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Abstract : Shape Memory behavior in polycrystalline material is very sensitive to the local stress 
state-To take this features into account, we have developed a micromechanical approach based on a 
kinematical description of the physical strain mechanisms and a defmition of a local thermodynamical 
potential. Volume fractions of the different variants of martensite are chosen as internal variables to 
describe the evolution of the microstructural state of the material. Physical limitations excerted on 
these variables are accounted using a constrained potential. Dissipative aspects at the origin of the 
hysteretic behavior of these alloys, need to define a dissipative potential. This analysis determines the 
local constitutive equations for the behavior. Global relationship are determined using a self 
consistent approach. Results obtained by this way are in good agreement with experimental 
observations performed on Cu-based Shape Memory alloys. In addition, this modelling is able to 
determine the kinetics of the phase transition and to give the evolution of the transformation strain for 
different thermomechanical loading paths. 

1. INTRODUCTION 

Phase transitions occuring in solids state produce large effects on the thermomechanical behavior. Shape 
memory alloys are an interesting case because it is reasonnable to assume that the martensitic transformation 
is the only inelastic strain mechanism. An accurate description of this strain mechanism is needed to account 
shape memory behavior. To illustrate this point, this paper deals with two different microstructure 
descriptions. A global one, using a two-phases approach leads to similar results than some phenomenological 
modelling [1,2] (lack of information on the transformation strain, oblique line). These troubles are avoid 
taking account the granular structure of the material and the existence of several variants inside the martensitic 
phase [3]. In this last approach, accurate constitutive equations are obtained in the single crystal case and 
applied to a polycrystalline material using a homogeneization method. Results obtained in that way well 
captured experimental features. Such approach gives information on the microstructure evolution during the 
loading process and can be successfully applied to complex loading conditions. 

2. KINEMATICAL AND THERMODYNAMICAL ASPECTS 

In Shape Memory Alloys, the total strain field is composed by thermal, plastic and elastic (8) componants 
and by a large inelastic reversible transformation strain eT. In the infinitesimal deformation framework these 
contributions acts in an additive way. At first approximation, one may consider that no plasticity occurs 
during a thermoelastic transformation. This is related to the very few volume change associated to this kind of 
transformation. In order to focus our attention on the transformation strain, the elastic complience tensor M is 
assumed to be isotropic and uniform throught the material. In the same way, the thermal expansion factor 
and the temperature field are also regarded as uniform. 
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According to these previous assumptions, total strain E may be decomposed into several contributions. The 
overall transformation strain E~ is then defined by : 

v 
Evolution of this strain is obtained from the definition of a thermodynamical potential function of the control 
parameters (applied stress C and temperature T) and a set of internal variables yK. Let us consider a reference 
volume V (bounded by aV) of parent phase such as given surface forces applied on aV are large enougth to 
form a volume VM of martensite. Complementary free energy Y(C, T, yK)  is then constituted by elastic 
energy Web, chemical energy AGch and by interfacial energy W*t. 

Y(Zij, T, yK)  = - [ AGch + Welas + Wint - Cu E~ij ] (2) 

Chemical energy depends on the temperature ; a linear approximation around To the thermodynamical 
equilibrium temperature is commonl~ used [4]. The elastic energy is determined using the classical relation. 

AGch = I3 (T-To) VM and welm = A J ou (r) &;(r) d v  
2 

(3) 
v 

Due to incompatibilities in the transformation strain field, local stress o(r) must be divided into applied and 

internal stress 8' (that is only related to the incompatibilities). Integration by parts and boundary conditions 

imposed on aV give the following expression for the elastic energy : 

In the propagation stage of the transfhation, the oblate shape of the martensite plates leads surface energy 
to be negligible in regard of the elastic one. According to the assumption of an isochoric transformation, the 
complementary free energy per unit reference volum is expressed by : 

Different point of wiew may be adopted to described the microstructur2 aspects related to the phase transition 
in relations (1) and (5). Two of these approaches are detailled in this paper. The more global one consider the 
material as a mixture of two phases. 

3. TWO PHASES APPROXIMATION 

In that macroscopic approximation, where only averaging properties are taken into account, internal state of 
the material can be specified using only two internal variables [S] .  One is the volumic fraction of product 

phase (f = V#), the other is the average transformation strain ET defined from : 

~ f = ! & L I E . f ( r ) d v  = f E $  
lJ v VM 

VM 
Due to the physical meaning of these parameters, they are submitted to kinematical constraints. Obviously, f 
is positive and smaller than unity. But there is no trivial way to express physical restrictions on the mean 
transformation strain, some additional assumptions are then necessary to account them. 
Supplementary hypothesis are also need to determine the behavior law. Considering strain as piecewise 
uniform turns the thermodynamical potentiel into [S]: 

where A is a constant tensorial quantity related to the elastic properties and to the morphology of the 
martensite phase. This particular form (7) defines an oblique line for the behavior (coming from the f(1-f) 
contribution as reported by [1,2]). Such results have no physical sense because it is equivalent to assume that 
internal stress turns to zero in the martensitic state. 
It is possible to avoid such troubles using a more accurate description for the microstructure dealing with the 
polycrystalline nature of the material and with the possibility to form several variants of the same martensitic 
phase. This is the object of the following description. 



4. CRYSTALLOGRAPHICAL APPROACH FOR THE SINGLE CRYSTAL 

At this microstructural level, variants are characterized by a habit plane and a direction of transformation. 
Transformation strain en associated to the formation of a variant n is linked to these characteristics and to the 
amplitude g of the transformation strain that is equal for all. Overall transformation strain eTr for a crystal is 
obtained considering eTr(r) as piecewise uniform. Introducing the volume fraction (f" = VnN) of each variant 
gives: 

~ ; = t j % & ; € I " ( r ) d V  = Z c t f  with O n ( r ) = l i f r ~ V " ( = O i f r e V " )  (8) 
n 

v 
Physical limitations excerted on f are obviously determined as in the previous section. 

fn2 0 and xf"= f I 1  (9) 
n 

But this description do not need additionnal condition on the transformation strain. In the same way it is 
possible to obtain a more realistic evaluation for the interaction energy related with the internal stress field. 
Considering transformation strain field as piecewise uniform turns this contribution into : 

1 int Tr 
Eint = - - a, (r) E~~ (r) dV= - -1 I a;;:(r) Z &i; OTr) dV = - -1 Z E; I ~;;~(r) dV (10) 

2V 2V n 2V n 
v v v" 

where the integral of aint over Vn defines the mean internal stress inside the variant n which can be 
determined using the Eshelby-Kroner approach [6]. Denoted by C the four-order elastic modulus, by S the 
Eshelby tensor and by I the four-order identity tensor, gives the following expression 

Equation (1 1) leads to consider that the volumic fractions fm and the geometry characteristics Sn for the 
martensitic plates (shape and orientation) are the relevant parameters to control the interaction energy 
associated to a martensitic microstructure. Neverveless, to take this complete set of internal parameters into 
the complementary free energy is to much complicated. Previous micromechanical analysis [7,8] have shown 
that this resistive action can be represented using an interaction matrix Hm that includes the shape and 
orientation factors. 

In fine variables fm are then sufficient to describe evolution of the microstructural state and they are used as 
internal variables in the thermodynamical potential now expressed by : 

Driving force F acting on internal variable f" is obtained from the partial derivative of Y with respect to these 
internal variables [9]. Existence of kinematical constraints (9) imposes to introduce a Lagrangian functional 
L(Ey,T, f )  1103 and to use the Kuhn-Tucker optimaly conditions. 

L(Zij,T, f )  = Y(Zij,T, f )  - ho [XP- 11 - X hn [- f - 01 
n 

(14) 
n 

where Lagrange multiplier & (resp-&) is a positive quantity associated with the inequality constraints f I 
1 (resp.- f" I 0 ). Definition of the driving force turns into: 

Fn = Cij E; - B(T-To) - I: Hnm fm - ho + An 
m 

(15) 

Despite the thermoelastic character of the martensitic transformation in Shape Memory Alloys, the 
thermomechanical behavior of these material exhibit an hysteretic effect. Thus their behavior can not be 
specified using the thermodynamical potential alone. The definition of a pseudo-dissipative potential Wd is 
required. 
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5. PSEUDO-DISSIPATIVE POTENTIAL AND CONSTITUTIVE EQUATIONS 

The superelastic behavior of Shape Memory Alloys is then determined considering that the driving force F 
must reach a critical value to produce growing or shrinkage of a variant. This critical value Fc is related to the 
microstructural state of the material. It is reasonnable to assume the resistive dissipative force equals on all 
the variant. Conditions necessaries to obtain a transformation flow are then established. 

?'= 0 if F" = Fc and F, = 0 (17) 

% #  0 if F"=F, and F, = pn (18) 

Fc is a positive material constant. Second law of the thermodynamics and the energy balance require: 

Y = w = Z F n i "  2 0 (19) 
n 

If there are no coupling effect for dissipation on each variant, different expressions for forward and reverse 
transformation are thus obtained. 

A-->M => Fn?'= Fc ?' and M-->A => F n % =  -Fc (20) 

From expression (15) and conditions (20), each variant of martensite has to observe local transformation 
criteria, defined in the forward and reverse case. 

Kinematical conditions (9) impose to verify n+l additional relations: 
+ 

h, = EI &; - B(T-To) - x Hnm f + An - Fc 2 0 
m 

If criteria (21) and conditions (22) are satisfied, the evolution of ?' is determined according to the consistency 
condition. Resolution of this system equations determines the following constitutive equation for the 
transformation strain rate applied to a unit volume of crystal. 

if = = E ;  - B T  1 (23) 
n m 

Set of equations (21,22,23) characterizes the transformation plasticity in the single crystal case. In a free- 
stress state, using criteria (21) allows to define the Martensite start temperature M, and the Austenite finish 
temperature Af. 

M, = To - 5 and Af = To+ Fc 
R R - - 

These two temperatures are only function of some intrinsic parameters of the transformation, they can be 
used to characterize the material behavior and to give an experimental value for F,. 

6. POLYCRYSTALLINE BEHAVIOR 

Previous relations are determined in a single crystal condition, where crystallographical orientations are well 
known and where loading condition can be assumed to be uniform inside the specimen. Such accurate 
analysis is impossible in the polycrystalline case. Local loading condition is now unknown due to the 
existence of an internal stress f ~ l d  associated to the granular structure. This additional difficulty can be solved 
using homogenization methods. Three fundamental equations are then employed at the micro level. F i s t  is the 
local equilibrium condition, second is the continuity of deformation and the last one is the local behavior (23) 
established in the previous section. 



A self-consistent approximation is chosen to compute the effective behavior [Il l .  This framework considers 
the effective overall medium as the homogeneous reference one. This medium is characterized by a set of 
uniform tangent modulus (Leff and M ~ ~ )  and it is subject to an uniform strain EO. From this definition local 
modulus are expressed using their deviation part to these uniform quantity. 

lw (r) = L;; + 61ijkl(T) and mij (r) = M G ~  + h i j  (r) (24) 

Introducing local behavior into equilibrium condition, and considering the uniformity of the properties inside 
the homogeneous reference medium and the assumption of uniformity for the temperature lead to : 

L$ ( (r)b + ( 6 l i j ~  (r) & (r) - 6mij (r) T ) ~  = 0 (25) 

Resolution of expression (25) using the Green tensor method gives the following integral equation : 

where P denotes the modified Green tensor. Resolution of this equation gives localisation expressions 
between local and overall strain. This determines the effective behavior of the polycristal.The overall 
constitutive relation is now completely defined from the knowledge of the internal structure evolution of the 
polycrystal. 
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Figure 1: Influence of the temperature on the superelastic behavior. Comparison between experiment 
results [14] and self-consistent determination (M, = -97OC, Af = -91 OC, T, = -80°C, Tb = -70°C). 

7. RESULTS 

Numerical results are obtained in that way. They are applied to Cu-Zn-A1 Shape memory alloy. In these 
alloys 24 variants of martensite forming six self-accommodated groups, are observed. Direction for habit 
plane normal and transformation direction are 2-1 1-12 type. Transformation displacement g is about 0.23 
[12]. Experimental determination performed with tensile test experiment on single crystal specimen gives B- 
0.23 MPa.K-I [13]. Hysteretic effect characterized by Fc is determined from M, and Af temperatures. 
Interaction matrix Hmn is constituted with two types of terms: weak one ( H1 = p11000) for self 
accommodated variants and strong one ( H2= w150) for the other (with p = 40 GPa). The polycrystalline 
structure is described using 100 different grain orientations randomly chosen to induce no particular texture 
effect. Grain shape is assumed to be spherical. Result obtained in that way are successfully compared with 
experimental superelastic tensile test performed by P. Vacher [14] at two different temperatures (figure 1). 
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From the same experimental data computed and measured transformation kinetics are compared (figure 2). 
Experimental features are well-captured by the self-consistent model presented here. 
In addition this micromechanical scheme is able to give evolution of some macroscopic variables with the 
loading parameters. This is illustrated here for the mean transformation strain (figure 3) This quantity 
decreases from a maximal value associated to the formation of well-oriented variants, in the begining of the 
stress-induced transformation, to a constant value around 4%, that is experimentaly observed in Cu-Zn-A1 
Shape Memory Alloys. 

8. CONCLUSION 

Numerical results obtained from the micromechanical approach presented in this paper are in very good 
agreement with experimental observations. Such results are obtained without any fitting parameter. The input 
data used in this framework are experimentally determined from measurement on single crystal and from 
texture analysis. These determinations are independent with the loading conditions. In addition, the proposed 
model well represented the dissymmetry experimentally observed between tensile and compressive test. 
Extension of such result for other loading conditions is able to determine a transformation criterion for 
macroscopic modelling. This point is on first importance for engineering applications [15]. 

Stress (MPa) Stress @Pa) 
Figure 2: Kinetics of a stress-induced Figure 3: Evolution of the mean 
transformation. Comparison between experiment Transformation Strain for an uniaxial tensile test 
results [14] and self-consistent determination for experiment. 
tensile test at T = -80°C (M, = -97OC Af = -91 OC). 
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