when YIXR = 1. This may not be exactly true 
since in the regular array of stacking faults on each third plane some interactions may be present which are 
independent of the degree of order. However, this contribution is expected to be small, for the followin 4 reason: when comparing the energy per fault in 2H and in 9R or 18R, only a small difference of 11 m J/m 
is observed, independent of composition and of long range order in the alloys studied [I]. It seems 
reasonable to expect that this energy is due mainly to the unfavourable interaction between the faults on 
each second plane in 2H, whereas the more widely spaced faults on each third plane in 9R and 18R interact 
much less, if at all. For this reason Ay has been assumed to be close to zero when Y 1 8 ~  = 1. From the plot 
of figure 2 alone it cannot be proved that Ay depends quadratically on (1 - YlSR ). A linear relationship 
could as well account for the results, as proposed in [3]. However, such a dependence would imply that 
Ay becomes zero at YlgR + 1, which is less satisfactory. A second argument will be given below. 

The tetragonal distortion would be absent when no long range order existed. It is clear that YlgR is 
somehow related to order. Without specifllng the mechanism it had therefore been proposed [5] that Ay 
should also be a finction of the B2 inherited order energy (ordering in second neighbors in the P phase 
does not affect Ay). The long range order contribution to the enthalpy of the fcc martensite with inherited 
B2 order (see [7]) is 
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Here, the contribution of the Zn-A1 pairs has been neglected, and XA are the relevant long range order 
parameters, which are related to composition for perfect order according to 

Xcu=Cz,+CAL, xzn=-Czn,XAI =-CAI (eq.5) 
In figure 3 is plotted Ay versus 02.2,, with 

-O,,, = Xc,X, + 2.25Xc,Xd (eq.6) 
The factor 2.25 gives the best fit and is hrther justified later on. It can be noted firom figure 3 that there is 
an excellent correlation with a scatter of about 1 d l m 2 ,  which is the uncertainty in the individual 
measurements. A relationship 

is therefore proposed. This relationship is not completely satisfactory, since it implies that Ay becomes 
zero when long range order is still present at 02,,, = 0.134. In addition this eq. cannot account for 
changes in YlsR during stabilisation [3]. Therefore eq.7 cannot be considered as the fundamental equation 
that controls the enthalpy differences between the different martensitic structures. This result can be taken 
as a hrther support for the assertion that the most important factor in changing the stacking fault energy is 
the tetragonal distortion, and that eq.2 holds, independent of whether it is applied to alloys of different 
composition and of different degree of B2 order, or whether it is used for changes in YIgR during 
stabilisation. 

Fig. 3: Ay as a function of O,,, defined by eq.6, for samples with different ela. Broken line passes through Ay = 0 at 
0 2 2 5  = 0. 

With the help of eq.2 changes in Ay, denoted 6Ay, can be derived from measured changes in YIgR 
during stabilisation. On the other hand, the stabilisation leads to shifts in Ms , from which the 
corresponding modification in degree of long range order [3], and consequently changes in 02.25, denoted 
by 6 02.25 , can be deduced. Putting the results together the ratios 6Ay / 6 02.2, are obtained. For the 
samples listed in table 5 of reference [3] we obtain, following the same sequence from sample M2 to MI2 
as there, the following values for 6Ay 16 02.25 : 57, 35, 107, 100, 81, 93, 93, 78, 58 and 103 m ~/m' , with 



an average of 80 m UrnZ. The scatter is large, which is not surprising in view of the small changes in 
which are involved. It is clear however that this slope is very different from that of 400 m ~/m' which 
describes the figure 3, and is given in eq.7. Instead, it is close to that which is expected if Ay goes to zero 
simultaneously with the long range order energy. In figure 3 this dependence is traced by a broken line, 
which starts at the nonstabilised state of the average of these alloys, and leads to the slope of 78 m . 
This is a very satisfactory result which implies that for a given alloy composition the stacking fault energy 
and enthalpy difference between 3R (6R) and 9R (18R) are proportional to the long range order energy 
and simultaneously to the square of the tetragonal distortion, but that the order energy influences the 
tetragonal distortion in different ways, depending on composition and electron concentration. Both effects 
together, ie the change in order and in composition, lead to the relationship of figure 3 for nonstabilised 
samples, which extrapolates to a finite degree of order when Ay becomes zero. These results point to a 
consistent description of the stacking fault energy in terms of a tetragonal distortion. However, the reason 
why the tetragonal distortion lowers the stacking fault energy has still to be established 

We have discussed here the Cu-Zn-Al alloys. In many other SME alloys martensite structures with 
regular arrays of stacking faults are observed. In some of them, especially the Au alloys and Ni-Al the 
order energy is so high that already the 3R face centered martensite is tetragonally distorted. A cubic 
reference state therefore does not exist, and the evaluation becomes more involved. 

3. THE STABILITY OF MARTENSITIC AND EQUILIBRIUM PHASES IN THE NOBLE 
METAL ALLOYS 

The 3R and 6R martensitic phases in Cu-Zn-Al are nearly cubic. The deviation is due to retained faults 
from 9R or 18R. On their elimination by sufficiently high applied stresses the crystal becomes cubic. 
Therefore the 3R and 6R martensites differ from the disordered fcc a phase solid solution only by their 
long range order. If the pair interchange energies are known, the energy difference between the ordered 
and disordered phases can be determined. One of the important advantages of the martensitic 
transformation is that the atom distribution is known in the martensite whenever it has been determined in 
the p phase. This is due to the diffisionless nature of the martensitic transformation. In addition, since the 
martensitic transformation is induced at low temperatures, it is possible to obtain by an adequate heat 
treatment in p a degree of order which comes close to the ideal value of eq.5. 

The relationship between the different P phase structures and the 3R or 6R martensite is here 
schematically indicated. 

\1 WP WP WP 

a fcc 
\1 

AH = T  AS P bcc 
disordered < > disordered 

( H* 3":is 1 Z Hz" -,,:I 

3R martensite To A S  
with inherited f > P2 B 2  ordered 
B 2  order 

T 
\L 

6 R  martensite with < ) inherited L$ order P3 LZ orde~ed 

This diagram shows the enthalpies that are involved, and also serves to define some of the important 

quantities. H", and H!, are the enthalpies of mixing, starting from the pure elements in their standard 
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states at atmospheric pressure and 2S°C. Hz,, and H : ~  are those referred to the pure elements with the 
same structure. The enthalpy difference AHatP between disordered a and J3 is determined by the 
equilibrium temperature T~~~ between both and the entropy difference  AS"'^. If a and j3 are completely 
disordered AsatP consists to the overwhelming part of the vibrational contribution. The long range order 
energies can be calculated once the i-th neighbor pair interchange energies are known. They are denoted 

WE for the bcc phase, and m g  for the a phase for an A - B pair. The equilibrium temperatures To and Ti 
are close to the corresponding Ms temperatures, the difference (To - Ms) can here be neglected, 
considering that it is often of the same order of magnitude as the variation of Ms from sample to sample 
with the same nominal composition. Thus if the pair interchange energies for a and j3, the enthalpy 
differences AHai8 and the entropy of transformation AS are known, the Ms temperatures can be predicted. 
Generally, however, AHatP cannot be determined experimentally with the required precision, and therefore 
AHalP are calculated from the Ms temperatures. 

Three problems will now be discussed: The AS for martensitic transformations and their relationship 
with AsatP, the composition dependence of AHaiP and the pair interchange energies for fcc in the 
disordered and long range ordered state. A detailed evaluation of some of the points has been presented in 
PI. 

In figure 4 are shown the heats of mixing of the disordered cc, phase as a hnction of electron 
concentration for some binary noble metal alloys, as collected from the literature [9, 101. It can be seen 
that there are large differences between the various binary systems, and no correlation with the electron 
concentration e/a exists. This seems surprising since the stability range of the different equilibrium phases 
in the phase diagram depends on e/a. 

C u Z n  

C u A l  

A u C d  
A u Z n  

2.5 
o CuZnAl 0 CuSn p, - Pi 
x CuAlBe CvSnp, - y,' 

2.0 - A CuAl NI 

- 
a 1 5  - 
Y . 7 - ", 1.0 - 

- a AuCd r AuCuZn . A U C ~ ~ ;  + A U A ~ C ~  

Fig. 4: Enthalpies of mixing H$x in the a phase with Fig. 5: Measured entropy differences AS for martensitic 
respect to the pure elements at their standard states as a transformations in several noble metal a l l ~ ~ s . ~ ~ ~ ' ~  from cdp 
function of e/a, ~t the bottom A H ~ / P  from figure 6 in phase equilibrium at 902 K in Cu-Zn denoted by dP Cu-Zn. 
the same scale. 

In figure 5 are collected entropy differences AS for martensitic transformations in noble metal alloys 
[ l l ,  12, 81. The differences between B2 and LZ1 ordered structures and between the different martensitic 
structures have been found to be too small to be detected, at least in the samples that have been studied 
[ I ,  111, and therefore are neglected. The most detailed results over the widest composition range are those 
for Cu-Zn-Al. They show clearly that AS increases with e/a. Some of the data for other alloys fall outside 
the range for the Cu alloys; whether this is real is not yet clear. It has to be kept in mind that AS is often 
determined from the slope of the temperature dependent critical stress and from the transformation strain. 



An error of 10% in both quantities can easily account for the discrepancies. The main conclusion that can 
be drawn from figure 5 is that AS depends mainly on ela, but very little on the particular alloy system, in 
spite of the wide variety in heats of formation (fig.4), and in the tendency for long range order, as seen 
later. 

In order to establish the relationship between the AS from the martensitic transformation at low 
temperatures with the high temperature value AsaiP between the equilibrium a and 13 phases, we assumed 
that at the highest temperatures available the a and /3 phases are completely disordered, so that ASalP is 
purely vibrational and that the equilibrium temperature T"'~ is in the middle of the two phase ( a  + P) 
region of the phase diagram. By subtracting the order contributions, we calculated from the martensitic 
transformation the AHa/$ [2] and with TaiP the desired AsaiP.  In figure 5 we show the resulting value for 
binary Cu -Zn. It can be seen that this AsaiP is only slightly higher than that which is obtained from the 
martensitic transformation. Since it cannot be excluded that some short range order is retained in the P 
phase at high temperatures, the discrepancy can be due also to a configurational contribution. The most 
important conclusion from figure 5 is that AsafP and AS differ little, if at all, for Cu-Zn. Therefore it is 
expected that the same holds also for the other alloys, and that hSaIP generally is a hnction of ela. It 
should be remarked that this ela-dependence of can hlly account for the composition dependence of 
the ( a  + 0) two phase region in the phase diagram at high temperatures, even if AHaIP were composition 
independent [S] . 

Identifying now ASa/$ with AS for all binary alloys, and using TaIP in the middle of the two phase 
region, the resulting AHa@ have been calculated for various binary noble metal alloy systems. The results 
are shown in figure 6. The vertical bars correspond to the error limits which are indicated in figure 5 by 
the upper and lower lines. It can be noted that the AHaIP depend very little on composition, that they all 
scatter around an average of  AH*'^ = 140 kB [K], and that the strong dependence on the special alloy 

system, observed for H",, (fig. 4), is absent. It should also be noticed that the scale in figure 6 is inflated 
by about a factor 10 with respect to that of figure 4. At the bottom of figure 4 is shown the range of 
 AH"'^ in the scale of this figure. It has to be concluded that the factors which control the enthalpy of 
formation of the a and P phases are largely absent in the enthalpy difference  AH*'^ between a and p. 

0 
1.30 135 1 .LO 1.L5 150 

ela 

a bcc 

~ i ~ ,  6: ~ ~ t h ~ l ~ ~  differences A H ~ / P  between a and 0 phase in the Fig. 7: Pair interchange energies versus pair distance 
middle of the (a + 0) region as a function of ela. Cu Zn (Mart) in units of the bcc lattice constant, a,, normalized 
from the martensitic transformation in Cu-Zn. 

by w g  for Cu-Zn and Cu-Al. 

This observation is the basis for the following model which attempts to describe quantitatively the stability 
of the martensite and the equilibrium phases in the noble metal alloys [S]: 
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a) The enthalpy of formation of a disordered homogeneous phase with respect to the pure elements of 

the same structure, denoted H", is the sum of a term which depends on the average lattice, and a term 
which takes into account the differences in the properties of the atomic species. The latter is described by 
pair interchange energies, which generally depend somewhat on composition and can extend to quite 
distant neighbor pairs. In the noble metal alloys the neglect of the composition dependence and of 
contributions from third and more distant neighbor pairs leads already to good results. 

b) The enthalpies of formation of the average periodic lattice are mainly a function of electron 
concentration e/a, as is well known from the simple nearly free electron models or their more sophisticated 
versions. 

c) the pair interchange energies for each alloy system depend on the pair distance but otherwise are 
structure independent, and therefore can be interpolated. They vary very strongly from one alloy system to 
the other. 

d) The pair interchange energies which determine the enthalpies of formation of the disordered phases 
are the same that are responsible for the long range order enthalpies and critical ordering temperatures. 

e) The vibrational entropy difference depends mainly on e/a, but is rather independent of degree of 
long range order, heat of formation and temperature, as discussed above. For the martensitic 
transformation and for the a l p  stability it is written as (figure 5): 

AS = (0.345ela - 0.337) kB (eq.8) 
With these ingredients it is possible to describe quantitatively the stabilities of the martensites, and of the 
disordered and ordered a and P equilibrium phases in the noble metal alloys. 

Writing the enthalpies of formation of the disordered a fcc and P bcc phases with respect to the pure 
elements with the same structure as the sum of a term which depends only on e/a and another one which is 
a hnction of the pair interchange energies, as 

H& = H t  (e / a) - Ari,C,C, ; H:, = H: (e / a) - A~~c,c, 
A:i, = 6 m z  + 3 m g  ; A$, = 4wG +3w$ (eq.9) 

we require, in order that  AH"'^ = H& -Hz, is independent of the special alloy system, and is a function 
only of e/a, that 

A;, = A,B, (eq. 10) 

If the volume does not change on transformation, if rn: is linearly interpolated between w$ and 

WE and a ratio WZ / W: = 0.56 from long range order in Cu-Zn is used, we obtain [8] 

m g  = 0.9182 w z  (eq. 1 1) 

For m 2  follows, assuming the validity of eq. 10 with the neglect of more distant pair contributions: 

m g  = 0.057 w g  (eq. 12) 

In figure 7 are shown the pair interchange energies, normalised to w g  as a function of pair distance for 

Cu-Zn and Cu-AI. For Cu-AI mFh is obtained by a linear interpolation which is quite satisfactory, 

whereas for Cu-Zn a curvature is included. In both cases eq. 10 is assumed to hold. The w g  and m g  
that can best describe all experimental results for Cu-Zn and Cu-AI are the following [8] 

W& = 955kB[K] ; wF& = 535k, [K] ; mgL, = 845k,[K] ; mFA,, = 115K, [K] 

wgL = 1650k,[K] ; w g h  =825k,[K] ; m L  = 1512kB[K] ; m s  = O  (eq. 13) 
Thus the postulate that the pair interchange energies are structure insensitive is compatible with the 
observation that ~ ~ " ' ~ d e ~ e n d s  mainly on e/a in the noble metal alloys (figure 6) through the validity of 
eq. 10. 



Cu-Zn / 
Fig.8: Enthalpy of mixing in the a phase at ela = 1.3 
as a function of the critical B2 ordering temperature 
T , ~ ~  at equiatomic composition for the alloys 
indicated. 

50 
1.36 1.38 1.40 1.62 I L L  

e t a  

Fig.9:  AH^^ calculated from the martensitic transformation 
for Cu-Zn and Cu-A1 as a function of eta. For Cu-AI and 
upper Cu-Zn curve (a) pair interchange energies from eq. 13, 
lower Cu-Zn curve @) those from eqs. 11 and 12. 

The claim that the pair interchange energies for the disordered phases and those responsible for long 
range order are closely the same can best be evidenced by figure 8. In this figure is shown the relationship 
between the enthalpy of mixing at ela = 1.3, taken from figure 4, and the critical B2 ordering temperature 
for four binary alloys with a two valent second component: There is an excellent linear dependence 
between both, stressing the correlation between the pair interchange energies responsible for the enthalpy 
of mixing in the a phase and those which determine the order energy in the P phase. The extrapolation to 

T? = 0 pennits to obtain the part in H",, which is independent of the pair interchange energies. Hb,, 

in these alloys is different from H:;, , since the structures of the pure elements in their standard states are -- 
different. ~ h e  critical B2 ordering temperatures have been determined from the cluster variation method 
and can be written in the following compact form [14] 

In the Bragg - Williams - Gorski approximation K, = K, = 1. Using w g  / w g  = 0.56 and the m s  from 
eqs. 11 and 12, the slope in figure 8 can be quantitatively accounted for [8]. 

Knowing the pair interchange energies, it is possible to calculate from the Ms temperatures and AS 
(eq.8) the AHatP. This has been done in figure 9 for Cu-Zn and Cu-Al. For Cu-Zn measured Ms 
temperatures between j3 and 9R have been used [IS]. For Cu-Al the experimentally determined enthalpy 
differences between B2 and 9R in ternary Cu-Zn-Al have been extrapolated [l I]. The difference between 
3R and 9R [I] has been duly taken into account. If the pair interchange energies of eq. 13 are used, the 
upper curve (a) for Cu-Zn is obtained. It agrees with that for Cu-AI, and coincides with that from ab initio 
calculations for Cu-Zn [16]. (The latter curve has not been drawn, because it is taken from the small 

relevant figure in [16] with some uncertainty). If we had used the m g k  values obtained from a linear 

interpolation between w$Ln and w:Alz,, eqs. 11 and 12, we would have obtained the lower curve in figure 

9. This shows that small changes in m$ can have a quite large effect on the calculated AHaiP. The 
upper curve for Cu-Zn in figure 9 is preferred to the lower one, since it coincides better with that for Cu- 

Al and with that from the ab initio calculations. In addition, the m% from eq.13 lead to a 02.3 (eq.4) 
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which relates well to by. Finally, the fact that the  AH"'^ in figure 6 are so similar for a large number of 
noble metal alloys with widely different pair interchange energies also favors the claim that AHaIP for 
Cu-Zn and Cu-AI should not differ. 

A linear extrapolation to pure Cu of the upper Cu-Zn curve leads to 390 kB [K], the lower one yields 
430 kB [K] and that from Cu-AI a value of 450 kB [K]. These numbers are close to the  AH"'^ of 
440 kB [K] which are reported in the literature for pure Cu at room temperature [17]. From this value for 
Cu and an average between Cu-Zn (a) and Cu-Al we obtain as a reasonable estimate for the ela 
dependence of AHaiP : 

This smooth ela dependence of  AH^'^ makes it unnecessary to include additional contributions at some 
critical e/a due to nesting effects. 

Restricting ourselves to first and second neighbor pair interchange energies, a good quantitative 
evaluation of the factors that control the stability of the equilibrium and the martensitic phases could be 

obtained. However, it has to be kept in mind that small changes in the m g  and w g  are possible, on 
the one hand due to variations with composition which have not been considered here, and secondly; 
because due to incomplete electron screening Friedel oscillations in the pair interchange energies at large 
pair distances cannot be excluded. These deviations, although small, can be sufficiently large to account 
for the small variations in equilibrium temperature between the equilibrium a and P phases of the 
different alloy systems. 
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