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Abstract : The study of simple beams made of shape memory alloys (SMA) is very interesting 
for industrial and experimental reasons. In this paper, it is realised using strength of materials' 
approach: different kinematical and behavioural assumptions are successively used to solve 
circular and three supports bendings' problems. The kinematical ones consist in taking into 
account small or large displacements, the friction being or not neglected, whereas the 
behavioural ones consider different constitutive equations ie. the elastic-perfectly plastic model 
and the asymmetric elastohysteretic model. The influences of all these hypothesis are finally 
illustrated in three supports bending simulations. 

1. INTRODUCTION 
Different studies have already been made to model the deformation of statically determined simple beams 
in pure bending [I] or three supports bending [2], using strength of materials' approach. This research is 
usefull for two purposes. Firstly the strip shape is very often used in the industrial applications which 
otherwise involve mostly wires or helical springs. Secondly the bending tests (4 supports, 3 supports or 
cantilever beams) are very often performed to characterise'the mechanical properties of SMA although it 
is well known that the stress and strain states are not homogeneous in those tests [3]. The comparison of 
the results obtained in bending and those obtained with homogeneous tensile or shear tests [4] can only 
be done if assumptions concerning both kinematical aspects of the deformation of the beam and local 
stress strain relations are simple. The aim of the present paper is to give a general approach of this 
problem in two simple cases, circular and symmetric 3 supports bendings, using a set of kinematical and 
behavioural assumptions. The unknowns which are determined are the displacement of the deformed 
neutral axis, the stress and strain states at any point of the beam. The first part of this document will be 
devoted to the description of all the employed hypothesis. In the second part, several constitutive 
equations are presented and then used to model in the third and fourth parts circular and 3 supports 
bendings. Finally, we present illustrations concerning the influence of the constitutive equations, the 
importance of assumptions used to take into account large displacements and frictionnal forces which 
occur at the supports. 

2. WORK ASSUMPTIONS 
2.1. Beams' concept 
A bar (dimensions 1.b.h) subject to forces or couples that lie in a plane containing the longitudinal axis of 
the bar is called a beam. When a beam is loaded by forces, internal stresses arise in it. In general, both 
normal and shearing stresses occur. In order to determine the magnitude of these stresses at any plane 
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section of the beam, it is necessary to know the resultant force and the bending moment M ~ ( G )  acting 
at that section. The loaded beam is cut at the curvilign abscissa s, (fig. I), the equations of the static 
equilibrum is written for the tin of beam s < s, in the x, y, z axis: 

Figure 1: internal forces. 

S 

Smctly speaking, these equations are valid only once 
the beam is deformed. This remark is important for 
the application of SMA which involve very often 
large displacements. If l>>b and h, the bending of the 
beam can be considered as a two dimensionnal 
problem, and the shearing stresses can be neglected. 
The expressions of the internal normal stresses o,, 
the bending radius R(x) and the distance d(x) 
between the neutral axis position and the longitudinal 
axis are given by the following system: 

N + ~ G = ~ S = O  and ~ r ~ + J ( ~ - d ) r r , d s = o  (1) 
S S 

2.2. Navier-Bernouilli's hypothesis, strain and displacement fields 
Navier-Bernouilli's hypothesis consists in supposing that a plane section of the beam normal to its 
longitudinal axis prior to loading remains plane and normal to the deformed neutral axis after the loading. 
If small deformation theory is used, the longitudinal deformation E, is simply given by: 
EXX = -(y -d)/ R. Supposing that 1 >> b and h, the deformation of the beam due to transversal strains E, 
and E, are neglected. In this case, the expression of the bending radius in a fixed cartesian frame (X,Y) 
is: 

2.3. Constitutive equations 

R(X) = 
V(1+ Y ' ~  ) 

or R(X) = IN" in small displacements. 
Y" 

(2) 

Figure 2: Representation of the three used 

constitutive equations 

2.3.1: Symmetric elastic-perfectly plastic 
constitutive equations 
This simple model represented by the curve no 1 of 
fig. 2 needs only two parameters: E and of which 
have respectively the meaning of the Young's 
modulus and the transformation stress. 
2.3.2. Non linear reversible behaviour 
A more realistic description of the isothermal 
mechanical behaviour of SMA can be obtained by 
using a continuous reversible constitutive equations 

I composed of two parts, one in tension and one in 
, compression and defined by 5 parameters ( El , E, , 
1 E,, , o, and 0,): 

-(El-E2t) E 

Grcvtenrion = ~t (1-e Ot )+Ezt E 

-(El-Ezc) E 

and Grcvcompression = oc (1 - e Oc ) + Ezc E 



Considering the curve n02 of fig. 2, it is obvious that the pseudoelastic behaviour can be rather well 
modelled by these equations if the hysteresis effect is neglected. 

2.3.3. Elastohysteretic constitutive equations 
This last model [5] considers the total stress as the sum of two contributions, of reversible and hysteretic 
type respectively. The constitutive equations (3) and (4) take into account the difference between tension 
and compression. ohV and othV are the values of the stress at the inversion points. w is a parameter which 
is one during the first load and two for the rest. These last constitutive equations which require 7 
parameters (the 5 parameters of $2.3.2. and Ehys , ohYs) can model either the pseudoelastic or the 
ferroelastic behaviour of SMA depending on the values of the parameters as it can be seen with the curve 
n"3 of fig. 2. 

-Ehys (&-&inv) 
W Cmv 

Gtension = Grevtension + Cmv + W Ohys (1 - e 1 (3) 
-Ehys (E-E' inv) 

w d i n v  
(Tcompression = Gvmmpession+ d inv + W Ohys (1 - e ) (4) 

3. CIRCULAR BENDING 

3.1. Advantages 
This test consists in applying a couple M at the extremities of the beam so that the bending moment in the 
structure is constant and equal to -M all along the longitudinal axis. The immediate consequence is that 
the bending radius R is constant too, and therefore the bended beam is an arc of a circle. The expression 
of the displacement at the middle of the beam f, and at any point Y(X) can be obtained from geometric 
considerations: 

andthus Y(X)=(R+f)-sign(R) 

The 4 supports bending test can be considered as a circular bending test only for small displacements 
since the orientations of the reactions of the supports depend on the deformed shape of the beam. 
3.2. Resolution by using the elastic-perfectly plastic equations 
Three cases are to be considered when [MI increases: 

2 Igz Gf -E Igz 
3.2.1. AS long as IMI I Mmaxe~astic = - R=- 

b h3 
with Igz=-. 

h '  M 12 

3.2.3. I f  [MI = lRI is equal to V2. 

3.3. Resolution by using the reversible or the elastohysteresis equations 
The expression of the displacements is still given by formula (5). To obtain the bending radius and the 
neutral axis position, the two equations of system (1) have to be solved: 

and 
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the tension and compression stresses being given by equations (3) and (4). The two expressions (6) and 
(7) are both function of R(X) and d(X). Thus, an iterative process is used to solve the system [6]. 

4. SYMMETRIC THREE SUPPORTS BENDING 
The beam is subject to a concentrated force F at X= U2 and freely supported at both ends which are 
distant of 1. 

4.1. Analytical resolution by using the elastic-perfectly plastic equations 
In such a case, the assumption of small displacements leads to an analytic solution. Because of the 
symmetry, only half of the beam (O<Xd/2) is considered. The small displacements assumption allows to 
write the static equilibrum in the initial configuration, so that Mfi(X)= -F X / 2. During the increase of F, 
three states are successively met: 

2o fbh2  
4.1 .I. First state: IF( S 1Fmax etas1 = 

F 
the problem is elastic and: Y(X) = - 

312 X 
(-x3 +-) 

3 1 Ebh3 4 

of b h2 4.1.2. Second state: IF rnax elas\ I IF/ r IF rnaxl = - , two cases are to be considered: 
1 

of b hZ 
i fO<X<X,=- , the behaviour is elastic and then : 

IF1 

. if X, < X < V2, the system (1) leads to R(X) = -s M~z(x)I) with s=sign(F) so that : 

-F 
with: g=- a = - s g ,  p=- b h2 of and =EI 

~ b h ~ '  4 2 ' 

Limit conditions give: 

4.1.3. Third state: i f I~I1 I ~ m a x l  ,plastic localisation is observed at the middle of the beam which is not 
strong enough to support the bending moment. 

4.2. Resolution by using the reversible or the elastohysteresis equations 
4 2 . I .  Kinematical hypothesis 
To determine the solution, small displacements theory is here left out. Thus we must take into account 
both the current shape of the deformed beam and the variation of reaction's direction (at X= 0) during the 
increase of F (fig. 3): if the friction is neglected, this force is always normal to the deflection curve of the 
beam at X= 0 and its projection on the Y axis is equal to -F/2. Moreover if friction between the beam and 
its supports is considered and modelled by a Coulomb coefficient f, the expression of the bending 
moment becomes: 



with P(X)=Arctan(Y (X)/X) (8) 

and sdf=sign(incremental load dF), ao=Arctan(Y'(0)), cp=Arctan f 

42.2.  Determination of the displacements 
Similarly to 3.3, system (1) is solved iteratively with M f z  given by equation (S) ,  the displacements being 
obtained by an Euler integration method [6]. 

A 
F 

A 

5. ILLUSTRATIONS 
The simulations which are here presented concern the symmetric three supports bending test, with a beam 
of 80mm x 8.6mm x 2.7mm. The following figures show diagramms F-Y(V2). 
5.1. Influence of cinematic hypothesis 
The first illustration (Fig. 4) is obtained adopting the reversible constitutive equations with the following 
datas: El = 90 GPa, Eu =EZC = 10 GPa, OL = C T ~  = 500 MPa. The curve n0 l  is realised with small 
displacements' assumption, the curve n42 with large displacements, whereas the curve n"3 does the same 
with a friction coefficient f= 0.2. Comparing curves n"l and n02, it is clear that small displacements' 
hypothesis tends to "harden" the beam when the deflection increases. The contribution of f can't be 
neglected too when the displacements become large, as it is shown by comparing the curves 2 and 3: for 
the maximum plotted force F corresponding to a deflection. of the order of 10mm, Y(V2) is decreased of 1 
rnm by considering friction. This last observation is still supported by the figure 5 where the 
elastohysteretic theory (ohy,r 40MPa, Ehy,= SOGPa) is used: for a same cyclic load, the beam's answer is 
completely different with fnction (curve n'l, f= 0.2), or without friction (curve n'2, f= 0). 

\f 

YW2) 

12 

Displacement mm 

Displacement mm 

Figure 4 Figure 5 

> . 
Figure 3: influence of large displacements on the expression of the bending moment. 

0 

5.2. Influence of constitutive equations 
The comparison is realised using constitutive equations of $2.3.1 and $2.3.2, with no friction (Fig. 6). 
The curve no 1 uses the elastic-perfectly plastic constitutive equations with E= 90GPa, of = 5OOMPa and 

M" 
< X > 
< Y2 
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the analytical solution obtained in 94.1. The others use the reversible constitutive equations with the 
following parameters: 

6. CONCLUSION 
In this paper, the modelling of bending of SMA has been performed using strength of materials' concept. 
Adopting restrictive assumptions for stress strain relations and for the extent of displacements, an 
analytical solution has been established. A general numerical tool has been developped as a software 
program to get a more realistic solution considering large displacements and friction. The stress-strain 
relations in tension and compression are symmetric or.not, and hysteresis effect can be taken into 
account, allowing to model both pseudoelastic and ferroelastic behaviours. 

Curve n02 
El= 90 GPa 
E2c =Ea = 0 GPa 
oc = ot = 500 MPa 

500 - 
Force N 

3 

o I 

o 10 

Displacement mm 
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Curve n"4 
El = 90 GPa 
Ezc =Ea = 10 GPa 
oc = ot = 500 MPa 

Curve n'3 
El= 90 GPa 
Ezc =Ea = 0 GPa 
at = 500 MPa 
oc = -700 MPa 

The bending tests have been often used to 
characterise the mechanical behaviour of SMA 
[3]. In fact, the analyses of these tests can be 
performed simply only if ideal symmetric 
elastic-plastic behaviour and small 
displacements are considered. In that case, it is 
possible using analytical resolution of 54.1 to 
get indicative values of the Young's modulus 
and of an averaged transformation stress 0,. 
However, the experimental stress-strain curves 
indicate very often no real yield point and a 
slope associated with the stress induced 

Curve n'5 
El= 90 GPa 
E2c =Ea = 10 GPa 
ot = 500 MPa 
oc= -700 MPa 

Figure 6 martensite, even for single cristal [7]. The 
consideration of curve 2 shows that the force-displacement curve is greatly affected if the continuous 
transition between perfect elasticity and perfect plasticity is modelled by a round curve. Moreover, this 
answer is also modified by the modulus of the stress induced martensite E2 (curve 4), by a behavioural 
asymmetry between compression and tension (curve 3) and by the superposition of these two (curve 5). 


