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DYNAMICS OF ADIABATIC SHEAR 

D.E. GRADY 

Organizarion 1543, Sandia National Laboratories, 
Albuquerque, New Mexico 87185, U.S.A. 

Abstract -The formation of adiabatic shear bands is examined with an approximate analytic model. The shear band 
is viewed as a propagating feature with a well-defined front. The shear band is further partition into a shear-band 
process zone within which most of the adiabatic heating and shear stress relaxation occurs, followed by a quasi- 
steady zone within which little dissipation occurs. Although a one-dimensional analysis of the shear-band dynam- 
ics is initially pursued, the analysis is then used to calculate properties of the inherently two-dimensional shear- 
band process zone. The length and width of the process zone is calculated along with the shear displacement. The 
model is further used to calculate the energy dissipation within the shear-band process zone. The flow field within 
the vicinity of the process zone is also examined. Calculated properties of the shear-band process zone are com- 
pared with available experimental data. 

1.- Introduction 

The formation of adiabatic shear bands in metal structures subjected to rapid shearing through explosive or impact 
loading is an important deformation mechanism. The characteristics of shear banding have been investigated 
extensively over the several past decades. Metallurgical studies have been effective in revealing the morphology of 
the shear-banding processes and have pointed toward possible deformation mechanisms Cs2s3) .  The combination of 
careful metallurgical investigation along with controlled dynamic loading instrumentation and associated diagnos- 
tics has lead to further improvements in understanding of the stress and strain dynamics governing shear-band for- 
mation and evolution (45,6). Recent investigations with time-resolved photographic and infrared radiation 
diagnostics have provided further revealing data on the dynamic thermoplastic processes of shear banding C.*). 
These data collectively provide necessary bench marks for testing the extensive modelling and analytic efforts 
which have been pursued to explain various aspects of adiabatic shear-banding phenomena p10.u,1213,14,15,16 1. 

The goals of the present study have focused on achieving a better understanding of energy dissipation in the adia- 
batic shear-banding process. The recent study of Marchand and Duffy (*) indicates that a shear band does not 
simultaneously evolve along the full plane of shear. Rather, their data suggests that shear bands originate within a 
localized region and have well defined fronts which propagate with finite velocities along the plane of shear defor- 
mation much like mode I1 cracks. Thus, in this work, we pursue the idea of a propagation shear band with a shear- 
band-tip process zone within which the preponderance of energy dissipation takes place. 

While recognizing the two-dimensional nature of a shear-band process zone, a one-dimensional model of shear- 
band formation is nevertheless initially pursued and applied to the two-dimensional phenomena. The present model 
of adiabatic shear-band evolution involves simplifying assumptions which are intended to render the analysis trac- 
table, and also to lend insight into the physics of the phenomenon. The shear band is modelled as having a fixed 
thickness. Energy minimum concepts are used to establish a preferred shear-band thickness. Material exterior to, 
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but in the vicinity of, the shear band is modelled as rigid-plastic. Material within the shear band is modelled as ther- 
moplastic. A solution method pursued earlier (I7) is built upon to complete the analysis. 

The analysis is used to calculate properties of the shear-band process zone including the width and length of the 
process zone, and the shear displacement accumulated within this region. The energy dissipated within the shear- 
band process zone is also calculated from the model. The deformation within the neighborhood of the two-dimen- 
sional shear-band process zone predicted from the model is also examined. The calculated results are compared 
with experimental observations of shear bands. 

2.- The shear-band process zone. 

It is reasonable to believe that the evolution of adiabatic shear localization in a rapidly deforming metal involves 
the propagation of an extending shear band as is suggested by the study of Marchand and DufQ (3. There will be a 
shear-band tip or process zone. Within this shear-band process zone, shear stress will be expected to relax from the 
ambient temperature flow stress value in the metal near the front of the process zone to the significantly lower 
value at the back of the process zone corresponding to the near-adiabatically heated shear-band material. The ther- 
mophysical state within the process zone will be transitional in that stresses and temperatures will change rapidly. 
Behind the shear band a quasi-steady state is achieved in which stresses and temperatures change slowly. It can 
also be expected that most of the dissipation in the propagating shear band will occur within this process zone. 

In the present analysis the simplifying approximations illustrated in Fig. 1 are made. Namely, it is assumed that 
shear stress and dissipation rate are finite only within the shear-band process zone. Stress and dissipation rate are 
assumed zero behind the process zone in the region of quasi-steady behavior. That this behavior is not strictly cor- 
rect is seen by recognizing that maintaining an elevated temperature within the quasi-steady zone requires a 
reduced but finite dissipation rate. Nevertheless this approximation lends itself to useful analysis of the shear-band 
processes. 

Three characteristic lengths emerge from the analysis as descriptive of the shear-band process zone. First, is the 
length of the shear-band process zone xSbpz which, as illustrated in Fig. 1, defines the extent of the shear band 
through the transition region from inception to entrance into the quasi-steady zone. This dimension is analogous to 
the process zone length identified in the propagation of a ductile crack. Second, is the characteristic width of the 
shear-band process zone xsbt,. One could expect, in application, that this dimension would be time dependent. 
The width xSbtw is assumed to be constant in the present model. The third characteristic length is the shear-band tip 
displacement xSbrd which determines the extent of shear displacement of adjacent walls of the band upon transition 
into the quasi-steady zone as shown in Fig. 1. This property would be analogous to crack opening displacement in 
ductile fracture. 

I 
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Fig. 1.- Geometry of the front of a propagating shear band. 



In determining these lengths and other properties descriptive of the shear-band process zone in the following anal- 
ysis, it will be assumed that the goveming thermomechanical differential equations are functions of only a single 
spacial coordinate x which is the normal distance from the planar shear band as seen in Fig. 1. The assumed inde- 
pendence of the coordinate y would seem reasonable justified if xSbpz >> xSbtd >> xSbtw. The extent to which these 
conditions are realized in application must be considered. 

3.- Analysis of the adiabatic shear-band process. 

The equations goveming planar rigid thermoplastic shear follow from momentum and enelgy balance. They are, 

where vy (x,  t )  is the velocity, z (x ,  t )  is the shear stress, and 8 (x, t )  is the temperature excursion above ambi- 
ent in the region of the shear band. When plastic dissipation (assumed to be totally thermal in the present analysis) 
leads to thermal softening, localization of shear deformation is predicted. Extent of the transient localized region is 
determined through the goveming equations from a competition of thermal diffusion and momentum diffusion 
effects. In the present study a simpler problem is investigated. The decreased complexity of the material response 
model is offset by the increase in tractability of the resulting governing equations. 

In the model, material within the shear band is considered to be separated from exterior material by a distinct inter- 
face and is treated differently. The model has been described in an earlier study (I7) and is extended to address the 
different emphasis of the present investigation. Material response in the vicinity of the planar adiabatic shear band 
assumed in the model is illustrated in Fig. 2. The sense of the volume-preserving shear flow is indicated in the Fig- 
ure. The shear band is assumed to have a non-changing thickness a. Shear deformation within the band is uniform. 
Shear flow in the body that is not perturbed by the shear banding process occurs at a constant flow stress zy.  As 
stress relaxes within the shear band while deformation evolves, stress release propagates outward into the undis- 
turbed media as an interface separating plastic flowing material in front of the interface and rigid material behind. 

RIGID RIGID-PLASTIC 
REGION 

+ I \ 
PLASTIC 
REGION 

Fig. 2.- Configuration for a rigid-plastic solution for stress release from a one-dimensional 
thermal softening shear band. 
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During deformation, temperature rises within the shear band according to a rule relating heating and plastic dissi- 
pation. Heat conduction out of the shear band and into the neighboring media is also accounted for. A heat transfer 
coefficient relating the temperature difference and the thermal conduction characteristics of the material is defined. 
Material outside of the shear band is assumed to remain at the knbient temperature. Thus a single temperature 6 
characterizes heating above ambient within the shear band. 

A Lagrangian coordinate system (coordinate x normal to the shear band and coordinate y in the direction of flow) 
is attached to the shear band system. The point x = 0 corresponds to the center of the shear band. It is assumed 
that the extent of the problem is such that derails of the shear band can be collapsed to a boundary condition at 
x = 0. A boundary displacement y represents the magnitude of shear-band slip at x = 0. An interface position 
5 identifies the Lagrangian position of the rigid-plastic interface. 

The solution for the motion follows from a method initially pursued by Mott c8) and extended in later work ('".I9). 
Accordingly, the domain of interest includes the half space x 2 0, which, at t = 0, is undergoing uniform shear in 
the y direction. Material response is assumed rigid plastic with the body deforming at a constant strain rate j and 
at a flow stress 2 . Consequently, the initial velocity field is given by vy ( x )  = j x .  At t = 0 a shear band ini- 

Y 
tiates in the plane x = 0 and subsequent stress z on this boundary will decrease with time according to the ther- 
moplastic pmperties of the shear-band material. 

Using momentum conservation, energy conservation and compatibility, the system of ordinary differential equa- 
tions is obtained. 

In the energy equation c, and Xa are an area heat capacity and a heat transfer coefficient for the shear band, 
respectively. These propeaies are approximated by c, = pca/2 and X, = 2 x / a 2  as was done in Grady and 
Kipp (I7). c and 'x, are the bulk specific heat and thermal diffusion coefficients, respectively, for the material of 
interest. 

The treatment of equations (3) through (5) will use methods which, although approximate, provide the specific 
relations for the shear-band process zone which are sought. The approach assumes that the stress difference in 
equation (3) grows linearly with displacement to the flow smss Ty at a critical displacement . That is, 

B is important to recognize that this relation is not a constitutive assumption. It is an assumed form for the solution 
which simply requires that softening within the shear band lead to this particular stress-displacement behavior. Dis- 
placements larger than are not of interest in the present analysis. 

Substitution of equation (6) into equation (3) decouples the mechanical system of equations, 



from the energy equation and thermal considerations which are then treated separately. Subject to the initial condi- 
tions W (0 )  = 5 (0)  = 0,  solutions for equations (7) and (8) are readily found, 

From equation (9) a critical time t,, when W = y,, is solved for, 

(EQ 10) 

(EQ 11) 

Thus solution of the mechanical system of equations leads to a correspondence between a critical displacement of a 
shear band at which the shear stress relaxes to zero and the time to achieve that displacement. A requirement of 
energy consistency is now placed on the motion which leads to a further independent correspondence between tc 
and W,. 

Relaxation of stress during deformation of the shear band is assumcd to be due to the thermal softening nature of 
the shear-band material. The elementary constitutive relation, 

z = z, ( 1  -a0) , (EQ 12) 

where a is a thermal softening coefficient, is assumcd to characterize the thermal softening properties of the shear- 
band material. The time dependence of the shear-band temperature resulting from the mechanical solution is then 
determined, 

It is readily seen by direct substitution that equation (13) does not satisfy the energy equation. Instead, the weaker 
requirement of global energy consistency is imposed by integrating the energy equation over the critical time t,, 

Carrying out the integration leads to, 

(EQ 14) 

(EQ 15) 

Equation (11) and (15) provide two algebraic relations which can be solved for the critical displacement vc and 
the critical time t,. In particular, solving for the critical displacement yields the implicit relation, 

At this point, properties specific to the shear band are introduced. Energy dissipated within the shear band as defor- 
mation proceeds to a critical displacement y ,  is identified as T, = (2,\lrc) /2. Consistent with concepts of frac- 
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ture mechanics, r, is an energy per unit area dissipated within one half of the shear band. Also bulk thermal 
properties for the shear-band material are introduced through the approximations c, = peal2 and 2, = %la2. 
Substituting into equation (16) yields, 

Equation (17) provides an implicit relation for energy dissipated within a shear band as the shear-band stress 
relaxes from the flow stress z to zero due to adiabatic heating within the band. The dissipation energy is a function 
of thennomechanical materid properties and the width of the shear band. The functional dependence of the dissi- 
pation energy on the shear band width is shown in Fig. 3. A local minimum, with increasing dissipation for both 
larger and smaller shear-band widths, is indicated. The physical processes responsible for the observed behavior 
are reasonably clear. For thinner bands the enhanced thermal diffusion limits the rate of thermal softening and leads 
to excessive dissipation. Thicker bands are effectively adiabatic. However, the diffusion of momentum (inertia) 
into the shear-band vicinity again limits the rate of thermal softening and also leads to excessive dissipation. Shear- 
band thicknesses near the local minimum properly balance thermal and momentum diffusion providing the rnini- 
mum possible shear-band dissipation. 

THERMAL 
I DIFFUSION 

MOMENTUM 
DIFFUSION 1 

- - 
0 I 2 3 4 

SHEAR BAND WIDTH (a/a,,) 

Fig. 3.- Plot of the energy dissipated in the shear-band process zone as a function of the shear-band width. 

In the present study it is postulated that in application, forces are brought about which lead to shear-band thick- 
nesses consistent with a minimum dissipation energy. Using equation (17) an optimum shear-band thickness is 
derived, 

The dissipation energy corresponding to a thickness a, is, 



4.- Calculation of shear-band properties. 

In this Section the one-dimensional rigid-plastic analysis of shear-band evolution will be used to infer the approxi- 
mate geometry and kinematic properties of the inherently two-dimensional process zone region of a propagating 
shear band. To quantify the calculation and to provide a focus for discussion, material properties relevant to shear 
localization in 4140 steel will be used. The same material was used in explosive fragmentation experiments by 
Grady and Hightower (aO), which provided the motivation for the present investigation. Critical material properties 
are contained therein. 

Referring again to the characteristic dimensions of the shear-band process zone identified earlier in Fig. 1, it is con- 
cluded that a reasonable estimate of the shear-band width xSbtw is provided by the optimum shear-band thickness 
from equation (1 8), 

Based on the material properties for 4140 steel a value of xSblw = 6.7p.m is calculated. A strain rate of 
j = 1 . 6 ~ 1 0 ~ 1 ~  used in equation (18) is consistent with explosive fracture experiments on the same steel c"). This 
calculated value agrees remarkably well with the thickness of arrested shear bands observed in micrographs of 
fragments examined in the same work which were about 7 to 10 pm in thickness. Studies of Giovanola e )  and 
Marchand and Duffy (%) on 4340 steel and HY-100 steel, respectively, both yield shear-band thicknesses of about 
20 pm in torsional Kolsky bar specimens. 

Within the present model, energy dissipated in the shear band is assumed to occur entirely within the shear-band 
process zone. The results are, of course, subject to the approximations introduced there, but should provide a rea- 
sonable indication of actual behavior. The analysis leading to equation 19 for the dissipation in the process zone 
provides the shear-band dissipation energy, T s  = T,,. Again using properties for 4140 steel, a shear-band dissipa- 
tion energy of Ts = 31,600 ~ / m ~  is calculated. (A value of 19,000 .T/m2 calculated in the work of Grady and 
Hightower p) is in e m r  because Y rather the T was used in equation 19.) Note that T s  s p ( c / a )  xSbm and, 
since 8, = l/a is the temperature rise through h e  shear-band process zone, is equal to twice the heat energy 
developed in the shear band. This leads to the reasonable conclusion that half of the dissipation contributes to tem- 
perature rise while half is conducted as heat out of the shear band. 

The extent of shear displacement within the process zone xSbtd is readily calculated from 

For 4140 steel we calculate xSbtd = 230 p.m. This implies a total shear strain of about 35 within the shear-band 
process zone. Note that xSbtd >> xSbp which was one of the earlier criteria suggested for applicability of the one- 
dimensional rigid-plastic analysis within the process zone. 

At this point it is of interest to compare predictions with adiabatic shear-band properties of Giovanola C) on 4340 
steel. Using high speed photography in conjunction with standard Kolsky bar diagnostics, Giovanola was able to 
establish the nominal shear-band width along with the shear strain and energy dissipation in the shear band corre- 
sponding to the time of loss of shear stress in the adiabatic shear-band process. The properties from this experimen- 
tal study can be compared directly with the predictions of the present investigation. A measured dissipation eneqy 
of rs = 90kJ compares with a prediction of rs = 44.7 kJ. A measured shear band width of 
xsbt, = 20 pm compares with a prediction of xSbrw = 9.5 p.m. A measured shear-band strain of ysb = 17 
compares with a prediction of ysb = 35. A shear strain rate of 40001s was estimated from Fig. 2 of Giovanola e). 
The agreement between experiment and theory within a factor of 2 to 3 is encouraging considering the clear differ- 
ences in conditions and materials, and the simplifying assumptions in the model. 

5.- Closure. 

In the present study an analysis of the adiabatic shear-band process in metals based on a one-dimensional rigid- 
plastic model originally pursued by Grady and Kipp (I7) has been extended to examine the physical characteristics 
of the tip of a propagating shear band. Because of the simplicity of the model, physical insight is revealed which is 
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not readily extracted from more complex analyses. Application of the model and solutions of the resulting govem- 
ing equations requires approximating assumptions which may be overly restrictive. On the other hand, results of 
the analysis seem intuitively reasonable and are in acceptable accord with observed characteristics of dynamic 
shear bands in steel. 
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