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General formalism for excitonic absorption edges in confined systems 
with arbitrary dimensionality 

P. LEFEBVRE, l? CHRISTOL and H. MATHIEU 

Groupe d'Etudes des Semiconducteurs, CNRS, Universitk Montpellier I& Case coum'er 074, 
34095 Montpellier cedex 5, France 

A metric space with a noninteger dimension a (1 < a) is used to describe bound and unbound 
states of strongly anisotropic Wannier-Mott excitons, such as those confined in semiconductor 
superlattices, quantum wells and quantum-well wires. Indeed, the relative motion of the electron- 
hole pair which constitutes such excitons can never be considered strictly ID, 2D or 3D. We cal- 
culatk the optical absorption spectrum, near a Van Hove singularity, for any arbitrary value of the 
dimensionality a. The whole absorption spectrum is obtained from a single compact equation, 
much simpler than the existing models. This model is an exact generalisation of the calculations 
performed, in the effective-mass approximation, for allowed transitions, by Elliott [Phys. Rev. 
108, 1384 (1957)], in the 3-dimensional case, and by Shinada and Sugano [J. Phys. Soc. Japan 21, 
193 6 (1 966)], for 2-dimensional media. 

Metric spaces with noninteger dimensions are extensively used in mathematics, but have received quite a 
poor interest from physicists. However, the geometrical anisotropy of given interaction within a given me- 
dium can be faced [1,2] quite conveniently by involving a fractional-dimensional interaction space. Then, a 
single noninteger parameter -the dimensionality a- is sufficient to describe the degree of anisotropy. For 
instance, Stillinger [I] gave a generalisation of Schrodinger wave mechanics to a-dimensional (aD) 
spaces, and Xing-Fei He [2] applied it to interband optical transitions and bound excitons in strongly ani- 
sotropic semiconductors. In this paper, we apply a fractional-dimensional model to the calculation of the 
absorption spectrum due to Wannier-Mott excitons in quantum wells, superlattices, or quantum wires. Our 
approach constitutes an accurate and handy method for simulating and optimizing the properties of fUture 
electro-optical and all-optical devices, based on confined excitons. 

Absorption spectra due to bound and unbound states of 3D and 2D excitons have been respectively calcu- 
lated by Elliott [3] and by Shinada and Sugano [4]. However, the internal relative motion of the electron- 
hole pair in realistic heterostructures is never perfectly ID, 2D or 3D, as one can easily judge from the en- 
ergy of the ground (1s) state [2,5]. Altogether, the existing models need quite complicated numerical cal- 
culations : the energies and amplitudes of the discrete absorption peaks due to bound states are computed 
by variational models. For quasi-2D structures, the shape of the absorption due to the continuum of un- 
bound states is estimated from the bidimensional model of Ref. 4. For quantum wires, the authors of Ref. 6 
have calculated the Somrnerfeld factor for the continuum in strictly 1D Coulomb systems, for which they 
avoided the well-known divergence [7] by altering the shape of the potential. 

In fact, the Coulomb interaction between electrons and holes near a Van Hove singularity can be described 
by a single dimensionality parameter a > 1 [2, 8,9]. In type-I systems, a can take any value between 2 and 
3 for quantum wells and superlattices, and between 1 and 3 for quantum wires. In type-I1 systems, the 
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Coulomb interaction might exhibit an effective dimension larger than 3 .  The fractional-dimensional ap- 
proach provides accurate and very simple expressions for the various physical characteristics, versus a .  
Given an anisotropic system, there are several ways to determine a .  For instance, the energy of the ground 
state may be calculated by a variational method and injected into Eq. 2 (see below), directly yielding the 
value of a. All the properties of the anisotropic exciton can be deduced from this single parameter. Other 
methods [8,9] allow to estimate a priori a from the physical characteristics of the structures. a is just a 
phenomenological parameter, from which we compute the entire optical density spectrum, near a critical 
point. We shall only give here the few equations necessary for this calculation. 

Stillinger [l] has given the expressions for the Laplace operator, the angular-momentum L2 and the inte- 
gration measure for a space of dimension a. Taking the zero of energy as the band-gap at the singularity of 
interest, the Hamiltonian equation is restricted to the vicinity of this point by the standard envelope func- 
tion formalism. Then the electron-hole relative motion is given by the so-called effective-mass equation 
(Wannier equation) which writes, in the aD space [1,2] : 

ti2 I a e2 1 - - - -- - 
2 p  ra-1 at- 4nsr 2pr2 sin"-28 @ de ' ( ~ i ~ a - 2 8 $ ) ] ~ ( ~ , 8 )  = E . a ( r , e )  (I), 

1 
where p = (mZ1 + mi1)- is the reduced mass of the electron-hole pair, while r and 8 represent the OD 

polar pseudo-coordinates. The total envelope function is factorised into by two independent radial and an 
angular contributions, by writing yl(r,8) = R(r).0(8), where 0(8) represents an eigen function of L2 
with eigenvalue C(! + a  - 2). In turn, Eq. 1 is then divided into two uncoupled equations. The normalised 

solutions of the angular equation are proportional to Gegenbauer polynomials ~ ~ ' ~ - ~ ( c o s 8 ) ,  which are 

equivalent to Legendre polynomials for a = 3, and to Chebyshev polynomials for a = 2 [1,2]. Concerning 
the radial part of the wave function, both cases of bound (E < 0) and unbound states (E > 0) must be con- 
sidered. For bound states, the square-integrability of the wave function leads to quantized states deter- 
mined by the integer quantum numbers n and C. Their energies are given by the following equation : 

where Ry is the effective Rydberg energy of the 3D exciton. The normalised eigehnctions R,,! (r) are 

proportional to re. e-knr.L~~>"_;*(2kd) [1,2], where L: (x) are Laguerre polynomials , ag is the effec- 

tive Bohr radius of the 3D exciton, and the wave number k, = [(n + ( a  - 1)/2)aB]-l. For states in the 

continuum, there is no special condition for r + co, so that there is no quantization of the energy into lev- 
els. Introducing the quantum number K, such that ~2 = 2pE / @ ,  and the dimensionless parameter 

y = (Ry/~)ll', the solutions are given by : 

T(x) is Euler's Gamma function. M(a,b,x) is Kurnrner's function, solution of the hypergeometric equation 
x u"(x) + (b-x) ul(x) - a u(x) = 0. The other terms are not determined by a normalisation condition, but 
rather by a choice of an asymptotic form for RK,e (r), by a similar method as that explained in Ref. 4. 

The optical density of a structure is simply the logarithmic attenuation of the intensity of light across 
the whole sample. It involves the effective thickness LC of the medium, i.e. its real thickness multiplied by a 
quality factor which is the electron-hole envelope-function overlap integral. LC is the total length of the 
sample for bulk (3D) materials. In quantum wells, LC is the well width for infinite potential wells, and a bit 
smaller than the well width for realistic structures with finite potential wells. In quantum wires, LC is pro- 
portionnal to the square root of the effective cross sectional area of the wire. According to Elliott 171, the 
intensity of the absorption is proportional to the probability for finding the electron and the hole at the 



same place. Nonvanishing values only occur for ! = 0, i.e. for s-states (see above). If no broadening is as- 
sumed, the absorption by bound states is made of Dirac distributions centered on the energies of Eq. 2, 
while the absorption above the band-gap is proportional to the product of the oscillator strength by the a D  
conduction-to-valence joint density of states. The latter was given in Ref 2. Detailed calculations will be 
published elsewhere [lo]. We thus come directly to the result, i.e. the total optical density O(Ao) for an 
aD medium. We obtain a generalisation of Elliott's formula : 

2 
a, 

Ry T ( n + a - 2 )  ( i )  e*l y2-a 
6(Ao - E,) + 

a-3 2a  +'-a12 r (a/2) 
Y(AO (4). 

(n - I)! (n + -)a+1 2 I 
Y(x) represents the Heavyside step function and 

0, = Pa-q m id, 12[r(u / 2 ) p ~ ( ( a  - 1)/2) / n(p3)/2 n~ c ~y a;; LZ-' [T(a  - 1)13 (9, 
I " " I r " '  where o is the angular frequency of the 

incident light, ng the background refrac- 
tive index, c the velocity of light and 

= l<~ldlv>1~ the conduction-to-va- 
lence squared matrix element of the elec- 
tric dipole moment, at the considered 
critical point. The first term, at the right- 

- - - - - - - - - - hand side of Eq. 4 gives the absorption 
by bound excitonic states. For n + m, 
the quantized levels tend to constitute a 
quasi-continuum, whose pseudo-density 
of states, varying like [n + (a-3) / 213 

a =I .75 can be easily derived from Eq. 2. The 
fast decreasing of the oscillator strengths 

-1 0 -!j 0 5 is then exactly compensated by this den- 
ENERGY (Rydberg) sity, so that a finite value of the optical 

FIG. I : Calculated optical density spectra for several values density is reached, In fact, this first 
of the effective dimensionality of the Coulomb interaction. is the well-known factor which falls like 
n e s e  values correspond to the following ideal cases : a = 3 .-3 for a = [31, and like (n - 1/2)-3 for 
to a bulk material, a = 2.5 to a I.4 aB-wide type I quantum a = [41. well or a cylindrical quantum wire, with a diameter of 3.5 ag, The second in the right-hand side 
a = 2 is either a vanishingly thin quantum well or a wire with of E ~ ,  4, accounts for the absorption by 
a diameter of I a ~ ,  and a = 1.75 is reached by a wire of di- diffusion states, above the bandqgap 
ameter 0.4 ag. ag is the effective Bohr radius of the 3 0  exci- edge, very high energies, i.e. for + 

ton. 0, this variation tends to behave like the 
aD joint density of states [2], which 

corresponds to the asymptotic case of an uncorrelated electron-hole pair. For integer values of a, Eq. 4 
2 yields well-established results : 03(y)  = 2nm Id,/ ~ ~ e ~ / n ~ c  a; Ry sinh ny, which behaves like E@ at 

large E, and O2 (y ) = 2rr m (d, f e*l / n e  c a; Ry cosh ny , which tends towards a constant. At the band- 

gap edge, i.e. for y + w, the continuous spectrum smoothly joins the quasi-continuous one. 
In practical cases, for any dimension larger than 1, the optical density of Eq. 4 is convoluted with a 
Lorentzian broadening function, to account for the finite lifetime of excitons. Fig. 1 displays examples of 
excitonic absorption onsets, for different dimensionalities corresponding respectively to the fundamental 
gaps in some ideal type I cases, detailed in the caption. The band-gap energy was taken as zero, to facili- 
tate the comparison between all situations. We remark that spectra with the same general shape can corre- 
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spond to either quantum wells or quantum wires, since these structures are characterized by the only di- 
mensionality parameter. We also notice that our formalism could as well be used to treat quasi-1D absorp- 
tion onsets of excitons in bulk materials under magnetic field [7]. 
Our model may also be suitable for treating type I1 systems, for which the binding energy can be smaller 
than 1 Ry. This indeed corresponds to values of a larger than 3, which have no reason to be discarded. In 
fact there are several clues in favor of this suggestion. First, the authors of Ref. 11 have evidenced a re- 
markable law stating that, for instance, the 3D 2p-state and the 5D ls-state obey exactly the same radial 
equation. Both are therefore energetically 
equivalent. Now it is timeless that the limit 

I " . ' I .  

case for perfect type I1 structures (infinite , - Broadening parameter : - 
tn - 

barrier between two semi-infinite media) is - 
quite close to a 2p,-like state, which 3 - 
strictly corresponds to a surface-donnor -# 1 
ground state [12]. Moreover, it is well- - - 
known [5] that the interband absorption - 
onset, in an ideal type I1 system, roughly 2 
varies like ~ 3 1 2 .  This is exactly the shape - 
of the 5-dimensional joint-density of states 
of Ref. 2. Thus, as shown in Fig. 2, we 
suggest that the optical density spectra for 
type I1 excitons could be modelled by 
setting a > 3. Experiments on high- 
quality samples should allow us to check -5 0 5 
the proposed lineshapes. ENERGY (Ry) 
The model presented constitutes a FIG. 2 : Several absorption spectra for dimensionalities 
powerful tool for simulating the so-called larger than 3. Such lineshapes should correspond to type I1 
absorption spectrum of any kind of quantum wells or superlattices or to any case where the 
realistic microstructure [lo], whatever its usual Coulomb binding is weakened 
basic configuration (type I or type 11). It 
should also be particularly useful for simulating the effects of any kind of modulation on such spectrum. 
The only condition is that the modulated conduction and valence states and the corresponding binding en- 
ergies of ground-state excitons are previously known. 
To summarize, we may state that the concept of fiactional-dimensional spaces is not a simple mathematical 
peculiarity. It can be applied to many physical systems, and may even exhibit many practical advantages, 
like in the case of anisotropic interactions. We have shown that using such a concept aUows quite nice and 
compact formulations for the optical density spectra due to Wannier-Mott excitons in quantum wells, su- 
perlattices or quantum wires. This is of major interest for conceiving and optimizing future electro-optical 
or all-optical devices. 
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