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The catastrophic development of shear localization in thermoviscoplastic 
materials 
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Laboratoire & Physique et Micanique &s Matiriaux, URA 1215 du CNRS, Universitk de Metz, Ile du 
Saulcy, 57045 Metz cedex 01, France 

rQumC : Le couplage thermo-mkanique et l'adoucissement therrnique sont les propriCt6s du 
mat6riau qui sont B l'origine du dkveloppement des bandes de cisaillement adiabatique. Cependant 
les d6fauts g6om6triques ou mktallurgiques fournissent les sites oh le processus de localisation de 
la dkformation plastique est initi6. Dans cet article, les effets de la forrne et de l'amplitude des 
d6fauts sur la localisation de la deformation de cisaillement simple sont analyses B l'aide d'un 
modhle non lin6aire : on formule des critkres smcturels de localisation asymptotique dans lesquels 
l'acuit6 des defauts module l'influence des facteurs rh6ologiques, et l'on montre que, plus que leur 
amplitude, la forme des d6fauts permet dinterpreter la dispersion observ6e des d6fomations 
nominales B la rupture. 

abstract: Thermomechanical coupling and thermal softening are the critical material properties in 
the development of adiabatic shear bands. Besides the material effects, the sample geometrical 
imperfections and the material structural defects are regarded as providing the sites for the onset of 
the localization process. In this paper, the influence of the shape and size of the imperfections on 
the localization of the plastic flow in simple shear are analyzed within the framework of a nonlinear 
model: localization criteria are given in which the sharpness of the defects modulates the 
rheological effects. It is shown that, more than their size, the sharpness of the local imperfections 
may help to explain the observed scatter in the nominal failure deformation. 

1. INTRODUCTION. 
Thermomechanical coupling and thermal softening are at the origin of the localization of plastic flow 

in the neighborhood of sample geometrical imperfections or of material structural defects, and of the so- 
called adiabatic shear bands. It is well known that the onset of the localization process can be traced without 
ambiguity to the maximum in the shear stress z vs. shear strain y diagram. For the same material under 
identical loading conditions however, a significant scatter in the nominal shear strain to failure is observed 
[I]. In the present paper, the observed scatter is ascribed to the shape and size of the imperfections in the 
local geometry or in the material structure, and to their effects on the localization process; the influences of 
the size and of the sharpness of the defects are analyzed within the framework of a one dimensional quasi- 
static and adiabatic model where elasticity is neglected, and localization criteria are provided in which the 
material parameters are modulated by the defects' sharpness. 

2. MODEL FORMULATION. 
Let us consider a slab of material (Fig. 1) of half height h along the (o,x) axis, of infinite extension 

along (o,z), and of width l(x) in the direction (o,y). The slab is subjected to simple shear parallel to (o,z). 
It is assumed that the only non zero particle velocity component is u along the (o,z) axis; in addition, one 
assumes that every considered quantity depends on the abscissa x and on the time t only. The problem thus 
defined is one-dimensional (ID); it is designed to model the torsion of a thin walled tube in a torsional 
Kolsky bar. 
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Fig. I : Specimen geometry and loading conditions. 

Multidimensional features of shear band formation, such as the issue of their multiple nucleation and/or 
propagation around the specimen, are ignored in this model. Since the paper is focused on the 
imperfections analysis, the thermal diffusivity is (temporarily) neglected, as well as the inertial effects. 
Nevertheless, both are known to have a stabilizing influence, particularly in the final stages of the shear 
band development. 

Inertial effects being neglected, the shear force does not depend on x, and the equilibrium equation 
reads 

Vx E [-h,h] r(x,t)l(x) = r(O,t)l(O) (1) 
In the assumed adiabatic conditions, the energy conservation is written as 

pce = pry (2) 
du where p denotes the mass density, c the massic thermal capacity, 6 the temperature, y = - the local strain ax 

rate and p the Taylor-Quinney coupling constant, the value of which is roughly P = 0.9. Incompressibility 
of the material is assumed, and elastic deformations are not considered. The material behavior is assumed to 
be thermoviscoplastic, and its constitutive law is taken to be of the general form 

z = p(x)F(y,O)jm (3) 
where m is the strain rate sensitivity parameter. The shear modulus p(x) is assumed to be x-dependent in 
order to account for any material inhomogeneity or metallurgical defect. The coefficients used in the 
multiplicative form of the function F( y, 8) : 

F( y,6) = 6'y" (4) 
(n is the hardening coefficient and v the thermal softening parameter) were identified by [I] for the CRS 
1018 steel, as well as the strain rate sensitivity parameter m (v =- 0.38 ; n = 0.015 ; m = 0.019). Using the 
relations (3) and (4) allows integrating the energy equation (2) for either stress-controlled boundary 
conditions: z(h,t) = r,, or under constant velocity boundary conditions: ~ ( h ,  t) = V = job. Assuming that m is 
small enough, Vremains close to j.," in a non uniform deformation; the temperature 6 is then obtained as a 
function of the plastic deformation yand of the initial temperature 8,. Substituting 8(y) in the relation (4) 
leads respectively to: 

KO) PrCx) and ~ ( x )  = ~(0)- (5 )  ~ ( y ,  6( y)) = f (y) = eOv(1 +a,y)' Y" with a, = - 
PC$ 44 

for stress controlled boundaries and 

F(y, e(y)) = f (y) = 6,'(1+ a, yn")"fl-'' yn with a, = ~(x>P(l-  v)%' (6) pc(l+ n)0:-' 
for velocity boundary conditions. In either case, the inequality v+n<O indicates that a maximum in the shear 
stress occurs, beyond which thermal softening is predominant. Alternatively, we use the constitutive 
relationxy) introduced by [2] in 

(7) 
The coefficients (b,n) were also identified by [I] in the case of the HY-100 steel (b=8000, 114.49). A 



maximum in the shear stress occurs when 2 n d ;  such an inequality reflects the predominance of the 
material softening in the long term, whatever its actual physical origin. 

Using f(y) as defined by (5), (6) or (7) in (3), then substituting the shear stress T in the equilibrium 
equation (1) leads, after integration, to the the equation : 

Vx E [-h,h] ( , ~ ( x ) i ( x ) ) ~ ~ ~ ( ~ )  f (5)11"'d5 = ( I I ( ~ ~ ( ~ ) ) l l m  j Y ( O )  ( 4 ) ~ .  d< 
70 70 

(8) 

where the initial plastic deformation yo is assumed to be uniform. It is stated that there is asymptotic L, 
localization of the plastic deformation in the cross-section x=O if the deformation becomes unbounded for 
x=O, while remaining finite for every other x [3]. Therefore an asymptotic Lw localization criterion at x=O is 
obtained by writing that the r.h.s. integral in (8) exists when y(0) becomes unbounded: 

J;f(<,"de < - (9) 

The results obtained from this analysis for the expressions (5), (6) and (7) of the shear stress are 
reported in Table (1). For example, under stress controlled boundary conditions, the L, localization 
criterion is 

v+n+m<O (10) 
It is seen that the L, localization inequalities are material criteria: (10) illustrates the competition between the 
localizing influence of the material thermal softening (v<O) and the uniformization effects of the strain 
hardening (n*) and of the strain rate hardening (d). Clearly these criteria do not involve any structural 
or geometrical characteristic linked to the sample imperfections. 

z=f l f ty ) l im Knowles (7) Stress controlled b. c. (5)  Velocity controlled b. c.(6) 
f ( ~ )  N1 + bln y2)n-I (1 + acflVyn (1+ayyn+l)vl1-vyn 
p (relation (13)) r ml(1-2n-m) r ml(-V-n-m) r m(l  -v)l(-v -n-m(l -v)) 
Instability 2n < 1 v+n < 0 v+n < 0 
L,  2n+m < 1 v+n+m < 0 v+n+m(l-V) < 0 
Lm, r 2n+m (I +r)  < 1 v+n+m(l +r) < 0 v+n+m(I-v)(l+r) < 0 

Table I :Results. 

In what follows, we intend to show that accounting for the morphology of the defects leads to 
structural localization criteria, the nature of which is both material and geometrical. 

3. LOCAL GEOMETRICAL AND STRUCTURAL EFFECTS. 
When using NO) as the driving parameter, or else assuming that the L, localization criterion (9) is 

fulfilled, the relation (8) appears to be an implicit integral equation for the unknown Nx). Two different 
solution procedures are used in this section: one is based on local asymptotic expansions valid in the 
neighborhood of the defect, while the other is an exact analytical solution obtained by means of convergent 
series developments of the integrals involved in equation (8). In this aim, one needs to describe the sample 
geometry and material non uniformity, and to provide a detailed account of the imperfection's region. 

3.1. Local solution. 
Let us define the sample width l(x) in a neighborhood of a geometrical defect by the local 

development: 
-x, 5 x l x ,  l ( x )  = I ( 0 )  + I, (0)lxl' (1 1) 

where r>O is the "sharpness" of the defect. It is assumed that 171 and that 1,(0) is small enough, in order to 
ensure that the defect wavelength remain large enough; then a 1D analysis retains validity. Similar 
developments can be conducted alternatively for material defects, without restrictions on the specified 
sharpness: the local shear modulus y is therefore given by: 

-xl S x l x ,  P ( X )  = ~ ( 0 )  + P, (0)Ixl'. (12) 
When the sharpness r satisfies r<l, "micro-defects" resulting from a material singularity are described. 

Assume that the asymptotic L, localization criterion is satisfied: the integrals involved in the 
equation (8) can be calculated by using equivalents valid if the plastic deformations NO) and Hx) are large 
enough [4]; these conditions are fulfilled when x is small enough. The first order development of the 
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deformation x x )  turns out to be of the form 
y(x) = (13) 

The results in p are provided in Table 1 for the expressions (3 ,  (6) and (7) of the shear stress. It is now 
required in addition that the nominal shear strain be bounded throughout the localization process. From the 
integrability condition (14) of the integral of the local plastic deformation (13): 

it is seen that this boundedness condition is satisfied if k d  only if p<l: the obtained inequalities are called 
L,,, localization criteria (see Table 1); for example with the stress controlled boundary conditions (3 ,  the 
criterion L ,  happens to be: 

v + n + m ( l + r ) < O  (15) 
The competition of the thermal softening and of the strain and strain rate hardening in the 

localization process appears to be modulated by the defect's sharpness. The L,, localization criterion is 
more stringent for the localizing factor (the thermal softening) than the corresponding L, criterion (lo), 
since it ensures the boundedness of the nominal shear strain for a defect of strictly positive sharpness r; 
boundedness is guaranteed by the L, criterion for an infinitely sharp defect ( 1 4 )  only. The uniformization 
effects of the strain rate sensitivity are all the more effective as the imperfections become flatter (r 
increasing); they are better accounted for in the L,r localization criterion. 

Local developments do not account for the defect's size. Therefore we now turn to a global 
solution, valid for every x, to assess the relative influence of the shape and size of the defects on the 
nominal shear to failure. 

3.2. Global solution. 
An analytic complete solution of the implicit equation (8) is obtained from convergent series 

developments of the involved integrals, which we write in terms of the hypergeometric functions 2F1 [5]. 
For example, under the velocity boundary conditions (6) and for a smooth geometrical defect (r>l), one 
uses the hypergeometric functions defined in (16) and (17): 

In that case, the equation (8) is written in the form 

or, when the deformation Y(0) is infinite: 

The series are expanded up to the 16th term in order to obtain convergence, but the computation time and 
the results accuracy are still much better than those obtained from a numerical integration. The local 
development (11) and the profile of constant width li near the specimen edges are matched by a 
continuously derivable polynomial function of degree 5; the relative size of the geometrical defect is then 
&=I -l(O)lli. The sample profile is plotted in Fig. 2 and 3 for given E and r values, and for various 
sharpness values r (respectively amplitude values E). 

The distribution of the computed plastic deformation is plotted in Fig. 4 and 5 for various defects' 
sharpness and defects' size; it is seen that the deformation becomes increasingly localized as the defects' 
sharpness increases (r decreasing). The corresponding shear stress vs. shear strain diagrams are plotted in 
Figs. 6 and 7; larger r values lead to lower rates of the decline in stress. It can be seen that the defect's 
sharpness has as much influence on the nominal strain to failure as its size. The attention is now focused 

on the effects of the local geometry, as specified by E and r, on the nominal shear strain Yc to failure, 



which is obtained at the beginning of the sharp decline in the applied shear stress. The dependence of Yc 

on the amplitude parameter e as predicted by this analysis is shown in Fig. (8). A decrease in Yc is 

observed as E increases; Yc varies approximately as loge, as predicted by [3] and observed by Duffy [6] in 
his torsional Kolsky bar experiments on the CRS 1018 steel. A significant scatter in the experimental 
nominal shear strain to failure is also noted, even for constant material and loading conditions. 

o Expe 'mental data p f f y  (1991) 
-Lastsquare  t 

1 ........... ~ ~ l i ~  ari-afton (1987) $nusoidal shape 
r=1,5* r=2- -r=2, -..-- r=3 

1 
0.01 Amplitude E 0.1 

Fig 8: Dependence of the nominal shear strain to failure on the imperfection amplitude &. 

The sinuso'idal defect assumed by [3,6] is reproduced to the second order by using r=2 and 
lr(0)=4z2&l h2; the nominal deformations to failure then merge with those obtained by Molinari-Clifton. 
However the predicted curve lies below the experimental data, and the actual strain to failure is 
underestimated. A variation of the sharpness roughly translates into a vertical shift of the representative 
plot, which allows to interpret the discrepancy: imperfections with sharpness parameters r such that 
2.5<r<3 provide predictions closer to the observed results. According to such an interpretation, the scatter 
in the observed values of the critical shear strain stems from the poor control which is exercised on the 
defects morphology. 

Other effects are likely to be effective in this stage of the deformation localization, and may help 
understand the discrepancy between the critical strain predicted by Molinari and Clifton and those 
observed by Duffy, such as the delaying effects of heat conduction and inertia. However they cannot be 
used to explain the scatter in the observations. 

4. CONCLUSIONS. 
By assuming the deformation to be quasi-static and adiabatic, and by neglecting the elastic 

deformation, critical conditions for shear strain localization in simple shear have been given. These criteria 
account for the boundedness of the nominal shear strain; the detailed geometry of the sample is involved in 
the analysis, and the defect's sharpness modulates the material parameters in the obtained inequalities. 

Comparisons of predictions of the model with experimental results for the critical strain to failure in 
a cold-rolled steel show that the detailed account of the specimen imperfections allows to obtain a good 
quantitative agreement. The sharpness and the size of the imperfections are shown to have a strong 
influence on the critical shear swain; therefore, the sample defects and the material structure need to be 
carefully controlled and characterized if the critical shear strain is to be used as a measure of the material 
resistance to failure. 

REFERENCES 
1) MARCHAND A. & DUFFY 3. ; "An experimental study of the formation process of adiabatic shear 
bands in a structural steel", J. Mech. Phys. Solids. , Vol. 36 n03, (1988) 251-283. 
2) KNOWLES J.K. ; "On finite antiplane shear for incompressible elastic materials", J .  Austral. Math. 
SOC, Vol. 19B, (1976) 400-415. 
3) MOLINARI A. & CLIFTON R.J. ; "Analytical characterization of shear localization in 
thermoviscoplastic materials", J.of Appl. Mech. , Vol. 54, (1987) 806-812. 
4) D I E U D O ~  J. ; "Calcul infinitdsimal", Hermann, (1968) pp. 84-87. 
5) GRADSHTEYN LS. & RYZHIK I.M. ; "Table of integrals series and products", Academic press, 
New-York/USA, (1965) pp. 284-286. 
6) DUFFY J. ; "Experimental studies of shear band formation through temperature measurements and 
high speed photography", J. Phys. N Coll.C3, Suppl. J .  Phys. III ,Vol.l, (1991) 646-652 



(3-440 

PLATE. 

JOURNAL DE PHYSIQUE IV 

0 0.2 
~xiiS.:oor&iiate xO.' 

1 0 0.2 0.4 0.6 0.8 1 
Axial coordinate x 

Fig. 2 .  - Specimen shape for various sharpness values. Fig. 3.- Specimen shape for various size values. 
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Fig. 4. - Plastic strain distribution 
for various sharpness values. 

Plastic deformation 
CRS 1018; d . 0 4  

0.2 0.4 0.6 0.8 
Nominal strain 

Fig. 6.- Nominal stress-strain cuwe 
for various sharpness values. 
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Fig. 5. - Plastic strain distribution 
for various size values. 

Fig. 7. - Nominal stress-strain cuwe 
for various size values. 


