N

N

A finite element model for thermomechanical analysis in
casting processes
D. Celentano, S. Oller, E. Onate

» To cite this version:

D. Celentano, S. Oller, E. Onate. A finite element model for thermomechanical analysis in
casting processes. Journal de Physique IV Proceedings, 1993, 03 (C7), pp.C7-1171-C7-1180.
10.1051/jp4:19937182 . jpa-00251814

HAL Id: jpa-00251814
https://hal.science/jpa-00251814
Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/jpa-00251814
https://hal.archives-ouvertes.fr

JOURNAL DE PHYSIQUE IV
Colloque C7, supplément au Journal de Physique I1I, Volume 3, novembre 1993 1171

A finite element model for thermomechanical analysis in casting
processes

D. CELENTANO, S. OLLER and E. ONATE

International Center for Numerical Methods in Engineering, E.T.S. d’Enginyers de Camins, Canals i Ports,
Universitat Politécnica de Catalunya, Gran Capita s/n, Modul C1, 08034 Barcelona, Spain

ABSTRACT

This paper summarizes the recent work of the authors in the numerical simulation of casting processes.
In particular, a coupled thermomechanical model to simulate the solidification problem in casting has been
developed [78.9) The model, based on a general isotropic thermoelasto-plasticity theory and formulated
in a2 macroscopical point of view, includes generalized phase-change effccts and considers the different
thermomechanical behaviour of the solidifying material during its evolution from liquid to solid. For
this purpose, a phase-change variable, plastic evolution equations and a temperature-dependent material
constitutive law have been defined. Some relevant aspects of this model are presented here.

Full thermomechanical coupling terms have been considered as well as variable thermal and mechanical
boundary conditions: the first are due to 2ir gap formation, while the second involve a contact formulation.

Particular details concerning the numerical implementation of this model are also mentioned. An
enhanced staggered scheme, used to solve the highly non-linear fully coupled finite element equations, is
proposed. Furthermore, 2 proper convergence criterion to stop the iteration process is adopted and, although
the guadratic convergence of Newton-Rapshon’s method is not achieved, several numerical experiments
demonstrate reasonable convergence rates (9],

Finally, an experimental cylindrical casting test problem, including phase-change phenomena, temperature-
dependent constitutive properties and contact effects, is analyzed. Numerical results are compared with some
laboratory measurements.

1. INTRODUCTION.

The full thermomechanical behaviour of bodies with thermal and mechanical temperature-
dependent material properiies that change their temperature during a certain process is of great
practical importance in many engineering situations. In particular, a major consideration is the
formation of cracks due to induced thermal stress field in casting processes. Although an analytical
investigation into thermal stress development has been attempted by many researchers [3~8l it has
been long recognized that the use of numerical methods of solution are necessary to consider realistic
complex problems.

For this purpose, thermomechanical formulations with internal variables governed by rate equations
(that can nowadays be considered well established (1]}, theoretical extensions, implementations into
computer programs and numerical analyses have been also carried out by many researchers (i.e. see
{3 — 6]). Some of these models have been used to simulate solidification processes (see {4 — 6] and
references therein). Nevertheless, the problem has many complex aspects that are usually difficult to
deal with:

- the equilibrium and energy equations are coupled. Consequently, a robust and efficient numerical
strategy is crucial for solving the highly non-linear finite element equations,

- a constitutive model which can represent the liquid, mushy and solid phases is necessary for the
casting,

- different kind of materials are usually involved in solidification processes,
Article published online by EDP_Sciences and available at http:/dx.doi.org/10.1051/jp4: 19937182
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- thermal and mechanrical variable boundary conditions must be taken into account. This fact implies
the consideration of 2 pressure/gap-dependent convection-radiation model and a contact-friction
formulation, respectively,

- latent heat effects introduces oscillations in the algorithms,
- an accurate residual stress evaluation has to be performed,
- microscopical effects may be considered.

A general thermoelasto-plastic model taking into account many of previous aspects has been
presented in References {7,8]. In this paper, important details of this model and some hypothesis
assumed in its formulation are discussed in Section 2. Furthermore, a thermomechanical contact model
(that includes a gap-dependent convection-radiation model and a mechanical contact formulation), is
also considered. A complete description of this last model can be found in Reference [9]. As a first
approach to the problem, friction effects will be neglected in the present work.

Although the weak form and the finite element formulation of this model is derived in
Reference [9] (where special attention is devoted to “non-classical” terms containing phase-change,
thermomechanical coupling and contact effects), the numerical strategy used to solve the non-linear
system of equations is presented in Section 3.

Finally, in Section 4, an experimental cylindrical casting test problem is analyzed and numerical
results are contrasted with some laboratory measurements.

2. THERMOELASTO-PLASTIC MODEL.
a) Basic definitions.

Let some open bounded domains & C R ™™ (1 < ngim < 3 and i = 1,..,7404) be the
reference (initial) configurations of some ny,4, continuum thermoelasto-plastic bodies B; (that may
thermomechanically interact between themselves) with material coordinates labeled by =z € ; (all
of them measured with respect to the same reference coordinate system), I'; = 8; their smooth
boundaries respectively, and T C IR* be the time interval of analysis (¢ € T). In the context of
rate-independent plasticity theory, considering that oy : ©; x T — IR™"* is the n;,,~dimensional
(k = 1, ..., Rnt; Minz > 1) vector field of phenomenological internal state variables {can be scalars or
tensors) and g, : @ X T — IR™"* are the conjugate variables of ai, the thermoplastic behaviour
of the solid is governed by a state function F(q.} : IR ™t — IR, called the yield function (assumed
strictly convex and, for simplicity, defined in terms of a unique smooth function) such that no plastic
evolutions occurs when F < 0 ). Therefore, the thermoelastic admissible domain (also assumed
convex) IE* is defined as [

B = {qu € R | Pla) < o} , (2.1.2)
and the thermoplastic one is:
IE"I’ = {ql; C IR ™ine | F(qk) = 0} = JIE*". (2.1.6)

Further, the assumption of the principle of maximum plastic dissipation leads to an associate
constitutive model characterized by the following plastic evolution equations [:

aF .
dkz—F/\ inQxY, (2.2)
aq;.

together with the load-unload Kuhn-Tucker conditions and the Prager’s consistency condition . I
equation {2.2), X is the plastic consistency parameter [,



In particular, one possible option for equation (2.2) is to choose (a; = €, 2 = C?, a3 = #7), where
€ : Q; x T — IR ®¢m x IR "¢im s the plastic strain second-rank tensor, C? : ; x T — IR is the plastic
hardenirig function and 7 : ©; x T — IR is the plastic entropy, with evolution equations [3:

a=9L 5 inxT, (2.3)
o

P = oF A in QxT, (2.4)
Oqc»

. aF . .

n?_—é—T—,\ nxT, (2.5)

where o (Cauchy stress tensor), g¢» and 7" (temperature) are the conjugate variables of €7, C? and 7?,
respectively. The yield function is written in this case as F(a,gcs, T} : (IR "¢ xR =) x IR x IRt —
IR, with IE*® and IE? defined as in equations (2.1).

Nevertheless, a more simpler model takes place if the evolution equation for C? is assumed to be
defined in terms of & as (78]

C? = Her /‘\ inxT, (2.6)

where Her(T) = her(T) o : R is the plastic hardening coefficient, her(T) is the plastic hardening
modulus and R = ‘3—5 is the flow potential. Consequently, F is redefined once more as F(o,C?,T) :
(IR "¢im x IR "¢~} x R x Rt — IR, with:

E = {(.,,cr', T) € (R "~ x R "¢~} x R x R* | F(o,C", T) < o} , (2.7.3)

IE”? = {(o’, e\ Tye (R™ x R} xR x R* | F(o,,T) = 0} = JIE™. (2.7.b)

b) Specific free energy function.

Considering that €, €, C”, 7? and T are assumed to be the thermodynamic state variables which
determine the specific free energy function ¢¥(e,€”,C?, 7?, T) € R {7:8) and restricting the analysis to
the case of thermoelasto-plastic isotropic response, the function ¥ is formulated as:

Y= Ple— e\ T)+ 9p(C, P, T) + ¥pe(T) in Uux T, (2.8)
where 1z, P:p and P, are the thermoelastic, thermoplastic and phase-change parts of ¢, respectively.

1t should be noted that equation (2.8) is a decoupled form of defining the specific free energy . The
thermoelastic part 1. is written as:

e =Duele = €\ T) = o= ) s @ s (e =) = — "1 (e= YT~ T)+

T
+1o — 70 (T—-To)+ido:(e—e”)+c’ (T—-Tp)~c* TI"‘]T nxT, (2.9)
Po

o
the thermoplastic part is:

Yip = Pip(CP, P T) = 9, (CP) =T 0" in U x T, (2.10)

and the phase-change part is:

T
d’pc = 12:'711:(,1-') = “‘/ A,,C(G) daé n Q,‘ x 7. (2.11)
T

o
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The subscript o denotes the initial state of the different variables and the superscript s indicates
secant thermomechanical properties. g is the density, 7 is the entropy, ¢ is the specific heat capacity,
@ is the elastic tangent constitutive fourth-rank (isothermal) tensor and B is the tangent conjugate
of thermal dilatation second-rank tensor. Further, ¥, is the purely plastic part of 3 (assumed known)

and A, (T) = a—ff—‘ﬁ'—)- 29 {8 is 2 dammy variable).
P

With the present definition of ¢ the secant and tangent constitutive laws, the entropy function, the
specific heat capacity and the thermoplastic coupling term can be derived. Details of such derivations
can be found in Reference [9].

c) Constitutive tensor.

During solidification, the material in liquid state becomes solid, which means that a qualitative
change in its thermomechanical properties is produced. Therefore, it is necessary to take this fact into
account in the constitutive tensor written as,

€= d:nol +pT(T) d:dcn s (2.12)

where @,q and €, are the volumetric and deviatoric parts of € respectively, and pr € [0,1) is
the "phase-change” variable.

With this definition of @, both the classic constitutive law of a liquid in rest (o' = 0, i.e. o results
the hydrostatic stress tensor), and that corresponding to a solid can be represented.

d) Yield function.

The Von Mises temperature-dependent yield function has been adopted,
Flo, ", TY=+/3J2-C, (2.13)

where J» = L o' : o' is the second invariant of the deviatoric stress tensor ¢’ and C: Q2; x T - R is
the total hardenmg function defined by:

e, Ty =CcH(T)+ v, (2.14)
where C**(T) : Q; x T — IR* is the thermal hardening function {also assumed to be smooth function

of T') related to the cohesion of the material (even in the liquid phase).

It should be noted that B = —3{;—- o' is indeterminate when o' = 0. However, as C** > 0, it can be
observed that F < 0 for this particular sitnation. Therefore, a purely elastic behaviour of the material
(A = 8) is considered for this case.

h) Specific heat capacity.
In phase-change problems, the following general definition is adopted for ¢ 19},
*p o 85dT)

ar? L aT

c=-T n; x T, (2.15)
where w : Q; x T — IR is the specific internal energy, L is the latent heat released in a freezing problem
(or absorbed in a melting one) and f, is the "phase-change” function. In an isothermal phase-change
problem f,. = H(T — Ty}, with T, being the melting temperature and H the Heaviside function.
When the phase-change occurs in a range of temperatures (T} — T, ), where T, and Tj are the solidus
and liquidus temperature respectively, f.. = f such that,



0 VI < T,
flT) = {0<g(T)<1 T, EVT LT (2.16)
1 VT > 1.

The function g(T) may be obtained using a microstructure model. However, from a macroscopical
point of view assumed in this paper, the simplest choice for g(T') is the linear one o},

It should be noted that the classical definition of ¢ [ is recovered in those regions where the
temperature derivative of f,. is zero. Equation (2.15) describes the generalized phase-change problem.

A further generalization takes place when two or more phase-changes (n,c > 2) can occur. For this
case, the term L afT‘ must be replaced by 3727 L; 8f’° —7+ (Lj and fy; are the latent heat and
phase-change function associated with the j-th phase—change, respectxvely) in equation (2.15).

As mentioned above, considering the present definition of 3 given in Section 2.b, the expression of
¢ can be derived (.

3. SOLUTION STRATEGY: STAGGERED SCHEME.

Details of the weak form and finite element formulation of this model can be found in Reference
{9]. The numerical solution at time t + At of the resulting finite element coupled thermo-mechanical
equations (the solution is assumed known at time t) has been attempted via a staggered scheme of

type: . . . .
(e e O N (- (i v B
jir—lic . = -1, g
0 ¢+A:J¥‘T ATITis ¢+AtR]TT jc

t+Atriv.g Atyriv—1. ju.g N
+. pgiv-ic — i+ giv JG+ Alivie 30__.1’"_,.&“5‘_”

t+atp0de+l _ t+Atpriv.e

jG =0,.., Niterg (3.2.3)
i re1g L .
t+AtTJ'r.JG - t+AtTJT ]G + ATJT'JG jr = 1’ vy Ritery

‘+A‘T°'j°+1 = 2+A’-T:fr.ja

t+AtU0.0 = tU

(3.2.p)
t+ALp0.0 _ tpn

where jy, j7 and jg are the ieration indexes of the mechanical, thermal and thermomechanical
problems, respectively. Further, the matrix notation is the following: Jyy: mechanical jacobian
matrix, Jrr: thermal jacebian matrix, U: nodal displacement vector, T: nodal temperature vector,
Ry: mechanical residual vector (equilibrium equation), Ry: thermal residual vector (energy equation)
and A indicates incremental values of the different variables.

The main features of this staggered scheme are:
- AU and AT are computed separately,

- a proper interchange of variables between both subsystems is performed in order to calculate
the coupling terms and the thermomechanical variable boundary conditions: Iry = [T] and
Iyr = le, €, gu] (9. being the normal gap existing between two bodies [9) are the thermal-
mechanical and mechanical-thermal interchanges, respectively.
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In particular, when Ity only exists, the problem is said to be thermally unidirectional coupled
(TUC).  For this case, it should be noted that n;.,., = 1 and Ity contains converged temperature
values.

When both interchanges Iy and Iyt exist, the problem is bidirectional coupled (BC). Within this
dlass of solution strategy, different schemes can be proposed (9. Specifically, the so called Iterative-
Converged-Consecutive strategy (It-Co-Ce) has been tested and used in different problems ). Ir
basically consists in performing the interchanges Izy and Iyr (both containing "locally” converged
values) iteratively at the same time step in a consecutive form: the thermal problem (energy equation)
is solved first followed by the mechanical one (equilibrium equation). This is the usual form used in
the numerical simulation of solidification problems %9, It should be noted that the global™
thermomechanical iteration index jg varies when both interchanges are performed.

As mentioned above, severe non-linearities exist in this coupled problem. Therefore, a proper
convergence criterion for stopping the iteration process of each problem has to be used [°]. The coupled
thermomechanical problem is converged (global convergence) when local convergence is achieved for
both (mechanical and thermal) problems [°1.

The quadratic convergence of Newton-Raphson’s method is obviously lost. Nevertheless, it should
be noted that the right hand side contains an “exact” (within the numerical frame) evaluation of
the thermal and mechanical residuals. Finally, numerical results show good convergence rates and
reasonable number of iterations ().

4. NUMERICAL EXAMPLE: SOLIDIFICATION TEST.

The cylindrical casting of Nishida et al. (% has been analyzed. The experiment consisted of casting
commercial purity aluminium into an instrumented steel mould. The casting and the mould are
assumed to be initially at 670 °C and 200 °C, respectively. Thermocouples as well as two quartz rods
were placed in the monld wail and in the mould cavity in order to measure temperature and radial
displacement cvolutions, respectively (see Figure 1). Geometrical data and thermocouple locations
can be found in Figure 2.

A horizontal slice at the midheight of the mould has been chosen for numerical -analysis. Four-
noded axisymmetric elements were used in the computations. The temperature-dependent thermal
and mechanical properties of aluminium can be found in Reference [5]. The steel is assumed to have
constant thermal and mechanical properties 5], The convection-radiation coefficient of the metal-
mould interface is gap-dependent, while the contact properties between aluminium and steel can be
also found in Reference [9]. It should be noted that, for simplicity, a frictionless condition has been
considered.

As mentioned in Section 3, the system (3.1) has been solved using the BC-(It-Co-Ce) numerical
strategy with a time step of 5 s. In addition to the features already commented (see Section 3),
this fact implies that the energy equation has been solved considering the coupling thermomechanical
terms and taking into account the changes in the thermal boundary conditions due to the radial
displacements of the specimen.

The temperature evolutions at different points of the mesh are plotted in Figure 3 and 4. It is
interesting to note the good agreement between the numerical results and the experimental ones.

In the solution of the mechanical problem, the bulk and shear moduli in the liquid has been
computed using the elastic properties at the appropriate temperature. Considering that the shear
modulus (computed using the tabulated material properties) in the surroundings of the melting point
has a great value (it is evident that experimental data near the melting temperature is still lacking}.
the phase-change variable has been assumed to be:

1 ;¥ T < 600.0 °C
pr(T) = {12¢2(T)>0 ;600.0°C <V T <660.0°C (4.1}
0 Y T > 660.0 °C,
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where gr is a smooth cubic function of T' with zero slope for T' = 600.0 °C and T = 660.0 °C. Using
this definition of pr and the mentioned material properties, the shear modulus increases in a smooth
form (over a temperature range of 60 °C) in the material evolution from liquid to solid.

Figure 5 shows the radial displacement evolution of the mould-metal interface. Similarly, Figure 6
plots the same evolution for a point situated in the mould 1 mm from the inner surface. The progressive
change in contact conditions, causing the convection-radiation coefficient to decrease significantly, can
clearly be noted.

CONCLUSIONS.

Some important aspects of a thermomechanical constitutive model to simulate the solidification
problem in casting has been presented. The model takes into account the different states of the
solidifying material by introducing a new phase change variable, some internal plastic variables and a
temperature-dependent constitutive law. Besides, full thermomechanical coupling terms and variable
mechanical and thermal boundary conditions have been considered.

The model has been implemented into a finite element code. An enhanced staggered scheme has
been proposed and used in order to solve the highly non-linear fully coupled finite element equations.
Finally, the numerical example analyzed shows the robustness of the approach.
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