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THERMODYNAMICS AND HYSTERESIS BEHAVIOUR OF THERMOELASTIC MARTENSITIC TRANS- 
FORMATIONS 

J. ORT~N and A. PLANES 
Departament d'Estructura i Constituents de la Mat2ria, Facultat de Fisica, Universitat de Barcelona, 
Av, Diagonal 647, 08028 Barcelona, Catalonia, Spain 

Abstract - This work reviews different approaches to the thermodynamics of the martensitic 
transformation in shape-memory alloys developed in the last years, and attempts to give a 
general unified version in terms of an energy balance which not only considers equilibrium 
situations but includes as well the possibility of dissipative effects. The thermoelastic 
transformation is studied in a quasistatic continuous formalism which results from the 
assumption that the characteristic relaxation times between thermoelastic equilibrium states 
are comparatively negligible. The analysis reveals the role of different energy contributions 
(chemical, elastic and dissipative) in the transformation, and the possibility of their evaluation 
from calorimetric measurements. Concerning hysteresis, we review the memory properties of 
partial cycles common to this whole class of systems, and present a number of recent 
approaches developed to model these properties. 

1.- Introduction. 

A realistic study of the thermodynamics of thermoelastic martensitic transitions is compelled to take 
into account characteristic features of these transitions [1,2] such as: (a) surface energy contributions 
associated with the interfaces separating the high (H) and low (L) temperature phases and different 
variants of the L phase, (b) elastic strain energy contributions related to the accommodation of 
domains of the martensitic phase within the H phase matrix and (c) dissipative effects decisive for 
the understanding of the peculiar features of hysteresis cycles in these materials. The main difficulty 
in dealing with these contributions is their heterogeneous character. The situation is even more 
complex for the dissipative effects since the precise operative mechanisms are still not well identified. 

This work is oriented towards a thermodynamic study of the transition, which starts from a 
general energy balance between the contributions listed and whose purpose is to stablish relations 
between global quantities of the transition. In this sense, this type of approach does not require to 
detail expressions for the different contributions. 

The thermoelastic martensitic transition is described as a succession of metastable states. The 
paper concentrates on the assumptions behind this type of description and on the experimental 
results supporting them. Though we give a number of explicit results derived from the formulation, 
additional details and results for situations not treated here can be found in the references given. 

2.- Thermodynamics: general framework. 

We begin by considering a thermally-induced martensitic transition with no applied stress. The L 
phase is obtained from the H phase essentially by a homogeneous shear accompanied by a very small 
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volume change. We must consider that, as a consequence of the symmetry properties of the H phase, 
the L phase is g times degenerated: g structures (variants) of the L phase can appear, differing only 
in their relative crystallographic orientation, but energetically equivalent in the absence of any 
external stress field. Usually, in the absence of external field, the L phase variants form in self- 
accommodating groups minimizing the internal strain fields and hence the bulk elastic strain energy 
in the system [3,4]. 

During growth, different mechanisms can give rise to dissipative effects. The precise 
mechanisms at the origin of energy dissipation are still controversial and, moreover, have been little 
studied either experimentally or theoretically. In any case, it seems well stablished [5,6] that one of 
the dominant mechanisms of hysteresis in thermally-induced transformations is the relaxation of 
elastic strain energy. Indeed, the elastic energy stored in the system, which increases in a continuous 
way as an isolated single variant grows thermoelastically, can be partially relaxed when an ensemble 
of variants (two or more) join to form a self-accommodating group or when the variant reaches a 
free surface of the system. This mechanism prevents an undefinite increase of the bulk elastic strain 
energy, which would finally lead to plastic accommodation [q. 

Accurate observations reveal that the transformation proceeds through a series of discrete 
steps between metastable equilibrium states [8-101. In each transformation step, elastic energy is 
stored in the system and, at the same time, energy is dissipated. For this reason, at the new 
metastable situation the temperature of the system must be changed to resume transformation. For 
low enough temperature rates, however, the dissipative effects (associated to each transformation 
jump) take place in time intervals much smaller than the times of appreciable variation of the driving 
force. Thus, the system spends the overwhelming majority of its time in a situation of thermoelastic 
equilibrium: practically at any temperature in the temperature interval where phases H and L coexist 
the system is in thermoelastic equilibrium. This has been checked by the observation that, when the 
system is kept at a constant temperature within the two-phase region, it does not show any tendency 
to transform further [8]. Concerning this point, however, we note that care must be taken with other 
diffusive processes that might take place simultaneously with the transformation, and can mask the 
intrinsic features of the martensitic transition. In metallic alloys the most common is a process of 
atomic ordering; as an extreme example, it has been reported that Cu-Zn-A1 alloys undergo a 
martensitic transition at constant temperature and no applied external stress, induced by an atomic 
ordering process [ll]. These extrinsic, diffusive processes, can always be avoided by well defined heat 
treatments [12]. In what follows we will disregard these situations and assume always that the system 
is in thermoelastic balance in practically any state within the two-phase region, so that it is a good 
approximation to consider the transformation as progressing continuously and to study the 
thermodynamics of the transformation using a quasistatic formalism. 

Some of the features described are altered when an external uniaxial stress is applied to the 
system. The stress field breaks the degeneracy and for a large enough stress only a limited number 
(usually just one) out of the g possible variants is induced. In ideal experimental conditions, when 
only one interface separates the two phases L and H, the transition takes place at a given 
temperature and applied stress. There is not elastic strain energy stored in the bulk, and the 
interfacial energy takes a constant minimum value because there is only one interface, of constant 
dimensions, in the system. Dissipation still takes place, though considerably minimized, since there 
is not elastic energy relaxation. This situation has been experimentally studied and modelled by Lovey 
et al. [13], who ascribe the energy dissipation to the interaction between the moving interface and 
dislocations of the crystal. The mechanism gives rise to a very small thermal hysteresis, of the order 
of 0.1 K. 

3.- Thermodynamics: results. 

Since the end of the 70's several formulations have been developed to deal with the thermodynamics 
of thermoelastic martensitic transitions. A number of these formulations are based on thermodynamic 
equilibrium formalisms, where energy dissipative processes are ignored, either homogeneous 1141 or 
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taking into account local heterogeneities due to elastic effects [15]. An interesting approach, due to 
Cory and McNichols [16], was the first in considering the role of energy dissipation on the 
thermodynamics of shape-memory alloys. The origin of dissipation is not discussed, but the authors 
emphasize that the standard non-equilibrium formalisms, of application to non-quasistatic relaxation 
phenomena, are not suitable to study non-relaxation hysteretic processes. The distinction between 
non-quasistatic and hysteretic phenomena comes from the difference in their characteristic time 
scales, as discussed in the previous section [17]. 

Recently, we suggested a formulation which integrates these ideas and can be considered a 
generalization of the previous approaches. Firstly we conjectured that all the energy losses could be 
considered as mechanical work that the system dissipates without entropy production. This possibility 
is consistent with the idea that dissipation is mainly due to elastic energy relaxation during 
transformation and with the fact that elastic energy can be released in the form of elastic waves. The 
fact that acoustic waves are detected as acoustic emission in the transformation [9] validates the 
argument. Obviously, once these elastic waves are absorbed in the neighbourhood of the system 
considered, the dissipative work gives rise finally to entropy production. Experimental results of 
calorimetric measurements on thermally-induced transformations, however, have revealed that 
entropy production is indeed very small and its contribution to energy dissipation is negligible. 

This general formalism is established from a balance equation representing a general writing 
of the thermodynamic fundamental equation. The variables suitable to describe the system in the 
coexistence region of phases L and H are assumed to be independent of time, as follows from our 
previous discussion. Within this assumption, the transformation path (defined as x=x(T), with x the 
martensitic molar fraction) is independent of the variation rate of the driving force. Though there 
is some evidence of this static behaviour for low rates, there has not been yet a systematic study on 
this point. In copper based alloys, for example, preliminary experiments confirm that in thermally-
induced transitions no noticeable changes of the transformation path occur for temperature rates 
varying in the range from 0.01 to 1 Kmin_1 [18]. The behaviour for larger temperature rates, however, 
is yet to be studied. 

The energy balance reads: 

(1) 

where U, S and V are internal energy, entropy and molar volume of the two-phase system, T is the 
temperature (assumed to be homogeneous) and p the hydrostatic pressure. Vo^de^ is the mechanical 
work performed by external forces, which in the following we will assume to be uniaxial. dEel is the 
stored elastic strain energy, a term that includes surface and volume contributions. 8Sj is the entropy 
production and 5Wj is the internal work dissipated in an irreversible way in forms other than heat; 
these two dissipative terms are defined to be non-negative, and since they are not exact differentials 
we use the symbol 5 to express their infinitesimal variation. 

It is interesting to introduce the thermodynamic potential H, called enthalpy, defined by: 

(2) 

Now the fundamental equation reads: 

(3) 

In the following, to simplify the resulting equations, we will neglect possible differences in the heat 
capacity and elastic moduli of the two phases. This approximation is equivalent to state that the 
change in thermodynamic potentials in the transition is independent of temperature and applied 
stress. 

For a hypothetical transition that would take place in equilibrium (ideal thermoelastic 
behaviour) we would have that SSj = 6Wj = 0. If in addition we disregard the elastic interaction 
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between the two phases we also have that dEel=O and then, at constant pressure: 

where Q is the heat exchanged and To(a) is the temperature at which the transition takes place in 
equilibrium under an applied stress o. Equation (4) has come out to be suitable to interpret 
calorimetric results of thermally-induced thermoelastic martensitic transition of single crystals 
subjected to simple uniaxial stresses [19,20]. 

In particular, when o =0: 

where now To=To(0). In addition, an ideal in-equilibrium formulation as represented by equation (4) 
gives the variation of the equilibrium temperature To with uniaxial stress a ,  i.e. the Clausius- 
Clapeyron equation: 

3.1 Thermally-induced transition. 
For a thermally-induced transition without applied stress, a=O but dEel+O. Then, in ideal equilibrium 
at constant pressure: 

Tf 

Q = TdS = A H + E ,  
Ts 

The integral must be performed along the transition path, between the hypothetical initial and final 
equilibrium temperatures T, and Tf. Note the parallelism between equations (4) and (7). It is worth 
mentioning that the heat exchanged Q (the heat measured in a calorimeter) does not coincide with 
the enthalpy change AH (latent heat of transformation), due to the storage of elastic energy in the 
sys tem. 

Let us now consider the general case of a thermally-induced transition in a system subjected 
to uniaxial stress, including dissipative effects. Considering a quasistatic path (in the sense discussed 
previously), equation (3) leads to: 

Here, the integrals are computed between M,(a) and Mf(a) for the H-L transition and between 
&(a) and Af(o) for the L-H transition. The different contributions (AH, Eel, Wi and Si) to this 
energy balance equation can be evaluated from the exchanged heat Q, measured in a calorimeter 
[21]. For a complete cycle, we get: 

This procedure relies on the fact that, after a complete cycle, the system has come back to the same 
thermodynamic state from which the cycle started, and hence all the state functions return to their 
original values. This corresponds to the study of a system that does not evolve from cycle to cycle. 
In addition, we simply divide the dissipative work Wi between forward and reverse transitions in two 



equal parts. Then: 

The simplest method to compute the stored elastic energy is to assume that: 

and neglect subsequently the entropy production. From equation (ti), this results in: 

E,., = Q-AH-Wi 

where AH is obtained from equation ( 5 )  as: 

Figure l a  shows schematically the relative importance of the different energy contributions calculated 
with this procedure, and Table I a collection of values calculated from calorimetric measurements 
on a number of copper-based alloy systems. 

Figure 1.- Schematic representation of the hysteresis loop of (a) a thermally-induced transition under 
a constant applied stress o, and (b) a stress-induced transition at constant temperature, showing the 
role of the different energy contributions in the forward transition, denoted here as P-M. 

As an example of application, Picornell et al. [22] have used equation (10) to compare the 
hysteresis cycles of a Cu-Zn-A1 crystal exposed to two different thermal treatments: air cooling or 
water quench from high temperatures. The main difference between the two cycles is in the 
nucleation and earliest stages of martensitic growth which, for the first of the treatments, take place 
much more abruptly and at lower temperatures. The energy dissipated in this explosive nucleation 
has been evaluated by comparing the areas of both transition cycles. 

We have also developed more elaborated methods which allow for entropy production 6S, and 
for the possibility of a difference in heat capacity between phases H and L [23,24]. The results that 
follow from such extended formulation, however, confirm that the simplified treatment developed 
here is adequate to most practical purposes. 
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Table I. Summary of thermodynamic results, including the three energy contributions to the 
thermoelastic balance, for a number of copper-based alloy systems which undergo different kinds of 
martensitic transitions. Values are taken from references A: R.J.Salzbrenner and M.Cohen, Acta 
metall. 27, 739 (1979) and B: J.Ortin and A.Planes, Acta metall. 36, 1873 (1988). 

3.2 Stress-induced transitions. 
For a stress-induced transformation at constant temperature, in the pseudoelastic regime, equation 
(3) written for a complete cycle leads to: 

showing that the energy dissipated in the cycle, either as entropy production or mechanical work, is 
given by the area of the cycle in a stress-strain diagram. The entropy production, in addition, can be 
determined now by measuring the heat exchanged by the specimen in the tensile cycle: because: 

MOY 
composition 

Cu27.7.4123Ni 
Single crystal 

RefA 

Idem 
RefA 

Cu16.1Zn15.9Al 
Single crystal 

Ref.B 

Cu7.2Zn23. W 
Polycrystd 

Ref.B 

The overall process is exothermal, as the negative sign.indicates. An experiment of this kind enables 
a direct verification of the hypothesis of null entropy production (see figure lb). Sade et al. [25] have 
perfolmed preliminary tests on Cu-Zn-A1 single crystals and shown that the whole process is certainly 
exothermal, with energies dissipated as entropy prtlduction in the range from 5 to 10 '7; of the 
enthalpy change of the transition. 

Transition 

pay' 
Single 

interface 

Pay' 
multiple 
interface 

PPP' 
multiple 
interface 

Pay' 
multiple 
interEace 

To 

304 

299 

238 

249 

4.- General properties of the hysteresis cycle. 

The incorporation of dissipative terms in the thermodynamic balance (3) has been motivated by the 
experimental fact that the martensitic trapsition, even in systems that are acknowledged to transform 
thermoelastically, displays hysteresis: when we change the sign of the driving force the system does 
not return via the same thermodynamic path. 

A thermodynamic formulation incorporating dissipative effects enables: (a) evaluation of 
energy losses in the transition from the properties of the experimental hysteresis cycle, as shown in 
the previous section; (b) study of the evolution of energy losses with the transformed fraction along 
the transition path; and (c) characterization of the suitable functional dependence of the dissipative 
term in the energy balance, based on the particular information provided by the thermodynamic 
trajectories inside the two-phase region (partial hysteresis cycles). These two last items are developed 
in the following. 

Consider a generalized Gibbs free energy defined by the following Legendre transformation: 

AT 

30 

30 

5 

28 

Jim01 

-515 

-460 

-301 

-301 

QL-H 

Jimol 

536 

481 

311 

341 

ASH-L 

JimolK 

-1.78 

-1.67 

-1.32 

-1.41 

W, 
Jim01 

51 

48 

8 

29 

J/molK 

1.68 

1.58 

1.33 

1 12 

I AH I 
Jim01 

526 

526 

320 

350 

E,, 
Jlmol 

0 

42 

15 

25 

I 



From equation (3) we arrive to: 

dG* = -SdT-dEel-V0do+Vdp-T8Si-6 Wi 

and hence: 

dG* I,,, = -dE,,-T8Si-8Wi 

Thus, at fixed T, p and a, the change in G' in our continuous f~rmalism compensates for the changes 
in elastic and dissipative energies. When the martensite molar fraction x changes to x+dx we have: 

which represents the driving force for the transition. Thus: 

Here: 

BE,, - T6Si+8Wi r 0 

independently of the sign of dx. Consequently, the thermoelastic balance equation (20) displays two 
types of branches: branches (+) associated with dx>O (forward transition: H-L) and branches (-) 
associated with dx<O (reverse transition: L-H). 

TEMPERATURE (K) TRANSFORMED FRACTION 

Figure 2.- A collection of partial hysteresis loops corresponding to the thermally-induced transition 
of a Cu-Zn-A1 single crystal, obtained by calorimetry (a) and the associated evolution of dissipative 
energy ( 0 )  and reversible elastic energy (A) as a function of the transfornled fraction (b). From 
reference [26]. 
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4.1 Evolution of E,, with transformed fraction. 
We have shown that the overall energy losses can be obtained as the area of the hysteresis cycle 
represented in the proper variables. This result also applies to partial cycles where the transhion 
(forward or reverse) is interrupted at a transformed fraction x, the transition direction is reverted and 
the path continued until the initial state is reached again (figure 2a). Using this procedure, we have 
been able to determine the evolution with transformed fraction of the energy dissipated. In figure 
2b we show the results obtained for the thermally-induced transition of a Cu-Zn-Al single crystal [26]. 
In this case the accumulated energy losses grow monotonously with transformed fraction up to a 
value representing about 5 % of the transition enthalpy. 

4.2 Models for the dissipative energy and prediction of partial cycling features 
The properties of thermodynamic paths inside the two-phase region are rather distinctive and require 
a special functional form of E,, in equation (20). These properties [6,16,27] are summarized by: 
(a) All the transformation trajectories are located within a region of the x-a-T space, the two- 

phase region, bounded by the trajectories of the complete~cycle (x:O*l). 
(b) Each transformation trajectory depends only on the set of extreme values (return points) 

reached by the variable driving the transition (a or T) along the trajectory. The system "keeps 
memory" of this set of values. 

(c) Each time that a transformation trajectory returns to an earlier extreme value of a or T the 
influence of this value on the trajectory is lost (wipping out property) Tnis important property 
makes the partial cycles to exhibit the self-similar behaviour represented schematically in 
figure 3. 

The list above summarizes the intrinsic behaviour of partial cycles within the two-phase region, for 
which time plays no role other than a parameter. Actually, it represents an idealization of the 
experimental behaviour, valid in the quasistatic limit; we exclude the influence on the hysteresis cycles 
of relaxational phenomena such as ordering or stabilization and cycling effects. This behaviour has 
been observed in a variety of systems, including Cu-Zn, Cu-Zn-AI and Ni-Ti, for single crystals and 
policrystals, and for both thermally- and stress-induced transitions [26,28-311. It is not strictly 
associated with the formation of self-accommodating domains of the low temperature phase, because 
it has been observed as well in single crystals under uniaxial stress, which transform to a single 
martensite variant [32]. Its microscopic origin, however, is yet unclear. For this reason, existing 
models of partial cycling behaviour are of a phenomenological nature. Moreover, it is interesting tt 
mention that the same behaviour is also displayed by hysteresis loops in ferromagnetic materials [33]. 

Figure 3.- Schematic behaviour of the transformation paths in a thermally-induced transition. 
Continuous lines represent a complete cycle which follows the boundary of the two-phase region. 
Broken lines represnt internal paths, and black points correspond to return points. 



Miiller and co-workers [34,35] have developed a Landau-Devonshire type of model for 
pseudoelastic hysteresis, in which the appearance of non-monotone load-deformation equilibrium 
curves gives rise to hysteresis. The width of hysteresis cycles is determined by the interfacial energy 
of the H and L phases, and internal hysteresis loops contain metastable states that loose their 
metastability on the line defining phase equilibrium. The model accounts for the existence of internal 
trajectories, but it does not seem to reproduce the memory properties (b) and (c) of the previous 
list. 

Lii et al. [36] represent the system as a network of elements connected in parallel, i.e. 
subjected to the same strain. The balance equation (20) is verified in each element, but the driving 
force differs by a constant value from element to element. The dissipative term in each element is 
explicitly defined to keep memory of the last return point. Let us consider, for instance, a trajectory 
of the type (+); along this trajectory the dissipative term ,is written as a linear func; )n of the 
increment in transformed fraction from the previous return point xa: 

We follow this trajectory (+) and, at xb, we revert the sign of the driving force and start a trzjectory 
(-) ending at x', where we return to the initial point xb and close a partial cycle. Forcing the 
dissipative term at the return point xb to be the same before and after the partial cycle results in: 

where p, is the slope of the dissipative term in the (+) branch of the subcycle, which therefore takes 
the value: 

In this way, inside each subcycle the dissipative term (through the slopes p,) stores the memory of 
consecutive return points. Coupling a number of these elements in parallel transforms individual 
straight-line trajectories into global trajectories with smooth curvature. The model accurately 
reproduces the essential characteristics of hysteresis cycles; its main difficulty is the determination 
of the multiple parameters entering in the model. 

This same idea of forcing the transformation trajectories to coincide at the return point, after 
and before having carried out a partial cycle, is at the basis of a phenomenological model proposed 
recently by Cesari et al. [37]; again, the difficulty of the method is to adapt the model to the 
experimental reality of a particular system. 

Recently, another approach based on the Preisach model for ferromagnetic hysteresis [38,39] 
has been used to study pseudoelastic hysteresis cycles [32]. This time, the approach facilitates a direct 
connection with experimental data and, consequently, the possibility of quantitative prediction of any 
trajectory inside the two-phase region. On the contrary, it is not directly based on the thermoelastic 
balance. According to the model, transformation trajectories are given by the integral: 

where p(a ,P)  is a population function, determined from a set of experimental first-order trajectories 
(for example, trajectories (-) that Start at different x values of the main branch (+) and return to 
x=O). Memory of the return points, essential to the model, is retained by the particular shape of 
Sf(t). A first application to pseudoelasticity in Cu-Zn-A1 single crystals [32] has shown (a) a fine 
sensitivity of the trajectories to the precise values of experimental return points, and (b) an excellent 
reproducibility of L-H branches (branches (-)), much better than that of H-L branches, if a set of 
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first-order branches (-) was used to determine the population function of the model. This reflects a 
possibility that either the dissipation mechanisms or their relative importance differ from the forward 
to the reverse transition. 

5.- Conclusions. 

We have attempted to revise the thermodynamics of thermoelastic martensitic transitions, presenting 
a formalism that includes elastic and dissipative effects. We have given methods to evaluate the 
different energy contributions and presented experimental results showing their relative importance. 
Pdrticular attention has been paid to the characteristic features of hysteresis in these systems, a 
subject of current interest; we have reviewed a number of phenomenological models recently 
proposed. 

In our opinion, progress in this field should concentrate on (a) accurate computation of the 
elastic energy term in the thermoelastic balance, based on the existing knowledge of martensite 
microstructure, and its evolution along the transformation, and (b) determination of which specific 
mechanisms give rise to dissipation and how they lead to the observed macroscopic features of the 
transformation trajectories. We think that numerical simulations, in the line originally implemented 
by Khachaturyan 151, could be of great help to fulfill this objective. 
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