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Abstract. We develop new optical methods using transmitted polarized light for the char-

acterization of the out of plane component nz of the director field in a
weakly distorted planar

nematic layer. In extraordinary light, we relate the angles of aperture of the caustic surface to

the local amplitudes of the nz distortion. In ordinary hght~ a new type of contrast due to the

amsotropic light scattering is
shown to give the map of n(. We apply our methods to the study

of the director distortions occuring in the thermal convection.

1. Introduction

Among the methods used in experimental physics for the characterization of continuous me-

dia, the optical ones have the important advantage of being non-perturbative. For instance,
in hydro- or aero-dynamics, the shadowgraph method can give access rather directly to the

gradients of the refractive index~ and thus to some local fields of the fluids such as the den-

sity or the temperature field [lj. The interpretation of the images is usually made under the

assumption of small deviations of the rays. This restriction breaks down in several cases, for

instance in nematohydrodynamics because of the high birefringence of nematic liquid crystals.
In this article~ we develop new optical methods for the local or global characterization of the

director field in a uniaxial nematic layer. These methods might be applied to a wide class of di-

rector distortions~ for instance those obtained in
the study of the transition to spatio-temporal

complexity in liquid crystals [2j.
The optical axis in uniaxial nematic liquid crystals is the director field n~ the average ori-

entation of the rod shaped molecules. One distinguishes extraordinary light~ where the electric

field has a component along n~ from ordinary light, where the electric field is perpendicular
to n.

In extraordinary light the ray index depends on the angle between the Poynting vector and

n: this leads in general to a spectacular focusing of the rays onto caustics~ and it explains
why this light is most commonly used for the geometrical characterization of the director field

(spatial periodicity~ etc.). Also~ some measurements of the heigth of focusing of the caustic
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cusps have been used to extract the amplitude of the director distortion [3j. The accuracy of

these measurements is however poor, since because of the nonzejo value of the wavelength,
the caustics appear to have a finite thickness, which is particularly large at the cusp points.
We will show in section 2 that the amplitude of the director distortion

can be extracted more

easily from the measure of aperture angles of the caustics.

In ordinary light, the index is independent of the director field, so usually weaker effects are

obtained as compared with extraordinary light. For this reason~ the ordinary light was seldom

used in nematodynamics studies. We will show in section 3 thit~ in thick nematic layers,
interesting anisotropic scattering effects lead to a contrast explicitly function of the angle of

the bend distortion averaged over the layer.
Our methods will be illustrated in the case of the thermoconuechon of an horizontally ez-

tended planar nematic layer~ where the director is set to an
horizontal direction k at the

horizontal boundary plates, and thus in the bulk n =
k at rest A) light beam of parallel rays

is sent through the layer from below (along the vertical direction I). The extraordinary light
is selected by a polarizer parallel to k~ and the ordinary light by I polarizer perpendicular to

k, i.e. parallel to §. Distortions of the director field are obtained by heating from below~ when

the applied vertical thermal gradient AT exceeds a threshold valie ATC [4j. In our cells, of

typical thickness d
=

1.3 mm, ATC cd I °C. Near threshold~ on~ obtains the normal rolls,
of wavevector q =

qk, i.e. of axis normal to the anchoring direction k. When the reduced

control parameter e =
AT/ATC I is increased (nonlinear regime) the global symmetry of the

system § -+ -§ breaks down~ and the system bifurcates towards oblique rolls, of wavevector

q =

qk + pi with p ~ 0 [5]. Further increasing e leads finally to a varicose structure [5j~ that

we
will more particularly study in Section 3.3. Our experimental results are obtained at zero

or very weak director-stabilizing magnetic field H
=

Hi (H ~ 3HF where HF is the charac-

teristic splay Fr4ederickz field). We use the nematic liquid crystal SCB for which all material

parameters are known. We study hereafter the regime of the "weak distortions" at not too

high values of e (e ~ 0.7), the director field appears to vary continuously on a characteristic

scale of the order of the cell thickness. More precisely, we will use in model calculations the

following simple form for the distortion of the vertical component of the director (which turns

out to play the leading role~ see
below)

nz(r~ z)
=

fiz(r) sin(xz). (I)

There we note r =
xi + vi the horizontal position in the layer~ and z the vertical coordinate.

The lengths are scaled in units of the layer thickness d z =
0 (resp. I) is the lower (resp. upper)

plane of the layer. The form (1)
can

be justified theoretically
in t§e weakly nonlinear regime

e < 1 [6~ 7j. As we will see~ (I) allows a
good reconstruction of all the optical properties of the

structures in the weak distortion regime~ and it appears therefore ti be a good approximation
of the nz field in this regime.

2. Extraordinary Light: the Caustics

2. I. PROPAGATION OF THE RAYS. In a
extraordinary light wave, the direction of propaga-

tion of the energy~ i.e. of the ray~ pointed by the Poynting vector I~, differs generally from the

direction of propagation of the phase, pointed by the wavevector k. Consequently the energy

velocity differs from the phase velocity, and two different optical indices
must be introduced [8j

the ray index nr associated with the energy velocity~ and the phas~ index np associated with

the phase velocity. The ray index depends on the angle jr
=

(4)1 according to:

n)
=

n( cos~ jr + n( sin~ fir (2)
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where no is the ordinary index and ne is the extraordinary index [8, 9j. For the nematic liquid
crystal SCB at a mean temperature of 28 °C used in our experiments, ne =

1.689~ no =
1.536,

and thus the birefringence An
= ne no =

0.153 [10j. The phase index depends on the angle

fp
= (n~ k) [8]:

~

/2
~~2~~

~
~~j2~~

~~~

P o e

fp differs from jr by the angle
=

(P, k):

~2
=

fp jr
=

fp arctan(fl tanfp). (4)
n~

The Fermat principle still applies in anisotropic meiia, and it expresses that the extraordinary

rays propagate m
order to minimize the optical path turds [11]. The variation of nr (2)

due to the director distortion, i-e- to the variations of fr~ is An: it represents here 10% of

the index value. On the other hand, in thermoconvection, the temperature dependence of the

indices [10]: ~
~'~~~~ ~

~~
~/ ~'~~~~ ~ ~

induces, for a typical temperature variation of1°C, variations of nr of less than 0.1%. The di-

rector induced index variations are much larger than the temperature induced index variations~
and thus no and ne can be taken as constant in (2).

In the propagation of an extraordinary ray inside the nematic layer, the direction of P

tangent to the ray stays close to its initial value i~ and thus the angle jr
=

(n, P) is quasi

insensitive to any horizontal rotation of the director, as we checked it in our calculations. This

implies that~ of the two components of n, ny and nz
(they give n~ through the geometric

condition n~
=

1), nz controls the deviation of the rays, whereas ny can be taken equal to zero.

In the case of the roll convective structures obtained in convection experiments near threshold~

the nz distortion is given by (1) with:

fiz (r)
=

Nz sin(q r) j5)

where q =
qk + pf is the wavevector of the rolls. From (2) and (1), (5) we write the Euler-

Lagrange equations associated with the Fermat principle. They are solved numerically by the

Runge-Kutta method of order 4. The caustic points are then deduced from the emerging set

of straight rays by using the general method of [13].

2.2. GEOMETRY OF THE CAUSTIC. The axis of the rolls is a
direction of translational

invariance, and consequently one has only to study the intersection of the caustic with the

plane (q, I). This intersection is composed of pairs of fold lines with opposite curvature which

meet at cusp points: see Figure 1~ which presents typical results of our calculations~ for rolls

with q =
xi (the rolls are generally square-shaped, I.e. of period 2 in units of d) The cusps

are located above the separation planes between two adjacent rolls~ i.e. above the up or down

flows which are respectively the warm and cold flows in thermoconvection. In the experiments,
the liquid crystal is confined between glass plates. The thermal regulation is insured by a

layer of circulating water along those plates~ and finally another glass plate is superimposed

on top of the convection cell. This layered structure complicates the calculation of the height
of the cusps: this focusing can occur inside any of the top layers depending on the amplitude
of the distortion~ and one has then to take into account the index and the thickness of the

various layers. On the contrary, the two local maxima al and a2 of the deflection angle I(z)
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Fig 1. Real caustics associated with a normal roll distortion given by equation (5)~ with q =
xi

and Nz
=

sin 40°. The virtual caustics~ envelope of the continuation of the outcoming rays and

located below the layer~ are not shown. The director distortion is sketched by the rod-like "molecules"

in the mid-plane of the layer~ and the corresponding flow by the dashed lines with arrows. The three

cusps shown are associated respectively to up-flow, down-flow~ up-flow edges In the experiments, the

nematic layer is sandwiched between glass plates~ but for the computation of the half angles oi and

ct2 of aperture of the cusps~ we can assume that air directly surrounds the nematic (see text). The

angles ct, are measured experimentally by intercepting the cusp at a
diitance h from the top of the

cell with a screen One then observes a bright band (picture shown m
insert) the length of which can

easily be measured.

measured in the air (Fig. 1) do not depend on the top layers of the experimental setup because

of the transitivity of the laws of refraction. The angles oz can thus be calculated assuming
that air immediately surrounds the nematic~ i.e. just taking into account the refraction at

one dioptre nematic lair. Moreover, these angles~ associated with the asymptotical branches of

the caustics, appear as the half-angles of aperture of the cusps in
tie

air~ which can be easily
measured experimentally.

We have numerically computed the angles az as a function of t(e amplitude Nz of the nz

distortion (5) for q =
xi. We have found the following scaling law:

ai =
13.8 Nj,

02 =15.6 Nj (6)

with the angles az in degrees (Fig. 2). This leads to a measurement of the amplitude Nz
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Fig 2 Numerically computed values of the half-angles o, of aperture of the cusps (see text)~
as a

function of the amplitude Nz of the nz distortion (5) with q =
qk. Fits of the angles a, in Nj

give

very good results.

according to the very simple formulae:

Nz
=

0.269@1 Nz
=

0.254@ (7)

These relations are also valid in the case of oblique rolls structures, at least for not too large p
values. We computed as a test the values of az(Nz) for q = 7r, p = q tan10°~ and~ in addition

to the nz distortion, a ny distortion given by ny(r~ z)
=

0.5 sin(7rz)~ which has been predicted
to develop in oblique rolls by the weakly nonlinear model [7j. The relations (6)~ (7) still hold in

this case~ with coefficients that have varied of less than I$iu. On the other hand~ the coefficients

in (6)~ (7) depend
on the modulus (q( of the wavevector. In the domain 2.80 < (q( < 3.50,

arctan(p/q)( < 10°~ where the wavevector of the rolls is found experimentally~ we calculated

the following relationship:

It shows that, for the same Nz values~ the angles oz increase with (q( since then the gradients
of the director increase. However~ the amplitude of the variations of the coefficients (8) is of

less than +6%
m the domain 2.80 < (q( < 3.50~ so in the following we will only use (7) for the

estimation of the accuracy of our method.

Experimentally, the large value of the rolls diameter allows us to use a small laser beam

to form, by illumination from below~ just one cusp and the associated cone. We intercept
this cone on a screen located at a distance h of the upper boundary of the cell, and obtain

a bright band (Fig. I) of length lz along k (i
=

I for down-flow cusps, 2 for up-flow cusps).
Assuming that the cusp point is located right at the upper boundary of the cell, we

obtain

az =

D~~ arctan(lz /(2h)) (with D
=

7r/180 to have az in degrees). In fact~ the height hc of the

cusp point is given, for not too large Nz values~ by [14j:

o.5 d
hc ~d j

An interesting aspect of our method is that the experimental error on the real value of h,
&h

~ hc~ is in fact negligible because of the small values of az at small Nz. Indeed~ the error
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on az is given by:

~°~ ~ ~ ~

l +
ta/~ (Dog

~j
~ ~~~~~°~~

where the factor tan(Daz)
~w

Nj will balance the divergence of &h
~w

hc
~w

Nj~. We estimate,
with our experimental values d

=
1.52 mm~ h

=
273 mm, &lz =

I iTim, that the error on oz is

always less than o.15°. Since aj is the smallest angle~ i.e. the one' which produces the largest

error on Nz, we then deduce from (7):

&N~ ~

°.°2
~

0.005

@ N~

Therefore this method is inadequate for the measurement of small amplitudes which lead to

extremely small cusp angles. The smallest measurable amplitude~ with an accuracy of10%

(1.e. &Nz /Nz < 0.I), is of the order of Nz
=

0.2
=

sin12°.

Our numerical results imply that~ independently of the amplitude of the distortion~ the ratio

a21ai should be constant. As
a first test of the method

we
computed from our experimental

measurements and for not too small Nz~ the mean value and the standard deviation of this

ratio (~). We obtained:

<
°~

>= l.14 <
(°~ )~-

<
°~ >~>~/~= 0.02

al al al

in excellent agreement with our theoretical predictions, which give a21ai
=

1.13 + 0.015

(depending on (q(, see
(8)). It must be noted that our measurements were performed in

various conditions~
on normal and oblique roll structures~ at various magnetic fields. The

extremal values that we measured for a21ai (with
a relative error < 15%) are 1.09 and 1.21.

2.3. APPLICATIONS. By this method we could determine for tie first time~ from the mea-

surements of the amplitude~ the characteristic time To of the therm'oconvective instability, and

thus we could check the linear model developped for this instability [4~ 6j. After applying a

step of the thermal gradient from above to slightly below threshold, the decrease of all convec-

tive amplitudes is governed by the linear evolution operator which~ for distortions close to the

critical one (the one which develops spontaneously just above threshold) reduces to:

btNz
=

aNz rb Nz(t)
=

Nz(0) e"~

where a is the growth rate of the bifurcated amplitude. For small values of the reduced control

parameter e, the growth rate should be
a =

Tp~e. Figure 3a shows a typical sequence of Nz

measurements performed after a step to below threshold. During the experiment q (needed
in (8)) does not vary~ and is measured once using a numerical Fourier transform of the initial

roll pattern. The amplitude is found to follow closely the expected exponential decaying law~

as it is confirmed by the comparison with exponential fits. These fits give the growth rate

a~ and To is estimated as efla~ where ef < 0 is the final value of e As a function of the

secondary parameter H which is the stabilizing magnetic field along z, measured in units of a

characteristic Frdedericksz field as in [6], we obtain finally for To (H)
a good agreement with the

predictions of the linear model [6]~ as shown in Figure 3b. Our method is well adapted to the

study of roll structures with rather high Nz amplitudes~ and we will present in a
forthcoming

paper a study of the nonlinear saturation, i.e. the law Nz(e)~ by tiis method.

(I For small Nz~ the relative error on ct21ai1 which we estimated as 0

~oi

Cf 0 03/Nj, diverges. We

only retained the measurement where this error was smaller than 15%.



N°12 NEW OPTICAL METHODS IN NEMATIC LIQUID CRYSTALS 2465

A§ To [mini

. exp.
~~

. exp
° S *

~
fit by exp(at) linear tl1

~ ~
4

,
1S

° ~

~
' i I lo

o 2 j
S

0 I a) b)

~ ~
0 10 20 30 40 50

~
0 2 3

t [mm] reduced magnetic field Ii

Fig. 3. a) The convection amplitude Nz after
a step from et =

0.06 to ef =
-0.17. The stabilizing

magnetic field is H
=

1.25 in units of the characteristic Fr4edericksz field (see text). Note that the

errorbars increase when Nz becomes too small. The fit shows that the decaying law is in exp(at)~ with

a =
-0.0223 min~~, from which one obtains To

=
7.62 min b) deduced values of the characteristic

time To
i

as a
function of the stabilizing magnetic field. They are in good agreement with the predictions

of the linear model (dotted line).

3. Ordinary Light: Anisotropic Scattering

For other convective structures than periodic rolls, the geometry of the caustics due to the

deviation of the extraordinary rays can be very intricate [12]. Moreover, the caustics do not

give in general a direct image of the director field, in the sense that the contrast cannot be

expressed as an explicit function of the director field. We will now see that~ on the contrary~
in ordinary light and in thick layers, a contrast can be obtained which is easily interpretable
for all types of weak distortions of the director field.

The propagation of the ordinary rays follows the Fermat principle now applied to the optical
path associated with the index no. Since no is only function of the local temperature, and

dno/dT > 0, one expects the rays to be focused above the warm flows, and defocused above

the cold flowsj ultimately a caustic should be formed, but only far away from the cell, since

the temperature-induced index variations are very small. Experimentally~ we observe in trans-

mitted ordinary light a weak contrast immediately above the cell. The corresponding intensity
profiles~ taken perpendicularly to a roll structure~ present a period half of the one expected if

the contrast were due to the temperature-induced index variations (Fig. 4). Thus intrinsically
anisotropic effects totally overcome the effect of the temperature-induced variations of no In

fact~ we can even deduce from Figure 4 that a simple expression of the transmitted intensity
would be:

1(r)
ct lo + Ii sin~jq r)

which coincides (compare the above equation and (5)) with:

1(r)
ci lo + I( fi((r).

We will now interpret and justify this contrast in if.
A first idea is to look for scattering effects~ which are very important in nematic liquid

crystals. In effect the thermal fluctuations of the director orientation are only weakly damped
in nematics, and may therefore induce a strong light-scattering [lsj. It was shown for instance in

[16j that a homeotropic (n
=

I) layer scatters less than a planar (n
=

k) layer when illuminated



2466 JOURNAL DE PHYSIQUE III N°12

wf
c c

Extraordinwy light

I(x) ia.u,j

Ordinary light

0 2 4 6 8 lo

X

Fig. 4. Typical intensity profiles obtained in transmitted polarized light~ with
a large depth of field

(cd 10 mm) objective focused above the top of the layer The position x in the horizontal plane is

indicated iii units of the layer thickness; the period of the convection rolls is 2. In extraordinary light
(thin line), one observes not only the real cusps, i-e- the warm-flow (wf') and cold-flow (cf) cusps~ but

also the virtual cusps, associated with the centers (c) of the rolls. In ordinary light (thick line)~ the

contrast is not interpretable in terms of the temperature-induced variations of the index~ since warm

and cold flows appear identically dark

in ordinary light: therefore the homeotropic layer transmits more light and appears brighter
when observed from above. In our experiments~ the director is raised in the centers of the rolls~

i.e. close to the homeotropic geometry: the same scattering effects could then be responsible
for the brighter aspect of the centers of the rolls. The authors of [16j investigated (both
theoretically and experimentally) the special case of homogeneous nematic layers both in the

planar and in the homeotropic geometry. We firstly propose hereafter a physical interpretation
of the difference of transmitted intensity between the homeotropic and planar nematic layers
We secondly calculate theoretically the transmission coefficients for a layer where the director

is oblique (n homogeneous~ but making a finite angle with k and I)', and then for a layer where

the director is distorted We end by some applications to our experiments.

3,I. INTERPRETATION OF THE SCATTERING EFFECTS. The scattering Cross-section from

an incident plane wave of wavevector ki and of polarization I to an outgoing plane wave of

wavevector kf
=

ki + p and of polarization f has been given for nematic liquid crystals in [16j
(I and f are unit vectors). It should be valid in our case, assuming the hypothesis of local equi-

librium: on a scale large as compared with the characteristic value of 27r/ (p( ci lo wavelength
of the light~ but small as compared with the macroscopic dimensions of the layer~ the statistical

average no of n can be considered as homogeneous~ and the fluctuations &n of n as given by
the equilibrium thermodynamics. Because of non-equilibrium effects, i. e.

of the couplings with

the other fields (which lead to the instability and create the distortion)~
a renormalization of

these director fluctuations should only come into play for scattering wavevectors p close to the

wavevector of the distortion [17j. But this corresponds to very small angle scattering (typically

at
(Of)

ci lo Id1 0 6 ~m/I
mmcd 0.0006 rad) which we in fact include experimentally in

the transmitted intensity. We therefore do not need to take into ac(ount these renormalization

effects for the estimation of the intensity scattered at angles larger than 0.1° ci 0.002 rad., and

scattering wavevectors much larger than the distortion wavevector. Note also that the effects

of small magnetic fields on the light scattering properties are negligible [16j To write down the
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scattering cross-section formula, one uses an orthogonal basis (ki, k2, no)
on which the director

fluctuations are projected according to:

n = n0 + dn
= no + ~ nnd~.

a=I12

The scattering cross-section is [16j:

in which one distinguishes three factors:

the geometrical factor (eauJ~/(47rc~))~ np(bp)/(no cos~
&)~ where ea =

n( n( is the di-

electric anisotropy, uJ
the frequency and c the velocity of light in vacuum. The angles

bp =
(n~ kf) and are associated with the scattered wave and differ from zero only in

the case of an extraordinarily scattered light wave. This factor presents small variations

(of order 10% at most) as a function of the scattering geometry, since np (3) is always of

the order of no, and (4) is always small.

the thermodynamic-energetic factor kBT/Kp~, which is the amplitude of the director

fluctuations of wavevector p. There kB is the Boltzmann's constant~ and Kp~ the ener-

getic cost of this modulation, K beeing an average of the splay, twist and bend elastic

constants (we use the one elastic constant approximation in order to simplify the cal-

culations). The divergence of this factor for small p means _that the long-wavelength
fluctuations are of course the strongest ones~ and implies that the scattering can only be

important at small angles (ki~ kf).

the polarization factor £~~~ ~[...]~ which can be shown to result directly from the pro-

jection of the "director-radiatid" dipolar field on the final polarization f [lsj. This factor

depends strongly of the scattering geometry~ since it can cancel for some of these geome-

tries.

As a consequence~ the values of the polarization factor at small angles will control the value of

Us (Pi f).
We now consider our two limit cases of either a planar (director horizontal no #

k)~ or a

homeotropic (director vertical no =
I) nematic layer~ illuminated from below m ordinary light:

k~
=

I and I
=

f. Thus no I vanishes~ and this reduces the polarization factor to:

(f'~0)~ ~ (An'i)~
"

(f'~0)~ (~°)

n=1,2

since I belongs to the plane (AI1A2). This implies that the scattering will occur in extraordinary
light (if both I and f are perpendicular to no

i
i e. if the electric field is supposed to be always

perpendicular to the director~ it is clear~ from the symmetries of the nematic phase~ that no

anisotropic scattering effect can
occur). At small scattering angles~ since ki

=
I, one has also

kf ci I. We deduce therefore from the fact that f, k and P are coplanar~ and from the smallness

of the angle given by (4) (since n(/n(
is always larger than 0.75, one has~ Vbp in [0~ 7r/2j,

< 0.15 rad), that:

(o)~(m)t(oj+(o~)=j+J~j
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Fig. 5. Sketches indicating the physical origin of the difference of transmission of ordinary light
between a planar (left) and a homeotropic (right) nematic layer. In both~cases the light scattering may

be induced by the long-wavelength fluctuations (of small wavevector p) of the director orientation~

i e. at small angles (ki~ kf) between the wavevector of the incoming ordinary light and the scattered

extraordinary light. For the latter~ the polarization f stays roughly horizonta[ and therefore in the

homeotropic geometry (right)
no coupling ofthe electric field with the director can occur. Consequently

there is no scattering and the intensity of the transmitted ordinary light is higher~ as compared with

the planar layer.

Hence at small scattering angles, f stays roughly perpendicular to kf (like in light waves in

isotropic media)~ i.e. roughly horizontal. In consequence~ in the homeotropic layer, f has only

a very small projection on no =
i~ and the scattering intensity is very weak. On the contrary~

in the planar layer, the polarization factor (f no )~ can reach its highest possible value of I,

and the scattering intensity is strong. These effects~ sketched in Figure 5, explain why in the

homeotropic layer the ordinary light is almost completely transmitted, contrary to the planar

case.

In the more general case of a oblique director:

no "
k cos # + I sin # I I)

the highest value of the polarization factor at small angles will be reached for f
=

k~ and read:

(f.no)~ Cf(k.no)~cfcos~#cd1-#~.

Since this polarization factor controls the values of the total scattering cross-section~ we can

estimate that it will take a form in a b#~, and therefore that the transmitted intensity will

be a'+ b'#~ as it could be deduced experimentally.

3.2. CALCULATION OF THE TRANSMISSION COEFFICIENTS. We first consider the case of a

oblique layer~ where the director is homogeneously tilted as expressed by (11). The incident

ordinary light wave propagates vertically in the layer. In consequeice~ the polarization factor

simplifies according to (10), and the scattering can only occur in extraordinary light. All

geometry-dependent factors in (9) can then be expressed as a
fuiction

of the new variable

u = cos Hp. We also introduce b
=

ne/no as in [16j. The outlines of these trigonometric

calculations are the followings:

for the polarization factor~ since:

(Go)
=

(o)
+

(Go)
"

x/2 + fir
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~~ ~~~~~ ~~~~~~'
(i. no)~

=

sin~ fir

and it can be expressed as a
function of tan~ fir and then of tan~ b~ and u~ according to

the relation:

tan fir
=

b~~ tan b~

the phase index is:

~~~~~~
=

b [I + (b~ I)u~j~"~
=

n~(u)
no

the cos~~
=

I + tan~ factor can also be expressed as a function of tan b~ and u with

the relation (4).

Finally~ one obtains-

~~
°~~i~~~$~&

~ ~ "~~"~ ~~ ~~~

To compute the energetic factor p~~
=

(kf k~)~~~ we
need to specify the coordinates of the

wavevectors. We scale them in units of the wavevector of the incident ordinary light (k~( = no f.
According to (11)~ we can choose a basis (Ai, A2. no) such that:

k~
=

I
= A2 cos # + no sin # (12)

In this basis~ kf, of dimensionless norm equal to n~(u)~ is expressed in spherical coordinates

(bp~ ~7) according to:

kf
=

np(u) (AI sin bp cos ~7 + k2 sin bp sin ~J + no cos bp).

We then obtain:

p~
=

(kf ki)~
=

l + n)(u) 2 np(u) (cos bp sin # + sin bp cos # sin ~7)

In the total local scattering cross-section, which will be a function of the angle of the director

# only:
2n n

as(#)
= d~7 sin bp dbp as(p, f)~=0

p=0

the integration on ~7 can be calculated analytically. We obtain~ as a function of nz =
sin #

instead of #:

I~ (vi nz =

~~ ~~
~=0 P~

=
27~ (1 n~(U))~ 4 "P(") (I + n~ Iv))

" nz + 4 n~ Iv) (n~ + U~) ~~~~

where the scaling factor on
p~~ has been taken out Finally:

~
j~

kBT
jbJj~

(

~
f~ du (1- u2) nj(u) i~(u;nz). l13)

8 z ~167r~
c Kn~b

~=-i

The last integral can only be numerically computed.
The prefactor is~ m the case of 5 CB at 28 °C (K

=
5.59 pN [18~19j)~ with the optical indices

given in Section 2.I.

~BT
(2K)

~ E~ ~BT Ylo
~j~ ~-2)2 ~~ ~-l

167r2 lo Kn]b4 4K lo
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05

o 4 num. result

fit by ,~~ n/

0 3

do O~(n~)

02

01

~~00
02 04 06 08' lo

n~

Fig. 6 Rescaled variation of the scattering cross-section between planar (nz
=

0) and oblique
(nz ~ 0) geometries ad(nz)

=
as(0) as(nz) The scale factor do

=
1 mm has been taken as a

typical layer thickness (see text) The scattering cross-section as(nz) decreases when one approaches
the homeotropic geometry nz =

1

Figure 6 presents our results
on

as(nz); since as(nz) indeed decreases when nz increases~ we

rather plotted ad(n=) defined by:

as(nz)
=

as(°) ad(nz) l14)

It is very well approximated, for (nz(
=

sin11 < 0.7( 1.e. (#( < 50°, by:

ad(nz)
=

lj~n) (15)

where the characteristic length is found to be:

(
=

2 7 mm

Let us now consider the case of a layer where the director field is weakly distorted along the

z direction. We introduce the angle #(z)
=

arcsinnz(z) between the horizontal plane and the

director~ and assume oblique anchoring boundary conditions:
n given by (11 at the boundaries,

with #
=

#(0) < 90° (note that #(0)
=

0 corresponds to the planar anchoring). We assume

that the director never gets vertical, so that the generalized principle of Mauguin [20j is valid.

It expresses that the incident ordinary light wave will propagate vertically, its polarization

I rotating so as to stay perpendicular to the plane (I,n)
=

(ki,n). Locally the scattering

geometry will therefore be identical to the one used m the previous calculations~ but possibly
rotated if there exists a smooth ny component The incident ordinary light wave still arrives

with ki
=

(ki(i~ and the director still makes an angle of 7r/2 #(z) with ki. Thus a basis

(AI1A21no which satisfies (12)~ with #
=

#(z) can still be chosen, and all our local calculations

are valid. The loss of ordinary light intensity by the scattering in the elementary layer [z, z
+dz]

being:

~~~~~~~~~ ~~~~

we obtain for the transmission coefficient:

~
~ii)I)i~ )~~

~~~ ~ /~
0

~~~~j~~~~~~~
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where, in the integral, our z
coordinates are still scaled in units of the layer thickness d. With

(14)~ defining To =
exp(-das(0))~ which does not depend of the director field in the layer, we

get:
~

T = To exp (d ad(nz(z))dz). (16)
~~~

For a homogeneous layer we have:

lnT=lnTo+dad(nz).

This gives a simple physical meaning to the curve plotted in Figure 6: do ad(nz), with

do
~

l mm~ is the difference of the logarithms of the intensities transmitted on one hand

by a oblique layer of thickness I mm
(inside which nz ~ 0) and on the other hand by a

planar
layer of thickness I mm

(inside which nz =
0).

Now~ in the case of a layer where the director component nz is in addition modulated as a

function of the position r in the horizontal plane~ the previous calculations apply locally. We

come back for simplicity reasons to the planar case, and assume sine vertical profiles, cf. (I).
If in (I) (fiz (r)( stays smaller than 0.77~ we can use the expansion (15) of ad (nz)~ and perform
the vertical integration in (16). This gives:

I ~~ ~~~ ~
21s

~'~~
9 lmm

This result proves that for all our thermoconvective cells, of maximal thickness 1.5 mm, the

higher order terms in (17) can indeed be neglected~ and the law in fi((r) deduced from the

experiments is valid. Moreover. this explains why these scattering effects have not been ob-

served in the electroconvective experiments, where the cells are of maximum thickness of order

100 ~m (for which d/9.I mm=0.01<1).
The consequence of the Mauguin principle~ that the final contrast is independent of ny~

is confirmed by our experimental observations on oblique roll structures~ where nonzero ny
components exist [7]. Indeed~ the intensity profiles (taken perpendicularly to the rolls) in

transmitted ordinary light are on oblique rolls identical to the ones observed on normal rolls

(as in Fig. 4).
We note finally that, in the case of a layer with a oblique undirectional anchoring~ where the

nz distortion takes the form nz(r~ z)
=

nz + fiz(r) sin(7rz), a contrast linear in fiz(r) is then

expected from (16), (15).

3.3. APPLICATIONS. We apply this method to characterize accurately a more complex

structure. This structure is the varicose~ which was obtained for the first time in thermocon-

vection in our experiments [5]. This structure had been first obtained in electroconvection [21].
We will now show that it can be reconstructed in good approximation as the superposition of

two roll structures. This implies that the fiz(r) field can be written~ at leading order~ as:

fiz(r)
=

A sin(q r) + B sin(k r). (18)

Here q is the wavevector of the primary oblique roll structure and k is a secondary wavevector.

since this structure appears as the result of a secondary instability ofthe oblique roll q structure
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:
'

,

Fig. 7 a) typical varicose structure, obtained in the thermoconvection of SCB, and imaged m

ordinary polarized light. b) numerical structure factor (square of the modulus of the Fourier transform)
of the above image The peaks positions and intensity are compatible with the ansatz (19), and lead

to the determination of the wavectors q~ k~ and of the ratio B/A (between the amplitudes of the two

modes, see
text) c) numerical image reconstructed m direct space with the bimodal model (18)~ (19).

[5,21]. We test the validity of (18) by imaging the structure in ordinary light, as in Figure 7a~

where we should observe according to (17), (18) a variation of intensity given by:

~2 j~2
1(r)

c~
fi((r)

=
-[I-cos(2q.r)]+AB[cos((q-k) .r)-cos((q+k).r)]+-[I -cos(2k.r)]. (19)

2 2

This means that the Fourier spectrum of our images must present only four main peaks centered

around 2q, q + k and 2k~ with the following powers (in arbitrary units)

li(2q)1
=

(, li(q
+ k)I

=

li(q k)I
=

ABI li(2k)1
=

(.
(2°)

Our varicose images, such that the one shown in Figure 7a, are digitized on a 512 x 512 pixel grid
in 256 gray levels~ and their Fast Fourier Transform is then computed. We show in Figure 7b

the deduced structure factor S
=

(I(~. It comprises three main peaks centered around 2q and

q + k, for which we obtain by integration on a few pixels around each peak:

(I(2q)(
=

0.371, (I(q + k)(
=

0.109~ (I(q k)(
=

0.128

We have not shown the peak at 2k which is very weak. This result agrees with (20), except
for the small difference between (I(q + k) and (I(q k) which may be due to experimental or

intrinsic inhomogeneities. The positions of the peaks allow one to determine the wavevectors q

and k. Moreover~ according to (20), and taking into account the fact that we do not measure

exactly the same values for (I(q + k)( and (I(q k)(,
we can derive a method of measurement

of the ratio B IA from:

I
-

~~~ ~ l~lql~~ ~~
~21)
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This gives here B/A
=

0.16, from which we get using (20) S(2k)/S(2q)
=

(B/A)~ « l~ and

thus one understands why the peak at 2k was nearly invisible on the structure factor. We

finally prove the validity of our model (18) by computing~ from the values of q, k and B IA
deduced from the Fourier transform of the image the numerical image predicted for I(r) (19).

We find a very good agreement between the experimental image Figure 7a and our simulation

Figure 7c.

4. Conclusion

We have developped in this article new optical methods for the characterization of distorted

nematic layers with planar anchoring boundary conditions. Our methods~ which use transmit-

ted polarized light~ allow rather directly a full characterization of the distortion of the vertical

component nz of the director.

In extraordinary polarized light~ we have proposed a new geometrical measurement of the

director distortion by measuring the angle of aperture of the cusps~ i.e. maximal deflection

angles. This measurement is easy to perform~ and does not depend on the precise experimen-
tal setup (by contrast with the classical measurement of the height of the cusp points). It

leads~ through simple nonlinear relations, to the amplitude of the distortion~ as we have shown

for structures of convective rolls. It is well adapted for the measurement of not too small

amplitudes. An extension of this method of measurement to the bimodal structures is under

study. This method could of course be generalized to other systems producing caustics, such

as isotropic thermoconvection.

In ordinary polarized light, we have calculated a new type of contrast~ explained by director-

induced scattering effects. This contrast gives the map of n( (r)~ assuming the simplest vertical

profile compatible with the boundary conditions~ but for any horizontal variations of the direc-

tor. It is, to our knowledge~ the first method in experimental nematodynamics which permits

to see directly a director component. It could of course~ be used in other experiments~ as soon

as the nematic layer is thick enough id j~ I mm) to permit the observation of scattering effects.

The values of the coefficients used in our calculations for other liquid crystals than SCB are

avalaible from the authors upon request.
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