
HAL Id: jpa-00250624
https://hal.science/jpa-00250624

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INTERFACIAL MOTION IN SHAPE MEMORY
ALLOYS

M. Buisson, E. Patoor, M. Berveiller

To cite this version:
M. Buisson, E. Patoor, M. Berveiller. INTERFACIAL MOTION IN SHAPE MEMORY ALLOYS.
Journal de Physique IV Proceedings, 1991, 01 (C4), pp.C4-463-C4-466. �10.1051/jp4:1991470�. �jpa-
00250624�

https://hal.science/jpa-00250624
https://hal.archives-ouvertes.fr


JOURNAL DE PHYSIQUE IV 
Colloque C4, suppltment au Journal de Physique 111, Vol. 1, novembre 1991 

INTERFACIAL MOTION IN SHAPE MEMORY ALLOYS 

M. BUISSON, E. PATOOR and M. BERVEILLER 
Laboratoire de Physique et Micanique des Matiriaru; URA.  C.N.R.S. No 1215, Znstitut Supgrieur 
de Ginie Mecanique et Productique, Zle du Saulcy, F-57045 Metz cedex 1, France 

m- We investigate interfacial motions between martensitic variants. Analytically, we 
describe simply the topology and kinematics of a representative volume constituted of several 
compatible variants whose interfaces have a velocity differing from those of the material parti- 
cles. The corresponding driving force is deduced using Eshelby's energy momentum forma- 
lism and compared with a critical threshold from which we define a reorientation criterion. 
The interface movement is taken into account via the concept of an inclusion with moving 
boundary and we propose a formulation of the global behaviour. 

1.- Introduction. 

Interfacial motions are at the origin of many physical mechanisms which are responsible for inelastic 
behaviour. Twinning, phase transformations or some aspects of the classical plasticity like shear banding 
are related to this phenomena. 

In this work, we investigate the particular case of materials undergoing displacive phase transformations. 
Such transitions happen without diffusion phenomena and require weak rearranging at the atomic scale. 
Symmetries of the crystal lattice allow the view of several martensitic variants; such variants are domains 
where stress free transformation strains are almost uniform, they differ from one another in crystallogra- 
phic orientation. Their number and nature depend on the thermomechanical loading and microstructures 
of the material. We look at the case for which the inner mechanism of the macroscopic strain is due to in- 
terfacial movements with a velocity differing from that of the material particles. 
Globally, this phenomenon is called reorientation for which the volume of a variant (I) increases to the 
detriment of a neighbouring variant (J); in such a case we observe the movement of the interface (IJ) bet- 
ween variant (I) and (J). 

We propose a general form for the macroscopic behaviour law through a kinematical description of 
strains and through the determination of the thermodynamic forces which are responsible for the motion 
of interfaces. The calculation of such forces is performed using Eshelby's energy momentum formalism, 
we assume small strains, compatible interfaces (e.g. no internal stresses are indliced). We define a yield 
surface and the use of plastic-strain potential allowes us to formulate the constitutive relation for such a 
category of materials and mechanisms. This analysis is based on simple topological and kinematical ar- 
guments from which we bring out microstructural parameters of the global behaviour. 

2.- Some topology and kinematics. 

At fist, we consider the topology of a representative volume V constituted of N martensitic varia s. We "f assimilate each variant with a boundary moving inclusion (geometric volume VI, volume fraction f , 
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boundary ~ V I ,  1=1 to N) embedded in the volume V and bordered by others variants V j  so that we can 
recompose aV1 as the union (symbol U) of elementary surfaces avIJ: 

where avrJ constitutes the interface (IJ) between variants (I) and (J), we consider in this union that avIJ 
is zero if VI and VJ are not adjoining. 

Kinematically, it is crucial to point out that each interface (IJ) moves with a velocity which is different 
from those of the material particles: the mobility of interfaces is taken into account via the concept of the 
inclusion-problems with moving boundaries /I/, /2/. We use the technic of time derivation 6/6t with res- 
pect to the vector field Wf&,t) defined by the eigen-velocities of the interfaces (e.g. velocities at time t of 
geometrical points of volume VI with cartesian coordinates x in a reference system from which we ob- 
serve the movements of interfaces avZJ): 

Assuming that W is approximately uniform for each section N r J ,  we define the velocity wLT and surfa - 
ce vector srJ respectively: 

with srJi = -sJri due to the convention of the unit external normal 
and sUi =O if VI and V are not adjoining or (I)=(J) or avIJ on the external boundary aV. 
Let us note that (sUi Sdi) ll2N (with summation convention on the repeated indices) is the surface of in- 
terface avrJ per unit volume, this parameter plays a leading part in the evolution of the microstructure. 

In the specific case of the reorientation of martensitic variants, we assume that each variant (I) has at time 
t a volume V1(t) with a varying size an morphology; nevertheless, in each variant (I), the characteristic 4 physical and mechanical properties (....) are assumed uniform and time-constant. (2b) becomes 

Using the symmetry properties of srJi, it is possible to consider in (4) all discontinuities (.....)I - 
(e.g. jump of a field quantity (.....) across avJ1): 

For example, from (4) we deduce the rate of volume-fraction fl=vI/V of variant (I) 

where the global variation (6v/6t)/V2 is assumed negligible. In the same way we deduce from (5 )  the 



rate of total global strain E(t) which is the volume average of the linearized total local strain &(x,t): 

I J  which is written in terms of jumps (E -E ) and interface movements wIJi. 
In the following, we look at the thermodynamic force associated to this movement. 

3.- Interfacial driving force - Global behaviour. 

a) Energy momentum tensor-Interfacial force: 

Eshelby 131 introduced the energy momentum tensor in solids mechanics; he investigated the evolution 
6@/6t of the total potential energy in case of the movement of an interface. Hill /4/ extended this notion 
by using the principle of virtual works associated with an arbitrary defined displacement field w&,t). 

IT In our work, we examine the rate of total potential energy &D /6t when a variant VI (inclusion) develops 
to the detriment of an other variant VJ (matrix) with respect to the following restrictions: 
- we assume the compatibility of variants and homogeneous elasticity: the Cauchy-stress is uniform 
((oii&,t)=Zii(t)) where Zij are the components of the macroscopic applied stress) and discontinuities of - - 
strain-energy density between variants become zero .Consequently, the jump E'-E~ of total strains may be 

tI tT replaced by & -& where et is the stress-free transformation strain. 
- finally the hypothesis of uniform properties inside each variant lead us to cancel here gradients without 
distinction from lagrangian or eulerian coordinates. Then following Hill 141, we use directly formula (51) 
and (60) of /4/ to obtain: 

so that the associated driving force is V34: 

Carrying on this work, the description of the global behaviour law depends unavoidab on the intrinsic 

Yi b behaviour of the interfaces. We consider here that the interf e will move if the force F (analogous to a 
resolved stress) comes to a certain critical threshold force Fc z h i c h  depends in a quite complicated way 
from the internal structural parameters and volume fractions f . 
b) Interface behaviour: 

We define a yield surface G ~ ( Z ~ , , ~ ~ ) = F I ~  - ~ ~ ~ ( f ~ ) .  From (9) we observe that 

so that (7) becomes 

Using the consistency condition /5/ 6 ~ ' ~ / 6 t  =0= 6FIJ/6t - 6FcU/6t , it remains now to substitute 
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wLTk srJk in term of 6Z/6t. From (9) we deduce 6~LT/6t and by composition we have successively from 
(6): 

with use of the antisymmetry property of sKLi. 
so that the consistency condition becomes 

Let us define the square-matrix A with upper indices(IJ),(KL)by 

which is assumed to have generally an inverse (each pair (IJ) and (KL) stands for an index-number 
which identifies the interface (IJ) and (KL)). Eliminating w ~ ~ ,  zKL and etl - E tJ we obtain a gene - 
ralized macroscopic flow rule 

In this results, the matrix A ( ~ ) ( ~ ~ )  is analogous to a hardening matrix from which we take into account 
the influence of the evolution of the substructures on the critical stresses. 
The knowledge of this matrix is lying with a precise description of the material smcture (topology of in- 
terfaces) and with their critical intrinsic resolved stresses. 
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