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Abstract 
In the range of high strain rates, the mechanical behaviour of materials is characterized by an increased 
strain rate sensitivity, by increasing effects of mass inertia forces and by the adiabatic character of the 
deformation process. 
For the relation between stress, strain and strain rate, empirical formulae are now mostly replaced by 
material laws based on structural mechanical models, whose parameters are to  be determined by adequate 
systematic methods. Also special effects such as the influence of strain rate on the strain at the lower 
yield point of bcc-metals can be quantitatively described by simple models. 
The fracture mode and ductility are highly affected by the strain rate. The elongation at  fracture can be 
increased due to the stabilising effect of the strain rate sensitivity similar to the super plastic behaviour. 
On the other hand, it can be reduced by the thermal induced instability, by the increasing sensitivity for 
internal notches and by the multiaxial stress state caused by inertia forces. The strain rate affects also 
the ductile fracture conditions as well as the transition temperature to  clearage fracture. 

Constitutive equations 
Under dynamic loading, high strain rate gradients are initiated in the material which 
are accompanied by a change in temperature due to the adiabatic character of high rate 
deformation processes. In order to estimate the mechanical behaviour under multiaxial 
dynamic loading, constitutive equations must be established, such that they are valid 
over wide ranges of strain rate and temperature. Overviews concerning the mechanical 
behaviour under high strain rates are represented e.g. in [l], [2]. 
In order to formulate the material properties, a viscoplastic behaviour is often assumed 
by using, for example, the Perzyna-equation [3]: 

where p is the shear modulus, f is square root of the second invariant of the stress deviator 
Sij and F  = ( f l l i )  - l is the relative difference between f and the shear flow stress 
K = O F / &  The type of the function @ ( F )  is often estimated using simple rheological 
models assuming Qi ( F )  = F and leading to a linear relation of the type U = crF(c) + q i  
which is acceptable for metals only at strain rates > 103 S-*. 
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Empirical relations 

Different empirical relations could be implemented in eq. (1). With cP (F)  = exp (F/a)-l ,  
the corresponding relation between stress and stress rate in the uniaxial case reads 

a = [l + a In ( l  + ;/a)] 

and with 9 (F) = Film the empirical formula 

is used. Both of the relations (2) and (3) were already introduced 1909 by Ludwik [4] 
considering the existence of a strain-rate dependent " internal friction". Different modified 
versions of these equations are still the most commonly used description for the influence 
of the strain rate on the flow stress at low strain rates. 

The strain hardening function aF(e) can be formulated using the well-known empirical 
relations of Ludwik [5], Hollomon [6] or Swift [7]. The latter reads 

UF = K(i, T )  (B + c)n . (4) 

The influence of temperature on the flow stress is also described by different relations of 
the type 

or according to [g] 
a = a0(&, i )  [l - (T/Tm)U] 

with Tm as the absolute melting point of the material. 
On applying such empirical relations, the flow stress is usually represented by a = 
fl(6) f2(2) f3(T) as a product of three separate functions of strain, strain rate and tem- 
perature, which is a rough approximation especially in the case of moderate strain rates 
of i < 103s-l. However, the basic problem is that nearly all the parameters of these 
empirical equations can only be regarded as constants within relatively small ranges of E ,  

i and T .  In order to determine these functions, a great number of experiments are needed. 
Therefore, constitutive equations based on structure-mechanical models are gaining incre- 
asing interest as they can improve the description of the mechanical behaviour in wider 
ranges of strain rates and may, if carefully used, allow the extrapolation of determined 
relations. 

Structure-mechanical models 
The macroscopic plastic strain rate of a metal results from the accumulation of sub- 
microscopic slip events caused by the dislocation motion in the time unit: 

In this equation, the Burgers vector b and the Taylor-factor MT are constants for a given 
material whereas the mobile dislocation density Nm is mainly a function of strain. The 
relation between the dislocation velocity v and the stress was experimentally determined 



for several materials [g]. It can be represented in the range of low stresses by a power law: 
v = v0 ( O / U ~ ) ~ .  At very high stresses, the dislocation velocity approaches asymptotically 
the shear wave velocity c~ according to a = avU/,/l - (u/cT)? Another function v = 
CT exp (-Dla) which fulfils this condition was introduced by Gilman [g]. 

At relatively low temperatures, i.e. less than 0.3 of the absolute melting point T,, the 
influence of strain rate and temperature depends on the i-range of the deformation 
process. Below a specific strain rate value, which is dependent on temperature, only a 
slight influence of strain rate and temperature on the flow stress is observed. In this 
region I, athermal deformation processes are dominant, in which the dislocation motion is 
influenced by internal long range stress fields induced by such barriers as grain boundaries, 
precipitations and second phases. The flow stress follows the same temperature function 
as the modulus of elasticity and the influence of strain rate can be described by a = c im 
where m is of the order of magnitude of 0.01. 

Strain Rate j [S-'] Strain rate j [S- ' ]  

Figure 1: Ranges of different structure mechanical processes depending on temperature and shear strain 
rate for mild steel according to Campbell and Ferguson [l01 

Thermal activated deformation 
In the region 11, the dislocation motion is increasingly influenced by short range stress 
fields induced by barriers like forest dislocations and solute at,om groups in fcc.-materials 
or by the periodic lattice potential (Peierls-stress) in bcc.-materials. If the applied stress 
is high enough, such barriers can immediately be overcome. At lower stresses a waiting 
time At, is required untill thermal fluctuation can help to overcome the barrier. A part 
of the dislocation line becomes free to run a mean distance S* untill it reaches the next 
barrier after an additional time interval At,. The mean dislocation velocity is given by 

v = s*/(Atw + At,) . (9) 

The waiting time At, equals the reciprocal value of the frequency v of the overcoming 
attempts, which follows an Arrhenius relation, so t,hat At, = (llvo) exp [AG/(k T ) ] .  If 
the strain rate is lower than ca. 103s-l, it can be assumed that t, >> t,, and the relation 
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between strain rate and stress is then given by 

i = &(E) exp -- [ ;;l 
where io = b N, v0 s*/MT.  The activated free enthalpy AG depends on the difference 
U* = a - a, between the applied stress and the athermal stress according to AG = 
AGO - 1 V* do* so that 

with V* = bl*s*/MT the reduced activation volume, which depends on the force- 
displacement function of the dislocation-barrier interaction. If this function is represented 
by a rectangle, V* is considered to be independent of stress. The relation between strain 
rate and stress is given by i = to(,) ~ X ~ [ - { A G ~ - V * ( U - ~ ~ ) ) / ( ~ T ) ] .  A linear relationship 
would be expected between a and T in the form: U = aG(c) + [AGO - k T In (io/i)]/V*, 
which was found to be valid e.g. for pure $luminium [ l  l]. 
For given stress and strain, the value of T In (io/i) is constant for all temperatures and 
also for all strain rate values between io exp[-AGo/(k T)] and io. This means that the 
increase of stress at constant strain with decreasing temperature or with increasing strain 
rate is the same, as long as the values of 

AG = T In (ioli) (12) 
are equal in both cases. 
Because the activation volume and the athermal stress U are functions of strain, Kawata 
et al. [12], replaced V* by AGo/[o0(l + He)], whereas Lindholm [l11 applied V* = 
V: + b C @ .  Other experimental investigations showed non-linear relations between a and 
AG (Figure 2) yielding a stress dependent activation volume. These non-linearities were 
described by Vohringer [13, 141 and by Kocks et. al. [l51 using: 

AGO U-a, p 
i = io exp [-F {l - [----l } ] 

a o  - 0, 

These equations are valid for the thermal activation region i o  exp[-AGO/ (L T)] < i < io. 

An alternative method to describe this non-linearity was introduced by Armstrong [16,17]. 
His analysis is based on the Petch relation for the temperature dependence of the lower 
yield point of mild steel. Petch [l81 proposed a linear relation between the width of the 
dislocation and the temperature of the form W = wo(1 + aT).  The friction stress, here 
the Peierls-Nabarro stress, U,$, which is necessary to overcome the lattice potential field 
is then given by: a$ = A exp[-wo(l + ol T)]. Regarding the coupling between T and 
In i according to (12), Armstrong introduced the relation: 

As an approximation, the thermal activated component of the stress was given by Krabiell 



which means a linear relation, however, between log(o - ua) and T and which is fairly 
supported by experimental results on low-carbon steel (Figure 2-b). 

AG = T ln(io/i) [10-20 J] Temperature T [K] 

MPa 

Figure 2: Flow stress a and thermal activated stress (a - a,) of Steel St E 47 at lower yield point or at  
a constant strain as a function of temperature T and strain rate E [l91 

Lower yield point o 10+2s-1 
loo S-l 

+ 10-Is-' 
* 10-2s-1 

Linear viscous behaviour 
At strain rates higher than some 103 S-' the stress is high enough, so that At, vanishes 
with respect to At, and damping effects dominate. The dislocation velocity yields [20]: 

S* b 
v = - = -(T - 7.h) 

At, B 

and the flow stress can be represented by 

a = oh(€) + v i  

with = MTB/(~~N,)  and o h  as the stress required to overcome barriers without thermal 
assistance. It can be determined by extrapolation of the stress values to 6 = 0. 
An adequate discription of the flow behaviour in this high strain rate range can be given 
using the temperature function interoduced by Petch [l81 in the form: 

a = [K (B + c)" + i] exp (- TIT,) (18) 

considering that the stress o h  is proportional to the square root fi of the forest disloca- 
tion density, whose rate of change d N f / &  is assumed to follw a hyperbolic function with 
a finite initial value at E = 0. These assuptions lead a strain hardening function which is 
identical to the emperical relation introduced by Swift [7] 

fi 
A continuous transition takes place, when the strain rate is increased from the thermal 
activation range (11) to the damping range (IV). This can be described in two different 
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ways: Regarding the dislocation velocity to be equal to v = s*/(At, + At,), the strain 
rate can be represented by: 

where 5 is a function of strain. Alternatively, the continuous transition can be described 
by an additive approximation. The stress is regarded to be the sum of the athermal, the 
thermal activated and the drag stress. According to this approximation: 

Determination of the parameters 
The determination of the parameters of eqs. (14) or (17) from experimental data is less 
difficult than the estimation of p, g, a:, A G ~ ,  ii of eq. (13). A systematic method for the 
determination of p, a; and q was introduced by Nojima [21]. Since the relation between 
log a* and log [l - (AG/AGo)'/q] should be linear according to eq. (13), he plotted 
this relation for different values of q - namely 1, 312 and 2 - and chose the value giving 
the best linear fit. The slope of the linear relation is equal to (l/p) and the log a*- 
axis intercept equals a:. Another systematic method was suggested by Vtihringer [22] 
according to which the activation volume V = kTdlni/da* is to be determined e.g. by 
strain rate jump tests as a function of U* and all other parameters can hence be determined 
by integrating V* da*. This method was successfully applied to experimental results of 
different steels at relatively low strain rate values [23]. As a modification of the Nojima 
and Vlihringer analyses, the following procedure can be proposed: 
At first the thermal activated stress component a* = a-[aao E(T)/E(To)] is calculated by 
subtracting the athermal component which is assumed to follow the temperature function 
of the modulus of elasticity E (Fig. 3a). The activation volume 

dln i 
V = k T -  

do* 

is determined as a function of a* by numerical differentiation of the a* - In 2-relation 
(Fig. 3b). Comparing eqs. (11) and (13), the relation 

can be deduced. The corresponding relation between the activation volume and the 
thermal part of the stress follows by differentiation with respect to a,*: 

At very small values of a*, i.e. at higher temperatures and low 2 values, it can be assumed 
that 

a* << a,' : 



so that, in the case of a double-logarithmic representation, the slope of the In V - a* 
curve in the range of very small a* values can be considered being approximately equal 
to -(l - p) (Fig. 3b). With p thus being determined and with the relation V(a*), the 
following functions of a* can be determined: 

According to eq.(23), Q and C are related by 

In a double-logarithmic representation of Q as a function of (1 - C) (Fig. 3c), the slope 
is equal to (q - 1) and the extrapolation to C = 0 facilitates obtaining the value for 
(q AGolk) and hence AGO. The remaining parameter io can be determined according to 
VGhringer by extrapolation of the relation In l(AG) to AG = 0, where AG is determined 
for the different a*-values according to AGO - S V* do*. 

Figure 3: Determination of the parameters of eq. (13) from impact torsion tests on cast iron GGV-30 

Deformation with non-constant strain rate and Temperature 
A monotonic deformation process with constant strain rate and temperature can be des- 
cribed by equation (13) if the influence of strain on the athermal and the thermal activated 
components of the stress is taken into account by means of a suitable function such as 
in eq.(4). Assuming the applicability of a mechanical equation of state, the value of the 
stress at an arbitrary time point would only depend on the current values of strain, strain 
rate and temperature. A sudden change of strain rate from il to i 2  would lead to a cor- 
responding increase of stress to the value 02, which is also determined at the same strain 
in another experiment with a strain rate i2 constant from the beginning. The results of 
several investigations showed that this assumption is not valid. After each sudden change 
of i or T, a stress transient is observed. Depending on the previous deformation history, 
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the stress is at first either higher or lower than the expected value. With further defor- 
mation, the stress approaches the a(€)-curve expected for the new values of i and T. In 
order to describe these transients after strain rate or temperature jumps and specially in 
case of reversed loading, at least one parameter of eq.(13), eg. ao, must be considered as 
an internal material variable, whose incremental change with respect to strain (and not 
its absolute value) is dependent on the current deformation parameters 
This internal parameter represents the microstructural state and is determined by the 
integration of an evolution equation accounting for each structural change during the 
deformation process. 
Based on earlier studies [24], Follansbee and Kocks introduced a mechanical threshold 
stress model1 [25], according to which the flow stress is specified as a function of current 
values of the strain rate an temperature as well as of an internal state variable denoted the 
mechanical threshold stress b which represents the flow stress at T = 0 K. This internal 
variable is seperated in two cpmponents: an athermal component S, which is assumed to 
be independent of strain, and a thermal component St which is history dependent. The 
flow stress is represented by a = &, + (S - b,) f ( i ,  T). In the case of thermally activated 
flow, the stress yields 

During deformation, b varies with strain due to dislocation accumulation and dynamic 
recovery. The differential variation depends on the current value of 8 according to d8lde = 
O0 [l - f (S)]. The evolution equation which fits well the experimental results is found to 

In this equation, S, is the saturation value of S which depends on the curren values of 
strain rate and temperature according to 

where bso, iso and A are constants. The initial hardening rate O0 is roughly C G120 and 
can be determined form experimental results as a function of the strain rate. 
If a specimen is deformed at a constant temperature with a constant strain rate 4, the 
threshold stress increases with strain according to eq.(28) approaching the corresponding 
saturation value SS1 given by eq.(29). After reaching a strain of €1 and a threshold stress of 
Sl, a strain rate jump to i2 leads at first to a relatively small change in the value of the flow 
stress according to eq.(27) with the same value &=S1 as far as no significant structural 
rearrangments take place during the short time of the strain rate jump. With further 
deformation, the threshold stress changes due to structure evolution and approaches a 
new saturation value SS2 which corresponds to the strain rate i2. The difference between 
the flow stress just after the strain rate jump and the flow stress determined in a test with 
a constant strain rate of i2 diminishes with increasing strain. 
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Figure 4: Description of strain rate jump tests by the Follansbee and Kocks Model1 

Influence of strain ra te  on lower yield point 
In many bcc-materials, the stress drops suddenly in the quasi-static tension test from the 
upper to the lower yield stress, at which the the stress remains approximately constant 
for a certain elongation ELO. At the upper yield point, dislocations originally blocked by 
solute atoms become free and start to glide against lower resistance. This process leads 
first to a plastic deformation in a limited fraction of the specimen length forming a Luders- 
band which is usually located near one of the specimen ends and which is inclined to the 
specimen axis. In this region, the local plastic strain is as high as wo, whereas the rest 
of the specimen is only elastically deformed. With further extension of the specimen, the 
plastically deformed fraction of the specimen length increases by motion of the Luders- 
front which represents the boundary between the plastic and the elastic zone (Figure 5-a). 
When this front reaches the other specimen end, a uniform plastic deformation is observed 
and the load starts to increase by strain hardening. Under quasi-static loading, the strain 
ELO at the lower yield point is found to be independent on the extension rate L of the 
specimen. Considering the plastic volume constancy, the velocity of the Luders-front was 
determined [26] as 

(Figure 5-b). In high strain-rate tension tests, no sudden drop of stress is observed after 
reaching the upper yield point. In contrary, a continuous decrease of stress to the lower 
yield strength takes place. The relative specimen elongation around the lower yield point 
is much greater than in the quasi-static case and is found to increase with increasing 
strain rate (Fig. 5-c). 

Some trials were done in order to explain this process by the relation between dislocation 
density and strain. However, the mass inertia forces seames to have the major influence 
on the propagation rate of the Luders front. A simple model was introduced [28] which 
can describe this behaviour. It is based on the energy balance regarding mass inertia and 
a specific energy per unit volume, which is needed-to overcome the dislocation blocking 
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by the solute atoms. According to this model, the velocity of the Liiders-front is given by 

where L is the extension rate of the specimen and c = m is the plastic wave velocity 
in the material of density p and a strain hardening parameter of H = da/dc.  The strain 
at the lower yield point is a function of the elongation rate L of the specimen according 
to 

EL = 4- (32) 

Mimura and Tomita 

Figure 5: Influence of strain-rate on the strain at the lower yield point: a) Strain distribution at different 
time points during quasi-static tension test [26], b) Quasi-static relation between Liiders-front velocity 
and extension rate [26], c) Stress strain curves for different strain rates according to [27] 

Thermallv influenced mechanical instabilitv 

Flow curves determined in the range of high strain rates are almost adiabatic ones, since 
the deformation time is too short to allow heat transfer. The major part of the deformation 
energy is transformed to heat while the rest is consumed by the material to cover the 
increase of internal energy due to dislocation multiplication and metallurgical changes. 
In a torsion specimen temperature increases according to 

where K M 0.9 is the fraction of the deformation work transformed to heat, T is the current 
value of the flow stress which is already influenced by the previous temperature rise. As the 
flow stress usually decreases with increasing temperature, a thermally induced mechanical 
instability can take place leading to a concentration of deformation, a localization of 



heat and even to the formation of shear bands. An overview of different criteria for the 
thermally induced mechanical instability are presented in [29]. 

Adiabatic flow curve 
The adiabatic flow curve can be determined numerically for an arbitrary function 
7iso(y, j, T) for the shear stress which has been determined in isothermal deformation 
tests. In order to obtain a closed-form analytical solution demonstrating the adiabatic 
flow behaviour, the simple stress-temperature relation T = ~;,,(y, j )  @(AT) can be used 
[30]-[31]. In this case, the change of temperature can simply be determined by separation 
of variables and integration: For example 

Tm is the absolute melting point of the material, p and c are the mean values of density 
and specific heat in the temperature range considered. Around room temperature, the 
product pc  is between 2 and 4 MPa/K for most of the materials (Fig. 6a). For a rough 
approximation, it can be assumed that (p~T~lO.9)  x 3 Tm in MPa using Tm in K (Fig. 6b). 

ABSOLUTE MELTING POINT T,,, [K] 

Figure 6: Product of density and specific heat as a function of the absolute temperature 

Many experimental investigations, eg. [X], were carried out in order to determine the 
temperature dependence of the flow stress . Up to a homologous temperature of 0.6, the 
stress- temperature relation can be better described by eq. (35) than by eq. (34), showing 
values of p between 1 and 4. Therefore, only eq. (35) will be considered in the following 
discussion. If the isothermal stress can be simply described by 
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the flow stress determined in an adiabatic test is then given by 

where 

The parameter a can be considered as approximately constant represented by its mean 
value over the deformation process which is of the order of magnitude of 1 K/MPa. 
The flow curve shows a maximum at the critical shear strain of 

Obviously, the influence of the strain rate on the adiabatic flow stress is reduced if the 
shear strain is increased so far as 7 = K yn h is also divided by [l+aKyl+n(l+ hj)/(l+n)] 
giving an apparent viscosity v*. If the adiabatic stress, determined at different values of 
strain, is plotted as a function of the strain rate, the relation ~ ( j )  remains approximately 
linear but the slope q* decreases with increasing strain y. For a given strain value y, the 
stress value TO determined by extrapolation of the ~(j)-relation to j = 0 is represented 
by 

a 
7 0 = K y n  l + K yl+n] -l [ ( l  + n)T, 

(40) 

with a maximal value of 

Using the values of romaX and yoc determined from the experimental results, the parameters 
K and a can be estimated by 

the remaining unknown parameter n can be determined by fitting the curve rO(y). The 
same equations can be applied for tension or compression tests, if T is replaced by the 
true stress a and y by the true strain c. The values of the parameter a determined by this 
method are often higher - in some cases by a factor greater than 5 - than 0.9 P / ( p  c T,). 
The experimentally determined flow curve lies much lower than the expected adiabatic 
one. 
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Figure 7: Quasi-static and multiple dynamic torsion tests on Armco iron; curves represent: 1 quasi-static, 
2 dynamic isothermal, 3 dynamic adiabatic, 4 temperature and strain localization 

Damage hypothesis 
One possible explanation for the drastic stress reduction is the assumption of successive 
structural damage during the deformation process. The influence of such a damage process 
on the flow curve can be taken into account by introducing a damage function f(D) for 
example of the form 

T = [ ( ~ ~ n  (1 + h?) e - ~ ( ~ - ~ o ) I ~ m ]  ,-D (43) 

Similar to the temperature change, the Damage factor D can be assumed to increase 
proportional to the increase of plastic deformation work 

so that the influence of both the temperature rise and the damage can be represented by 
a single parameter R = ,B [(T - To)/T,] + dL) with d52 = [O,  9 @/(p c T,) +pd] rdy leading 

Kyn (l + h?) 
r a d  = 

1 K71tn (1 + h?)] + P  pcTm [l+n 

where the factor p = l +pd(p c T,)/(O, 9 ,B) allows the application of the previous equations 
taking a non-defined damage process into consideration. With eq. (45), experimental 
data can be described relatively accurate with values p > 1. However, if the specimens 
are reloaded dynamically, the flow stress increases to the values expected for isothermal 
deformation before it falls again (Fig. 7). This would mean that the previous "damage" 
must have almost completely "recovered" during the period between the loading steps. 
Therefore, the stress reduction cannot be explained mainly by the onset of structural 
damage but by a localized heating due to non uniform deformation distribution. 

Influence of imperfections 
Similar to the process of neck formation in a tensile specimen, small structural or geome- 
trical inhomogenities grow during plastic deformation and lead to a further localization 
of deformation. Especially after reaching the stress maximum, a great part of the speci- 
men is unloaded elastically causing further deformation localization. In dynamic torsion 
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tests, the deformation localization leads to a heat concentration and hence a higher local 
temperature rise. Coffey and Armstrong [33] introduced a global temperature localization 
factor which is the ratio of the total specimen volume V. to the volume V, of the plastic 
zone. 

According to this assumption the parameter p in eq.(45) has to be understood as a tem- 
perature localization factor and not as a structural damage factor. The influence of 
inhomogenity on the strain distribution has been demonstrated by using a simple model 
[34] which represents the torsion specimen by two slices, a reference one and another slice 
with slight deviations in strength or dimensions. Furthermore, the deformation localiza- 
tion could be traced during the torsion test by observing the deformation of grid lines 
on the specimen suface by means of high-speed photography [35],[36]. For the numerical 
simulation, the initial wall thickness s or the radius r of the torsion specimen and the 
flow stress parameter K are assumed not to be exactly constant along the gauge length 
but to have small deviations from their nominal values. 

In the case of the impact compression test, the experimental results of lubricated, re- 
latively long specimens (LID > 1.5) of annealed ductile materials can usually be well 
described by the adiabatic flow curve (Fig. 8-a). Initial imperfections diminish during 
deformation. For example, a smaller cross-section suffers higher stresses and undergoes 
greater compressive deformation, so that this cross-section increases and the imperfection 
deceases. However, if the friction at the contact surfaces of dry cleaned specimens is high 
enough, high local shear strains can arise on the compression cone beneath the contact 
surface. Shear cracks can be detected on this cone starting from the circumference of the 
specimen front plane. The flow stress can be described by eq.(45) with p as a softening 
factor (Fig. 8-b). Similar observations were made in the case of lubricated specimens, 
if they a.re relatively short (HID 5 1). In this case, two compression cones come into 
contact and a shear strain localization may take place (Fig. 8-c). 

True strain C True Strain C True Strain c 

Figure 8: Impact compression tests on Armco-iron; Results described with p as a combined damage and 
localization parameter 
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Stabilizing effect of strain rate sensitivity 
In tension test, imperfections - eg. in form of small dimensional deviations - are found to 
grow during deformation [37, 381. The local stress in the smallest cross-section is slightly 
higher than in other regions. Therefore, the local strain is higher and the smallest cross- 
section decreases more than others. This trend is promoted by the adiabatic character 
of the deformation processes, since higher deformed regions are even more softened by 
the deformation heat. On the other hand, a deformation localization is accompanied by 
an increased strain hardening and an increase in the local strain rate which both lead 
to higher local flow stresses. With increasing deformation, the maximum load condition 
will be fulfiled first at the smallest cross-section whereas other specimen regions are still 
having lower strain values and undergo a partial unloading. In comparison with torsion 
and compression tests, only relatively low strain values are reached at the maximum load 
in the tension test. The influences of strain hardening and temperature softening are 
here relatively small compared with the influences of the reduction in area and of the 
increased strain rate sensitivity. In analogy to the super plastic behaviour of high strain 
rate sensitive materials, an increase in the elongation at fracture in the tension test can 
also be expected for usual construction materials when tested at high rates of strain. In 
order to demonstrate this effect by a simple example, the wave propagation and reflection 
will not be taken into consideration and it will be assumed that the same force is acting 
on every cross-section. 

n =0.1 
K=1000 MPa I 
q=0.01 MPa s I 

REL. ELONGATION a) REL. ELONGATION b) 

Figure 9: Influence of strain rate on the behaviour of tension specimens with initial geometrical imperfec- 
tion of maximal 1% deviation of the cross-sectional area: a) Engineering stress-strain curve, b) RRlation 
between the maximum local true strain and the global extension 

The material behaviour is described by 

a = [K ( B  + c)" + r]  i] e x p  (- ,B ATIT,) (47) 

The initial cross-sectional area So is considered as a parabolic function of the distance 
along the specimen axis with a maximum deviation of 1% and the strain c at an arbitrary 
cross-section can be determined as a function of the strain cl at the minimum cross-section 
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by a numerical evaluation of the relation 

with a* = a/T,. Additionally, the elastic unloading of lower deformed regions after 
reaching the maximum load has to be considered. The total extension of the specimen is 
calculated by integrating exp(~)  - 1 over the specimen length. If an upper limit for the 
maximum local stain is considered as a failure criterion, the relative elongation at fracture 
increases with increasing strain rate. 

Ductile fracture 
Ductile fracture usually starts at material regions of high local strain and triaxiality. Nu- 
merical methods such &S FEM facilitates the-predeter&nation of such zones. Also under 
high rates of strain, ductile fracture occurs due to nucleation, growth and coalescence of 
micro-cavities. In a basic study on the growth of cavities by plastic deformation of the 
surrounding material, McClintock et al. 1391 deduced a closed-form analytical solution 
for the rate-of-growth of cylindrical cavities of elliptical cross-section with the semi-axes 
a and b in a strain-hardening material which is: 

where R = (a + b)/2 is the mean cross-sectional radius and a, and ab are the normal 
stresses in the direction of the ellipse axes. Rice and Tracy [40] deduced a closed form 
solution for the rate-of-change of the mean radius of a void in an ideal plastic material 
as a function of the current value of the radius and of the ratio between the mean stress 
and the effective stress 

8 = const . : 

Hancock and Mackenzie [41] showed that if the failure strain is assumed to be inversely 
proportional to the relative cavity growth rate (dln R l d ~ ) ,  the strain at fracture can be 
deduced from the Rice and Tracy criterion and be expressed as 

where E, is the effective strain before void nucleation. 
A more detailed analysis was presented in [42] and [43], in which the rate-of-change of 
the volume fraction of voids, is considered as the sum of three different contributions: 1) 
the growth of existing voids, which is proportional to (1 - f )  and to the current local 
strain rate, 2) the nucleation of new voids depending on the effective strain rate in the 
matrix and 3) the nucleation of new voids which is proportional to the rate of change 
of the mean stress U,. In addition, a flow criterion for progressively cavitating ductile 
materials is applied. 
The volume fraction f of inclusions in the material has a great influence on the fracture 
strain. Experimental results of Marini et al. [44] showed that the factor 0.28 of eq. (50) 
should be replaced by higher values according to the volume fraction of inclusions. In 



[41], the local plastic strain which leads to coalescence of cavities was found to be highly 
influenced by f .  Using special treatments for ferritic steels, different residual sulpher- 
concentrations were realized by Holland, Halim and Dahl [45, 461 which were found to 
affect the fracture strain (Fig. 10a). These results were described by the modified relation: 

where instead of the factor 3/2 a parameter P is introduced with values ranging between 
5 and 23. The degree of purity had a drastic influence on E,, which was affirmed by the 
investigation of further materials and treatments (Fig. lob). 

Figure 10: Influence of sulpher content in steel on: a) the local effective strain at fracture as a function 
of ratio of mean stress to flow stress [45] and b) the fracture strain for high multiaxiality as a function of 
the true strain in the neck zone of unnotched specimens [46], (Z = reduction of area at fracture) 

Because of its simplicity, eq. (52) is also applied to the range of high strain rates after 
introducing correction factors considering the influences of strain rate and temperature, 
for example by Johnson and Cook [g] as 

with io = Is-' and Tm the absolute melting point. As a,/@, i and T change during 
deformation, it is assumed that fracture starts when a damage parameter D = ~ ( A C / E ~ )  
reaches the value of 1. According to this relation, the fracture strain should increase 
with strain rates for positive D4-values which were determined in [g] on relatively blunt 
notches leading to um/a-values smaller than 1.3. In this case, the increase of ~f with 
i may at least be partially related to the stabilizing effect of the increasing strain-rate 
sensitivity which hinders the neck formation in tension tests. Through computational and 
experimental investigations of differently sharp notches, Barton et al. [47] showed that in 
the case of copper (Fig. l l a )  no significant influence of the strain rate on the failure strain 
exists. On the other hand, the failure strain of Remco iron decreased as the strain rate 
was increased. For this material a negative value was determined for the Parameter D4. 
If this result is discussed in terms of the Hancock-Makenzie-condition eq. (51), it means 
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that the nucleation strain E, is dependent on the strain rate. This can be explained by 
assuming that the nucleation process can also be controlled by the stress, which increases 
with the increasing strain rate. 
The relations discussed above were developed for quasi-static loading without special 
consideration of the influence of high strain rates. Curran et al. [48] studied the cavitation 
arising in metallic specimens subjected to impact loading in the plate impact test. At the 
midplane of the specimen, high tensile stresses are induced. By varying impact velocity 
and geometry, the amplitude and the duration of the tensile stress peak can be changed. 
In the case of 1145-Aluminium, ellipsoidal voids were formed, while micro-cracks were 
observed in Armco iron. These cavities were measured, classified according to size and 
counted. The so determined size distribution could be described well by 

N = No esp(-R/Rl) (54) 

where N is the number of cavities with radius R while No and RI are constants. This 
distribution is also well known as a suitable description for creep cavitation at high tem- 
peratures [49, 501. According to the results of [48], this function does not change by 
varying the stress peak or the duration, It can be shown that, in this case, the rate of 
growth of voids is given by the relation Ntot/Ntot = R/R1 , where Ntot is the total number 
of cavities in the volume regarded. From this relation, two conclusions can be deduced: 
1) The rate of size growth R is proportional to the relative void initiation rate, and 2) 
The rate R of growth is independent of the current value R of the size and hence small 
voids are growing with the same rate as large ones. This second conclusion can hardly 
be understood by the simple plasticity models discussed above which indicate that R is 
proportional to R for given stresses, strains and strain rates. However, the assumption of 
a constant RI is only an approximation. It can be assumed that RI changes slightly with 
load duration and that R/R x cNtOt/Ntot. In the case of creep, numerical computations 
showed a similar distribution of the inter-crystalline crack size, when the crack initiation 
is assumed to be controlled only by the local equivalent creep strain [50]. 
For a non-hardening but strain-rate sensitive material, the rate-of-growth of a spherical 
void at the centre of a metallic sphere which is subjected to a hydrostatic tension a,, the 
rate of radius increase is given in analogy to [51] by: 

If the flow stress at very high strain rates can be described by a = ~i with neglection 
of the athermal and the thermal activated stress components, the rate-of-growth can be 
written as 

A similar relation was introduced by [52] and [53] which reads R / R  = (a, - U H ) / ( ~  v), 
where a~ is the threshold stress for the void growth. 
If om/a is constant, then ef -6% is inversely proprtional to it. However, this ratio changes 
during deformation depending on the initial geometry and the parameters of the material 
law. Therefore, a representative value of u,/a can be considered in combination with a 
proportionality factor, which depends on material parameters, i and T: 



- o Remco-Iron quasi-static 3 * - 

o 0.2m/s 
n 10 m/s * 
* brittle 0.2 m/s * 

brittle 10 m/s * 
O 

0 1 2 

Figure 11: Local effective strain at fracture of notched specimens as function of the ratio of mean stress 
to effective stress for different elongation rates [47] 

Transition to brittle fracture 
With strain rate and multiaxiality increasing, the local stress peaks become so high that 
they can reach the microscopic cleavage fracture strength oj of the material. Brittle 
fracture is expected, when the local value of the maximum principal stress exceeds aJ 
over a characteristic distance X, which depends on the microstructure of the material [54]. 

TEMPERATURE TEMPERATURE TEMPERATURE 

Figure 12: The transition temperature shift due to an increase in multiaxiality M = U,/*, prestrain c 
and strain rate 1 

The transient temperature Tt from ductile to brittle fracture is shifted to higher values due 
to the increase of the maximum normal stress and can reach the current local temperature 
during the deformation process causing transition to brittle fracture. 
The influence of the multiaxiality M = U,/@ on the maximum normal stress can be 
demonstrated by the simple case of proportional stresses with two equal principal stresses: 
011 = = a 01. With the mean stress U, = (1 + 2a) Q113 and the effective stress 
a = (1 - a)  01, the maximum normal stress follows by eliminating a : 



(33-168 JOURNAL DE PHYSIQUE IV 

If in this case the brittle fracture condition is simply assumed to be oj - a1 = 0 and 
the microscopic cleavage strength oj can be considered as proportional to the modulus 
of elasticity E (T ) ,  the transition temperature Tt from brittle to ductile fracture can 
be determined by the intersection of the functions aj(T) and a ( T )  for given values of 
multiaxiality M, prestrain E and strain rate i. A variation of these parameters results in 
a shift of the transition temperature which is determined by 

However, this equation seems to overestimate the transition temperature shift. Therefore, 
a procedure for the determination of the effect of the loading rate on the transition 
temperature, which describes the experimental results more accurately, was introduced 
by Falk and Dahl [55, 561. This procedure needs only a single value zl for the transition 
temperature at a known loading rate and the relation between flow stress, strain rate and 
temperature determined eg. in tension tests. According to their analysis, the transition 
temperature for another strain rate is determined by the intersection of the function m(T) 
and Ttl+ A T / ( d m l d T ) ~ , ~  where m = dlna/dlni determined for different temperatures 
by differentiating the material law for thermal activated flow. According to this method, 
the transition temperature shift can be expressed by: 

v 'increased 
from .O1 or .02 
to 3600 mm/s 

A 15NiCuMoNb5 
o st-52-3-CaSi 
o StE 885 

Temperature [K] Yield stress [MPa] [mm/sl 

Figure 13: Influence of deformation rate and strength on the transition temperature shift: a) J-Integral- 
Temperature curves for Steel 15 NiCuMoNb 5, b) Transion temperature shift as a function of yield 
strength c) measured and calculated values for the transition temperature as a function of the machine 
ram velocity v, [55, 561 
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