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Abstract - Our aim is to examine from the continuum thermodynamic point of view, some 
models predicting the pseudoelastic behaviour of shape memory alloys. We investigate 
the choice of states variables, the structure of free energy and complementary laws. 
A special emphasis is made on generalized standard models. In the state of art, there 
is a lot of progress to do for modelling the behaviour of shape memory alloys. 

1.-INTRODUCTION. 

Our aim is to examine from the continuum thermodynamic point of view, some mo­
dels predicting behaviour of shape memory alloys. In any case, we don't claim to be 
exhaustive, especially the attractive I. Muller [1] approach, based on statistic 
thermodynamic, is not described here. We present only some classical models. 
Moreover, we restrict our analysis to pure transformation plasticity. The main 
hypothesis is that the martensitic phase transformation is diffusionless in nature. 
We distinguish between two classes of models : generalized standard models and the 
other ones. For each one, we'll investigate the choice of state variables, the struc­
ture of free energy and complementary laws. In the following c, a, T are strains and 
stress tensors and temperature. The elementary language of convex analysis is sui­
table for formal items of thermodynamics [2], we use the following notions : if a 
state triable a is submitted to internal constraints, for instance, the volume 
fraction, it is convenient to consider that it is not only defined on a domain C of 
R but on the whole space, then free energy is the sum of the usual physical 
value (0 if a { C) and of the indicator function I of C. (I (a) = 0 if a <=C < 
I (a) = + <» if a « C) . 

At last, the subdifferential df (x-) of a convex function is a set of gene­
ralized gradients in xQ : 3f(xo) - {y e R

n, f(x) > f(xQ) + y (x-xQ) V x e R
n } . If f 

Is regular in x0, df(xQ) is reduced to the gradient. 3IC (x ) is empty if xQ € C, is 
the outward normal cone if xfl belongs to the boundary of C and is reduced to (0) if 
X Q belongs to the interior of C. 

2.-Generalized standard models. 

These models [3] are mainly characterized by the existence of a function D ; 
called the pseudo-potential of dissipation, of state variable rates. D is convex mi­
nimal and equal to 0 in zero. They have the thermodynamic interest to satisfy automa­
tically the Clausius Duhem inequality. 

2.1 Model Ml 

A purely macroscopic model is presented in [4], using only directly observable 
state variables (£,£,T) where fi - (/31 , fi2) represents the volumic fraction of two va­
riants of martensite. 
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The expression of free energy of the mixture : 

means that it is the weighted average of free energies of the three phases. The 
contribution of the mixture appears only through Ic with C being the convex set (Pi, 
pi 2 0, p, + Pz 5 1) ; every interaction is neglected. In order to simplify and to 
restrict our purpose to the only problem of phase transformation, we consider that D 
depends only on P. The behaviour laws remaining at constant temperatures are then : 

2 awA awMi 
(e,T) 

If D is regular in zero, the transformation A + Mi and Mi -t A begins at the 
same level of strain (such that B! = 0), it does not seem to be very realistic from 
the physical point of view. Thus, it is advisable to suppose that D is non-smooth in 
zero, which would justify the vocable "transformation plasticity". Note also that a 
diffusion less transformation implies from (2) that D is positively homogenous of 
degree 1 with respect to 3. Another process [4] is to substitute the triangle C by a 
curvilinear triangle included in C, which is an element of accounting the interac- 
tions. The fact that B~ is independent of p, comes from the expression of the free 
energy of the mixture as the weighted average. Interaction is neglected, other mo- 
dels will try to consider them. 

In [5] and [6] a model for monocristal with n variants of martensite 
(0 = (P,,p 2.../3n)), is first presented. By means of reasonable physical assumptions, 
accounting cristallographic aspects, the structure of the free enthalpy is setted, so 
we can write it like this : 

wch, w:, w1 are connected with chemical, elastic, interaction between variants ef- 
fects, g and R with the kinematics of the transformation C = (,B E R" ,O %pi ,C Pi 5 1). 
Hence the free energy is : 1 

( 3 )  w(c,P,T) = we ( E  - 7 g Ri pi) + C Pi wCh (T) + wI (p) + I= (p) 
I 1  I 

From this expression, we can identify the inelastic (Phase Transformation) 
strain cPT = C g Ri pi and observe that the energy is separated in an elastic part 

l 

and a reversible stored one by internal state change where the interaction term W, 
will play an important role. 

In the case of a non-dissipative behaviour, the isothermal laws are 
then : 



A domain in the stress space in the interior of which there is no trans- 
formation is evidenced : 

For example, in the case of one variant and uniaxial test, (5) 
gives : 

Henceworth, with a plausible assumption of strict convexity of enerzy, (7) de- 
termines in a unique way p as a function of (u,T), and then s P T  = g R P and at last 
from (4), the total strain. We have to note that it is not necessary to write 
incremental equations to obtain the evolution of s P T  . 

Such a non-dissipative behaviour cannot predict hysteresis during isothermal 
transformation, the same authors have proposed a solution by introducing two func- 
tions w:; and Ti.  

We think that the introduction of a pseudopotentia1;of dissipation D which is 
convex, minimal and equal to 0 in zero, depending only on p (once more for accounting 
only the effects of phase transformation) produces a generalized standard model which 
allows us to answer the previous criticisms. The isothermal behaviour laws become ( 4 )  
and also : 

In the case of regular dissipation in zero, the threshold transformation is 
still the one given by (6). Assuming once more that WI is strictly convex, the trans- 
formations A -, Mi and Mi -, A begin at different levels of strain and stresses which 
seems more realistic than the model MI. This is because the free energy depends of P 
in a more complex way. The stresses aHs and aAs depend only on T, but oMf and unf 
depend also on the loading-unloading process. 

In fact, under the assumption of diffusionless phase transformation, from (8 ) ,  
D must be positive, homogeneous of degree 1 and thus non-smooth in zero. Then, the 
freedom given to D by the generalized standard material theory, to depend also of 
state variables, allows us to predict in accordance with experimental observations, 
different kinetics and lines of transformation in (o,T) for direct transformation A -t 

M and reverses M + A. It is possible to identify D and the components of W by fitting 
W with experimental results. 

In order to predict the polycristal behaviour a first investigation consists 
of homogenizing, by a self consis tent method, the non- dissipative behaviour described 
by (4), (5) for monocristal. A second purely phenomenological approach [6] consists 
of introducing a criterium for initiation transformation F(o,T) = 0 and an evolution 

a F 
law for iPT : iPT = X -, F(u,T) 2 0 ; X being identified through elementary mecha- 

a u 
nic tests. We think that in this model, it will be suitable to limit cPT and to con- 
sider the reverse transformation. 

It's at least formally possible to homogeneize the dissipative behaviour (4) 
and (8), but it is classical [8] that the structure of macroscopic constitutive laws 
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can be more complex than (5) and (8). Nevertheless, in a first approximation a model- 
ling of the macroscopic behaviour would be to keep a structure like (4) and (8). 

State variables (c, rPT ,T) 
Free energy w(r,cPT ,T) = ~ ~ ( c - c ~ ~  ,T) + wa(rPT ,T) + I ~ ( E ~ ~  ,T) 
Dissipation ~ ( r ' ~  , cPT ) positive, homogeneous of degre 1 in tPT 

The structure of the free energy in the two previous models comes from phy- 
sical choices. The frame of generalized standard materials is flexible enough to 
allow a very general structure as in the model [ ? I .  (c,p,T) are the state variables 
and the potential of dissipation is quadratic in j3 and depends on the state variable 
considered in that case as parameters. We can therefore identify W and D, a poste- 
riori, by general physical assumptions and fit them with experimental results. 

3.-Other models. 

For these models, complementary laws can't be expressed with a convex and po- 
sitive dissipation potential. They are purely macroscopic models where (r,cPT ,T) are 
the state variables. The pseudoelasticity or pure transformation plasticizy can be 
treated as in the classical plasticity formalism but with two yield surfaces fl for 
A -+ M and f for M + A. We will classify the following models in function of the 
expression 02 the plastic multiplier A .  

The free energy is given by : 

The use of the indicator function is to bound cPT inside a temperature depen- 
dent convex C. Its boundary corresponds to the end of the transformation A -t M. fl 
and f2 are such that : 

i) the yield surfaces fl ( .  ,T) = 0 ,  divide the stress space in two 
connected parts 

ii> f, (0,T) < 0 ,  f2(7,~) = o = f, (7,~) < o 
iii) f2 (0,T) < 0 (resp. > 0) for T low (resp. high) 

Moreover, the second criterium responds only if IcPT I will decrease. The nor- 
mality rule and the consistency condition give the evolution of cPT. We have to note 
that the Clausius-Duhem inequality is not always satisfied, during unloading and 
reverse transformation. 

- 3.2 Model M5-[11l,L121 

In [ll], the choice of free energy is dual of the one of MI, the free enthalpy 
of the mixture is the weighted average of the constituent enthalpies. It's clear that 
the truth lies between these two approaches ... 

The first criterium (A + M) is : 

- - 
f, = u - u M s  with ( a =  

The second criterium for M -+ A is : 
- - - 

f2 = uns  - u in [12] and f2 = dev o : rPT - uAS TT in [ll]. 



The direction of ZPT is dev CT during the direct transformation. For the re- 
verse one, kPT has the direction of dev a in [12] and of (dev a - a cPT) (with - 

3 
a - lCPTl = 

+ a M s  I in [ll]. 2 2 

At last, the martensitic proportion p is the ratio of the actual TT to total 
transformation strain when phase transformation A -* M which occured perfectly during 
the tensile test. This permits us to connect the modulus of cPT to classical expres- 
sion of phase transformation kinetics. 

CONCLUSION 

Even if a fairly good agreement between experimental [6] [12] and predicted 
results is obtained, modelling of phase transformation effects are not yet completely 
understood. 

For instance, volume proportion of martensite seems to be a measurable va- 
riable which is operative for macroscopic modelling but not sufficient because of its 
scalar character. 

An internal tensoriel variable linked to pure transformation strain would be 
more appropriate. The real dissipative phenomena (heat dissipation by interfaces 
friction) should receive a sharp physical analysis in order to be better integrated 
in the complementary law expressions. Otherwise, the time effects shown by creep and 
relaxation tests [12] don't seem negligible. Accounting them, will deal with "pure 
transformation viscoplasticy". 

At last, we have to extend these models by integrating training processes 
which are essential for technological use of these shape memory alloys. 
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