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ABSTRACT 

In the general framework of a macroscopically coherent phase transition, the mechanical and 
thermodynamical behaviour of a two-phase volume element under structural evolution will be investigated 
and discussed. The identification of internal entropy production will then allow to formulate a general 
evolution condition for such a system and the internal stress state will appear to influence strongly the 
transformation behaviour, via the interface. The case of a martensitic uansformation is considered. From 
that rigourous mechanical approach, we obtain the thermodynamical balance equation used for martensitic 
transformation. 

INTRODUCTION 

A great deal of processes involve the propagation of an interface between nonhydrostatically stressed 
solids. without occurence of diffusion, [I  I.  The case of macroscopically coherent phase transitions will be 
investigated here, the coherency condition being associated with the hypothesis of displacement continuity 
accross the propagating interface. A more thorough discussion of this concept - when considering both 
atomic and continuum scales - is presented in [I ]  or [2,3]. 
The basic hypothesis defining the frame of this study will be presented first. The principle of virtual power 
is applied in order to investigate the mechanical behaviour of the system considered. 

General considerations 

The system under consideration consists of a small closed volume element containing a mixture of two 
interacting phases, separated by a moving interface. It can be for example a micro-domain contained in a 
macroscopic sample. Figure 1 provides a description of its accompanying parameters : 

N is the normal vector at the interface z indicating its local - 
direction of propagation and y the local velocity of z at the 
same point. The interface defines instantaneously a 
separation between the volumes Rl of the new phase and 
Q2 of the parent phase. The total volume is denoted n. 
Since we follow the volume R during its deformation - and 
transformation-process, the material point of view will be 
considered here ; to any point M within a is associated a 
vector X in the reference configuration. 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1991413

http://www.edpsciences.org
http://dx.doi.org/10.1051/jp4:1991413


C4-90 JOURNAL DE PHYSIQUE IV  

The behaviour of the phases is supposed elastic and the transformation occurs under isothermal conditions. 
For points M lying on the interface, the coherency condition expresses as A(X) = 0 [4], where A is the jump 
operator [ A(cp) = cp(l)-cp(2) ] for any physical quantity cp experiencing a discontinuity on 8. The existence of 
a moving interface manifests a mathematical and physical link between the behaviour of any quantity 
defined in the bulk phases and its interfacial behaviour. A first preliminary result of significant use in the 
following is the expression of the material derivative of the volume integral of a quantity I defined by its 

volumic density b in the actual configuration : I =IQ b(X,t) dQ , leading to 

in which dA_ is the infinitesimal area vector on the boundary an, including 8 [S]. The fist term of the right- 
hand side can be interpreted as the variation of b in the domain n considered as fixed, while the second is 
the convection due to the variation of Q. Considering our Lagrangian point of view, this last term will be 

dI db non zero only at the interface and one has therefore 
= In dQ + I, A ( b ) v ~  dA, where VN is the 

normal interfacial velocity. 

Mechanic al balance 

The principle of virtual power [6,7] receives the general formulation P(a) = P(e) + P(i), where P(a) is the 
(virtual) power of accelerations, P(e) the power of external forces (acting on the boundaries of the volume 
element), and P(i) is the power of internal forces. At this stage, a next hypothesis of quasi-static evolution 
is formulated, leading to P(e) + P(i) = 0. This means that for constant values of the transformed fraction, 
no time is needed to reach mechanical equilibrium. The body forces are supposed negligible. 

Expression for P(e) is P(e) = dA, where t = 1.N is the stress vector (1 is the first Piola-Kirchhoff - - 

stress tensor, [7]). The surface density of efforts on Cis (Tl.&l ylT + 12.& BT ) and therefore - - 

P(i) = - I Q =  T : @ - ddn + I  ( TI.& yIT + Q.& BT) dA. Since FJ2 = - Nl = - N (fig. I )  and considering 
2 - - 

aw 
an hyperelastic material for which = - where W(F) is the strain energy density (Eis the deformation 

- aE - - 

gradient tensor), previous expression of ~( i )  can be rewritten as 

P(i) = - - dQ + A@'.N.yT) dA, where N is common to both phases. 6 I, - 
Introducing now Hadamard's compatibility condition [4] A 1  = - A @ - &) VN in the expression of P(i) and 
rewriting equilibrium equation yields 

Since a quasi-static hypothesis is assumed, we can substitute the dependence on the transformed fraction x 
to the dependence on time (time plays here the role of an history parameter), obtaining thereby : 

considering a nearby uniform interfacial velocity . 



aw 
- dQ represents the variations of strain energy of each phases, due to a dx and will be 

dEe dEe 
denoted dx (1) + dx (2). 

The interfacial term expresses itself as @ J L ~ ( ~ ~ . F ~ . z ~ )  dA. It can be shown that the integrand can be 
C 

identified with the jump of W at equilibrium and last integral receives therefore the more simple expression 

-- 
@Jx A(W) dA = Q.A(W), where A(w)=A@.ET.T.N) - - is averaged over the interfact. Defining also 
Y- 

- 
dEe 1 dEe dEe 1 dEe 

averaged strain energy in each phase by (1) = - - (1) and - (2) = - . - (2) provides a more 
SZ1 dx dx ~ ~ d x  

explicit form of (2) : 

Discussion of the mechanical balance-case of a martensitic transition 

Considering general balance equation (3) makes clearly appear the interaction between the transformation 
process and the appending mechanical behaviour. The effect of transformation on mechanics is evident 
when considering the rate form of this equation, an increase of the transformed fraction dx leading to 
according variations of the different mechanical contributions it contains. 
The two first terms on the right-hand side describe the effect of the transformation process on the variations 
of strain energies in the bulk phases. The mixture law form evidences how the deformation energy of the 
mixture will be distributed among each phase, along the transformation. The development of strain energy 
in each phases, which has both geometrical (there is a continuous change of the volume of each phase) and 
mechanical origins (build-up of stresses to accommodate the lattice change), should also consider the 
possible change of elastic properties of a material point. It is likely to have a strong effect on the 
transformation progress, considering the high deformation energy needed to accommodate the possible 
large transformation strain (e.g., martensitic transformation is usually associated to a very large shear 
strain, about 20%). - 
The other effect of mechanical behaviour on transformation is mostly evidenced by the term A(W), 
originating at the interface, a material point experiencing a jump of the normal component of tensor F T . ~  
when swepped up by the front. At the same time, the normal direction indicates also the local direction of 
propagation. The stress state appears therefore to control both progress and anisotropy of the 
transformation, a feature that appears therefore to be of high significance for such non hydrostatically - 
stressed solids. A(W) has a driving effect on the transformation and can be therefore called the mechanical 
driving force. It appears in (3) in a general form and its characterisation for any particular transition needs 
the formulation of some hypothesis concerning the kinematics of the transformation. 

Specification of the mechanical balance for martensitic transformations 

Considered as a mode of deformation, martensitic transformation involves the existence of an invariant 
plane, usually called habit plane [8]. The deformation associated to the transformation consists in a shear yo 
along the habit plane and a dilatation EO normal to it. Such a kinematical description is among the basic 
features of phenomenological theories [9]. When considering our micro scale approach, what is then 
needed is a link between both scales, which is found when considering implications of conservation of 
momentum for a point M at the interface : 
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A (1 (M) = m A (vJ, in which y is the velocity of matter relative to X and m the mass flux accross C. Since 
no diffusion occurs, no mass flux accross the interface can be denoted, leading to the continuity of the 
stress vector on Z (all components T~N, i = 1,3 are continuous). 
Complementary continuity conditions of the deformation gradient tensor prevail also, as expressed by the 
condition of coherency A (Fij) = 0, for the components of _F lying on she tangent plane at 2 .  The 
discontinuous part of _F defines the transformation "strain", whicTh can be expressed as a combination of a - 
dilatation eo normal to the tangent plane at Z and a shear yo along some suitable direction d lying on the 

tangent plane. In the local basis (d, m, one has therefore _Fa(Q,N = (A . Identification of the tangent - 
plane with the concept of habit plane provides then the needed link between micro and macro scale 
descriptions. 
Evaluation of A(W) requires further to consider the mechanical path (since the transformation involves 

F tr. 1 

finite parameters) followed by a given point when transferred to the new phase : A(W) = 7 NT d F  1.N = - - 
1 - 

F 1'. 1 - - 
tT.dF N , integrating from the non deformed configuration ( E =  1 ) to the "transformed " one. I -  = -  - - 

I - 
supposing that the continuous stress components don't change during the transformation path (fig. 2) and 

Td TdN expressing - (d,N) = (TNd R*I ) leads to A(W) = TN.A(FN) + Td.A(Fm) = Tm yo + TN EO 

Figure 7 : Mechanical path during the transformation. 

Equation (3) receives then a more explicit form, still valid for any coherent phase uansition : 

showing the influence of averaged (on the interface) shear and dilatation components 

- 1 
Tdv = - 1 T m  dA and dN = ' I TN dA of the stress tensor on the anisotropic interfacial behaviour. z I: C 1 

Considering now the hypothesis leading to (4) that could put resmctions on application of present treatment 
to any kind of macroscopically coherent phase transition, the strongest is that of quasi-static behaviour, 
since, e.g. martensitic transitions occur generally with high interfacial velocity and could need a dynamical 
treatment instead. 

Thermodvnamical studv of a macrosco~icallv coherent vhase transition 

A pure mechanical treatment as detailed before has to be enlarged - via thermodynamics - to integrate all 
physical entities entering in the transformation process description. The role of chemical energy, essenriel in 
phase transitions, doesn't apparently enter in previous mechanical approach. Nevertheless, a basic problem 
arises when considering a definition of chemical potential for two mutually interacting solid phases. If, for 
fluids, a concept of chemical potential can be introduced naturally - as an indicator of the direction of matter 
flow - the situation is more complex when considering solid phases for wich nondydrostatic stress states 



may govern the transformation process itself. Therefore, our approach will instead consist in deriving a 
generalised concept of chemical potential for two evoluting solid phases, from the identification of internal 
entropy production. 

The combination of first and second principle (Lagrangian formalism) yields following expression for the 
internal entropy production, in the isothermal and quasi-static case : 

For an isothermal process and considering a one phase component, Helmholtz energy derisity yr=!u-Ts) can 
be identified with strain energy density, [lo]. For a two phase component which content cf rach phase 
varies, one must also consider the difference of atomic structure between the two phases, involving an 
additional chemical energy term. y can therefore be written as = W(_F) - +p, where p is the chemical 
potential of either phase. 

Evaluation of quantity $ In W@) - dR = In : @ - dR + A(W).V.N dA (6 )  

can be done using divergence theorem and Hadamard's condition, leading to 

in which PNN is the normal component of Eshelby's tensor_P = W1 - ET.r, which plays an important role 
in the theory of defects in solids [I 1,121. Since the chemical don't depend on time and are 

dx 
uniform within each phase, one has $ In p dR = A(p) VN dA = A(p) VN dA = A(p).R where 

A(K) = pm-pa is the difference of chemical potentials between both phases. Its introduction in (5) 

dSi 1 
combined with (7) leads to = - - ( h A(PNN) VN a + A(~)*) .Q ) (8). 

The irreversible behaviour- if any - has therefore two distinct sources. The mechanical dissipation described 
by the first term on the right-hand side is located only at the interface, which is logical since the behaviour 
of the phases is elastic only. A non zero value of this term would imply the existence of latent heat or 
dissipation by friction at the interface. The chemical term manifests the higher stability of the newly formed 
phase [13] (the ability for the transformation to occur is related to a negative value of the difference (pm-pa) 
for an unstressed volume element ; it is a function of the temperature). Since it arises also from the 

interface, (8) can be condensed into $ = - f J, A(CNN) VN dA (9) , 

in which _C = P + p 1 is the energy-momentum tensor [4], which provides a generalised definition of a 
chemical potezial forsuch non hydrostatically stressed solids. From the positive character of the internal 
entropy production and considering the arbitrary choice of volume element Q, one can further deduce a 
local evolution condition from (9), namely A(CNN) 5 0 , which interprets - A(CNN) as a thernlodynamical 

dSi 
force for the transformation. Introducing now equations (6) and (7) in the expression of allows to 

explicit the evolution conditon as 

equality describing equilibiium. 
Comparing now thermodynamical equilibrium equation with the mechanical balance (1) shows that the 
chemical energy term appears as an additional driving energy for the transformation, which itself results in 
a storage of strain energy in the bulk phases and - possibly - dissipation at the interface . 
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Condition (10) can be equivalently expressed in the x variable, namely 

-- 

That equation is similar to the one written generally for a transformation under stress, 113, 141. The first 
term represents the difference in chemical energy, the second and third terms deformation energy and the 
last one the energy associated to the transformation. The energy associated to the creation of a new interface 
has been neglected, considering a constant area of the moving front. 

Formulation of criteria for variants selection in case of a martensitic transformation 

The previous approach shows that both kinetics and anisotropy of the transformation are governed by the 
coupled influence of deformation energies of the phases and the stress state at the interface. For a 
martensitic transformation, a F.E. simulation has been recently developed and presented in [15,16]. The 
transformation proceeds by the successive formation of plates within a ga in  and the local stress state is 
supposed to control the activation start of each plate : considering a small "nucleation point" for which 
equation (1 1) applies, the orientation of the transformation plate is determined by the direction in space 
(habit plane normal) providing the highest value of expression yo + TN EO. As a first attempt, the role 
of deformation energies of the phases is neglected in this model. This seems reasonnable when considering 
only the very first stage of the transformation. However, as for our material, the behaviour of the phases is 
elastoplastic, additionnal irreversible strain energies enter into account, which varies with the progress of 
the transformation. Taking it into account needs further developpements both in the thermodynamic 
approach and in the simulation. 
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