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EXPERIMENTAL AND THEORETICALSTUDY OF ELASTIC WAVE DISPERSION IN A LIQUID BILAYER 

J. LAPERRE and W. THYS 
Kotholieke Universiteit Leuven Campus Kortrijk, Interdisciplina?y Research Centec B-8500 Kortrijk, 
Belgium 

Abstract In this paper we analyse the dispersion of the normal propagation modes of a liquid 
bilayer in terms of the dispersion in the constituent layers with the proper boundary conditions. 
The analysis is done in the framework of an acoustic raymodel which leads to a transparent 
form of the dispersion relation. Although a liquid bilayer is of no direct practical use, the data 
analysis will prove to be of great help when studying solid multilayers. 

Rttsumtt Dans cet article nous analysons la dispersion des modes de Lamb d'une bicouche 
liquide, en partant des modes des monocouches isol6es avec les conditions de bord adapt6es. 
L'analyse est faite A l'aide d'un modele A rayon, ce qui permet d'kcrire la relation de dispersion 
dans une forme simple et transparente. Les conclusions et la fason d'analyser seront utiles pour 
comprendre la dispersion dans des multicouches solides. 

1 Introduction 

This paper is the first in a series on the dispersion of elastic waves in multilayers. Although a liquid bilayer 
is of no direct practical use, the fact that it is simple especially that there is no mode conversion, will allow 
us to understand as much as possible about the normal propagation modes. The data analysis developed 
for a liquid bilayer, will prove to be of great help when studying solid multilayers. 

2 Dispersion relation of a liquid bilayer 

The dispersion relation of a plate or a multilayer determines the normal propagation modes of the elastic 
system surrounded by air. More specifically, it determines the wavenumber of the free waves which can 
propagate unattenuated and without external excitation in the plate or the multilayer. The standard 
procedure [I] for obtaining the dispersion relation in a multilayer is rather mathematical and it does not 
provide much physical insight. 

Inspired by the ray analysis in optics [2] [3] [4], we developed [5] an acoustic raymodel based on the 
interpretation of normal mode propagation in a multilayer as a wave guide phenomenon. The dispersion 
relation is obtained by requiring: 

that in order to fulfill the condition of translation invariance, the acoustic waves traveling in the guiding 
layer, are totally reflected on the boundaries; 

that the totally reflected waves form a self-sustaining traveling interference system. 

Using these conditions, we construct and analyse in this paragraph, the dispersion relation of a liquid bilayer. 
It consists of two plane liquid layers (labeled 1 and 2) on top of each other, and surrounded by air. The 

layers have a thickness 2dl and 2dz, and a density pl and pz respectively (see figure 1). We assume that 
the longitudinal sound velocity vl is smaller in layer 1 than in layer 2. Within the raymodel, the second 
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requirement puts the following condition on the phase (see figure 1): the change in phase of a plane wave 
progressing from A to D, is equal to the phase change along the ray ~ a t h  ABCD, within an integer multiple 
of 27r. This results in the following equation: 

f and a1,2 are half of the change in phase of a plane wave propagating in layer 1, when it is totally reflected 
on respectively air (index 0) and on layer 2. i21,2 can be calculated using the algorithm of Thomson [6]. kl, 
is the z-component of the wavevector in layer 1; it is given by: 

w 
kl, = -c0s8~ 

v1 
(2) 

where 81 is angle of incidence of the acoustic ray on the boundaries and w is the circular frequency of the 
plane wave. 

air 

liquid : vl , pl z 

t 
air 

Figure 1: Identification of the liquid bilayer 

It can be demonstrated that equation 1 is identical with the dispersion relation obtained by the standard 
procedure [5]. 

By solving equation 1 numerically, we obtain the angles 81 for which at a given frequency, a normal 
mode can propagate unattenuated in the liquid layer. The phasevelocity VL of these modes is then given by 
Snell's law: 

'U1 
VL = - 

sin(&) (3) 

In figure 2 we plotted as solid lines the real roots sin(&) of equation 1 as a function of frequency for the 
liquid bilayer with the following parameters: vl = 2000 m/s, v2 = 5500 m/s, 2d1 = 0.001 m, 2d2 = 0.003 
m and pl = p2 = 1000 kg/m3. Each curve on figure 2 corresponds to a particular value of the integer nb 
as indicated. We added BL to avoid confusion later on. These curves can be understood by studying wave 
dispersion in each layer separately, with the proper boundary conditions. As far as layer 1 is concerned, it 
is reasonable to assume that it is rigidly held on its boundary with layer 2 because the acoustic impedance 
(defined as pv) of layer 1 is smaller than that of layer 2. The other boundary of layer 1 may be considered 
as free. This results in the following dispersion relation for the isolated layer 1 with one boundary free and 
the other rigidly held: 

n 
2kldl + - = nln 

2 (4) 
Because the boundary conditions are different on both sides, the normal modes of layer 1 can not be 
catalogued as symmetric or antisymmetric. We therefore use the value of n l  to number the modes. 

Layer 2 may be considered as free on both sides; its dispersion relation is: 

The modes of layer 2 are symmetric or antisymmetric, so that the notations S or A with nz as an index, 
can be used. In figure 2 we plotted equation 4 and equation 5 on top of the dispersion curves of the bilayer. 
Several interesting features appear immediately: 



Above the critical angle 8, (sine, = 0.36) of the interface between layer 1 and layer 2, the dispersion 
curves of the bilayer follow more or less the dispersion curves of layer 1 being the layer with the smallest 
impedance. The zigzagging ray in layer 1 now generates a wave in layer 2, which is exponentially 
decaying in the z-direction. 

Near normal incidence and at low frequencies, the normal modes of the bilayer coincide with a mode 
of one of the isolated layers. 

At intermediate angles, mode coupling makes a mode of the bilayer switch to the next higher (BL3 
for instance) or the next lower (BL4 for instance) mode of the layer which was resonant near normal 
incidence. 

frequency (MHz) .--t 

Figure 2: Dispersion curves of the liquid bilayer (solid lines) and of the constituent monolayers(dash lines 
and dot-dash lines) 

These points and especially point three, can be made clear by numerically studying the longitudinal 
displacement u, in the bilayer and the phasejump 2flIn2 [7]. We concentrate on mode BL3. Near normal 
incidence layer 1 is resonant in its second mode. 2Rlnz is then zero so that the dispersion relation of the 
bilayer (equation 1) indeed corresponds to mode 2 of layer 1. As we increase the frequency and pass through 
the resonance S1 of layer 2, half a wavelength is added to the oscillation layer 1, so that the waveform 
now corresponds to the next higher mode of layer 1. At the same time 2flIn2 changes to -2n, so that the 
dispersion relation of the bilayer is then exactly the dispersion relation of mode 3 of layer 1. 

In general we can conclude that, if near normal incidence the bilayer is tuned to a mode of one of the 
layers. Crossing a resonance of the other layer changes fl by n and switches the bilayer to the next higher 
or the next lower mode of the layer it was initially tuned to. 

3 An experiment 

One serious drawback of the raymodel used in the preceding paragraph, is that it does not account for mode 
conversion between longitudinal and transversal waves in the guiding layer. A verification of the conclusions 
of the preceding paragraph thus requires an experiment where mode conversion is negligable or nonexisting. 
A solid plate loaded with a thin liquid layer at  normal incidence is a possible target. This can be realised by 
positioning a 0.61 mm thick aluminum plate close to a solid halfspace in a watertank. The distance between 
the plate and the halfspace determines the thickness of the liquid layer. The biiayer thus formed behaves, 
at normal incidence, very much like a liquid bilayer even though one of its constituents is a solid. The 
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thickness of the water layer is varied between 100p m and 800pm by moving the reflector. I t  is measured 
with a micrometer attached to the frame. 

With this setup we did the following experiment. We insonify the bilayer at normal incidence with a 
broadband ultrasonic transducer of 5 MHz, operating in pulse-echo mode. 

5 6 7 

frequency (MHz) 

Figure 3: Dispersion data for the aluminum plate loaded with a thin water layer at normal incidenee.The 
experimental points are plotted as 0's. The solid lines are the dispersion curves of the bilayer. The dashed 
lines are the dispersion curves of the water layer and the dashdot line corresponds to the resonance of the 
aluminum plate at  5.29 MHz 

For each thickness of the water layer, the frequency analysis of the reflected pulse is recorded and the 
frequency of the reflection minima is determined. The angle of incidence being fixed and equal to zero 
degrees, we plot the experimental data (0's) in figure 3 as thickness of the water layer versus frequency. 
On the same figure we also plotted the theoretical dispersion curves. The solid lines represent the modes 
of the bilayer. The modes of the water layer rigidly held on both sides, are plotted as dash lines. The 0.61 
rnm thick aluminum plate behaves in the bilayer as a free plate, and has one resonance at 5.29 MHz the 
frequency of which does not depend on the thickness of the liquid layer. I t  is represented on the figure 3 as 
a vertical line. 

Inspection of this figure, clearly shows that coupling between the modes of the waterlayer and of the 
AL-plate, switches the dispersion curves of the bilayer to the next lower mode of the liquid layer. As in the 
preceding paragraph this can be explained by looking at the behaviour of 202,1 as a function of frequency. 

The discrepancies between the experimental points and the numerical dispersion curves at  low frequencies 
are not well understood. 
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