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Calculation of exchange energy in quantum dots: application to porous 
silicon 

G. FISHMAN, R. ROMESTAIN and J.C. VIAL 

Laboratoire de Spectrornktrie Physique, Universitt? .I Fouriec Grenoble I, BP 87, 38402 St Martin d'Hkres 
cedex, France 

ABSTRACT: We present a variational calculation of the envelope 
wave function of an exciton inside a cube, in the effective mass 
approximation, with one parameter which plays the part of a Bohr 
radius. This geometry allows one to reduce the sixfold integrals 
to threefold integrals which shortens tremendously computer 
calculations. This wave function is used to obtain the exchange 
energy and the oscillator strength. The limiting cases (large or 
small cubes) are recovered. We show that recent experimental 
results in porous silicon can be explained without further 
hypothesis. 

In a quantum dot it is well known that the hamiltonian describing 
an exciton, i.e. an electron-hole pair correlated by the Coulomb 
interaction, has no analytical solution[l]. As a consequence it is 
necessary to look for approximate solutions. Inside the effective mass 
approximation framework, which we use in the present paper, it is 
possible either to develop the (envelope) wave function on a 
appropriate basis[2] or to use a trial function[3]. Here we shall 
adopt this last approach. To simplify the calculation as much as 
possible we describe the electron of the conduction band and the hole 
of the valence band by a average mass m, and an average mass mh 
respectively. Furthermore we assume infinite potential barriers, which 
is not a bad approximation for the case of porous silicon which will 
be considered more specifically later. 

1I.WAVE FUNCTION 

In the quantum dot the hamiltonian is (with standard notations): 

We are looking for the ground state of this hamiltonian and we 
will condider the case of a cubic quantum dot as this is easier to 
solve for than a sphere. Inside a cube of side 24 we will use the 
function (q = T / 2Q ) :  

&(r) = cos qx cos qy cos qz (2) 

and the normalized wave function 
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The trial wave function for the exciton in the cube is then: 

where a plays the part of an effective Bohr radius. We have to 
minimize : 

The results are given Fig.1. 
If Q/ax is very large, a/ax tends 
to one as expected (ax is the Bohr 2.0 

radius of the 1s bulk exciton). The 
limit is less obvious when Q/ax is 
very small: in this case the limit 
of a/ax is equal to 1.97 while in a 
sphere [4] the limit is equal to 
2.01 : this indicates the small 
importance of the shape of the 
quantum dot. 

Fig.  1 E f f e c t i v e  Bohr rad ius  a  o f  an 1.0 
exc i ton  i n  a cube o f  h a l f - s i d e  Q .  0 2 4 6 8 1 0  
The l e n g t h  u n i t  i s  ax, t h e  Bohr 
rad ius  o f  t h e  1s bulk  e x c i t o n .  Q/ax 

This leads to a normalized wave function: 

where 

All the integrals are analogous to that of Eq.7. (Details of 
caculation will be published elsewhere. ) In a cube the limits of the 
integral are independent so that we have to calculate integrals of the 
shape : 

We put: u = 6, - Eh and v = 6, + Eh SO that two lines of algebra 
show the twofold integral. is equal to the simple integral: 

3 
[(a - U) C O S ~ U  + 2(a-U) + - sin~u] f (u) } 

2 

Thus the sixfold integrals are reduced to threefold integrals. It 
is worth to note that this transformation is equally possible in case 
of a parallelepiped. 

The difference between the description by an exciton @~,c(r,,r~) 
and by an uncorrelated electron-hole pair P,h.C(re,rh) where 

is usefully described by the correlation energy 



Eoo,/Ex,l, is given in Fig.2; 
Ex. X, is the binding energy of the 1 .o 
1s bulk exciton. Although, in the 
limit Q/ax = 0, Gx.= tends to 
!P-h,cI Eoor does not tend to zero 
but to 0.251 Ex,=,. Again this 
points out the slight difference 8 0.5 
between the cube and the sphere ~1 
where this limit is equal to 0.248 
Ex.~s[4]. 

Fig .2  C o r r e l a t i o n  energy v e r s u s  the 
h a l f - s i d e  o f  the cube. The  energy 
u n i t  i s  the b i n d i n g  energy o f  the 0 10 
1s b u l k  exciton. ax i s  the same a s  
i n  Fig .1 .  

3.EXCHANGE ENERGY AND OSCILLATOR STRENGTH 

We are now in position to calculate the exchange energy[ 5 3 .  For 
an uncorrelated electron hole pair the exchange energy is: 

where Ex is the exchange energy of the 1s bulk exciton. Now 

In a cube the exchange energy of an exciton is: 

E = J d3r PX,=(rIr) I 7rax3 EX 

Finally we obtain: 

The ratio E/Eerh is plotted in Fig.3 and allows one to know the 
exchange energy E for an exciton for any value of Q/ax. This ratio can 
be also be written as: 

It is straightforward to 
verify that i) if Q/ax tends to I o4 
zero, E tends to Eeh and ii) if a 
Q/ax tends to infinite, E tends to 
Ex. This is what we expect. 

a 
Fig .3  V e r t i c a l  a x i s :  r a t i o  o f  the C 
exchange  e n e r g y  E o f  an e x c i t o n  t o  0 l o 2  
the exchange  e n e r g y  Eeh,= o f  an  
u n c o r r e l a t e d  e l e c t r o n - h o l e  p a i r  i n  l.u 
a cube  o f  h a l f - s i d e  Q. H o r i z o n t a l  1 o1 
a x i s :  r a t i o  o f  h a l f - s i d e  Q t o  ax, 
the Bohr r a d i u s  o f  the 1s b u l k  
e x c i t o n .  The  v e r t i c a l  a x i s  g i v e s  1 o0 
a l s o  the e n v e l o p  f u n c t i o n  dependent  0 10 20 30 
p a r t  o f  the b s c i l l a t o r  s t r e n g t h  
(see t e x t ) .  
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Incidently we can note that the envelope function dependent part 
Fo of the oscillator strength[6], i.e.: 

is equal to Q6/N SO that the Fig.3 gives also Fo. 

4.POROUS SILICON 

We can now use the above results to explain recent experimental 
results in porous silicon[7,8]. For a luminescence energyo equal to 
1.77 eV, which corresponds roughly to a crystallite of 25 A [9], the 
exchange energy is equal to 10 meV. In Ref.7 this result was 
interpreted as being the excha~ge energy of uncorrelated electron-hole 
pair, which leads to 24 = 24 A (see Eq. 12 and 13) ,using known values 
ax = 43 A [ 10 ] and Ex = 0.15 meV [ 11 ] . Now we can comment on whether 
this approximation is jus:ified or not. Using the results given in 
Fig.3, we obtain 2Q = 26 A. (A discussion on the validity of all the 
values given here s postponed in a further publication). This shows 
that, in this particular case, a description of the exciton as an 
uncorrelated electron-hole pair is well justified. 

We have shown that it is more simple to study the exciton inside 
a cube than inside a sphere, at least from the viewpoint of the 
unavoidable numerical calculation. We have pointed out the 
similarities (exchange energy, oscillator strength) and the 
differences (correlation energy) between an exciton and an 
uncorrelated electron hole-pair in very small crystallites. Finally we 
have applied our calculation to porous silicon and confirmed that the 
measured splittings can be due to exchange energy. 
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