Luminescence properties of Ni2+ in CsCdBr3
D. de Viry, N. Tercier, J. Denis, B. Blanzat, F. Pellé

To cite this version:

HAL Id: jpa-00252601
https://hal.science/jpa-00252601
Submitted on 1 Jan 1994

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Luminescence properties of Ni$^{2+}$ in CsCdBr$_3$

D. DE VIRY, N. TERCIER, J.P. DENIS, B. BLANZAT and F. PELLÉ

Laboratoire de Physicochimie des Matériaux, UPR 211 du CNRS, 1 Place Aristide Briand, 92190 Meudon, France

Optical properties of Ni$^{2+}$ ions substituted in CsCdBr$_3$ crystal have been investigated from 9 to 300 K. Strictly forbidden transitions for spin, electric, or magnetic dipole selection rules in a purely cubic environment are observed in the absorption spectrum. The interpretation of these spectroscopic features is performed on the basis of trigonally distorted symmetry of the Ni$^{2+}$ site and by taking into account the first-order spin-orbit interaction. In this framework, the cubic spin-orbit sublevels undergo further splitting due to the trigonal field. The energy-level calculation performed in this model agrees fairly well with experimental values.

The trigonal-field parameter is estimated to be -780 cm$^{-1}$. A better accuracy in the trigonal sublevels energies is obtained by taking into account the emission data. Four emission bands were observed in the 0.9-2.6 μm spectral range. These are ascribed to radiative deexcitation from the 1T_2 excited state to the lower excited states 3T_2, 3T_1, 1E for the higher-energy transitions, and from the 3T_2 level to the ground state for the lower-energy emission. The temperature dependence of the lifetimes was fitted by the Mott law and in the Struck and Fonger model. On the basis of the latter model, decay processes are proposed.