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R4sumd. Cet article analyse la diffraction par des objets non-linAaires illuminAs par des

champs AlectromagnAtiques incidents et pdriodiques. Nous dAcrivons
une

formulation intAgrale de

la diffraction tridimensionnelle (vectorielle) par des objets diAlectriques IimitAs et nous dArivons

une
solution formelle

en
sArie. Puis

nous
obtenons

une solution numArique par discrAtisation

du modAle continu et par l'utilisation d'une procAdure de refroidissement statistique (ou recuit

simulA) pour rAsoudre la fonction d'Anergie rAsultante. L'article prAsente quelques rAsultats

numAriques obtenus pour des objets non-linAaires simples.

Abstract. This paper deals with the scattering by nonlinear objects illuminated by time-

periodic incident electromagnetic fields. An integral formulation of the three-dimensional full-

vector scattering by bounded dielectric objects is described and
a

formal series solution is ob-

tained. A numerical solution is then achieved by discretizing the continuous model and by using

a
statistical-cooling procedure (I.e., simulated annealing) to solve the resulting energy function.

Numerical results
on

simple nonlinear objects are reported.

1. Introduction

This paper deals with the electromagnetic scattering by nonlinear dielectric objects of limited

dimensions. In the last few years, the topic of nonlinear wave propagation has been exten-

sively investigated, especially for infinite and semi-infinite nonlinear media. Many interesting
phenomena (e.g., shock-wave generation and propagation, solitary waves, and soliton forma-

tion and decay) have been studied (see, for example [1-4]) and several applications have been

described in the literature. In this paper, ~ve aim to develop a
numerical approach to the

full-vector three-dimensional scattering by bounded nonlinear bodies of arbitrary shapes, illu-

minated by time-periodic incident electromagnetic fields. We consider nonmagnetic isotropic
dielectric objects, whose dielectric permittivities depend on the total internal electric fields in
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such a way that the objects keep their scalar nature (isotropic nonlinear material). We start

with an integral-equation formulation, the theoretical basis of which was first introduced in

reference [5] and subsequently discussed from a numerical point of view in references [6, ii
with reference to scattering in free space and in a rectangular waveguide excited in the TEio

mode. In particular, the present paper is focused on the problem previously addressed in

reference [6], where the nonlinear electromagnetic problem was described in detail. A formal

solution to the direct scattering problem is derived as a series solution in which the nonlinear

effects are taken into account by considering an equivalent current distribution (based on the

equivalent principle) that depends on the harmonic mixing. The simplifying hypotheses are:

neglecting the frequency dependence of the dielectric permittivity and limiting the analysis to

weak nonlinearities. As a result, it is possible to obtain a formal series solution in which the

coefficients are the solutions of a set of integral equations written in terms of Green's dyadic
function for free space. The static vector component is also taken into account by using an in-

tegral equation for the polarization vector, which depends on the generated electric field vector

component at zero frequency. By truncating the series at a
suitable term and by discretizing

the continuous problem using the method of moments [8], we obtain a nonlinear system of al-

gebraic equations to be solved for the complex harmonic amplitudes of the electric field vector.

The solution of this system is a critical point, and the approach presented in reference [6] did

not address the resulting numerical problem in an adequate way. In other words, in order to

obtain preliminary numerical results, the solution of the above nonlinear system was otained

by using Wolfe's method [9], which is a deterministic iterative method that can be regarded as

the result of a generalization of the secant method. As shown in reference [6], the application
of Wolfe's method to such a complex problem (I.e., the solution of a nonlinear full-vector three-

dimensional scattering problem) results in a high computational load and does not ensure that

a solution corresponding to a global minimum will be reached.

In the present paper, the numerical problem is handled from a
different point of view. In

particular, the problem solution is reduced to the minimization of a multivalue multivariable

function. In order to find a global minimum for the resulting (usually, multimodal) energy
function, we use an efficient implementation of a statistical-cooling procedure [10,11]. The

iterative procedure employs the Metropolis algorithm and is governed by a suitable scheduling
of a control parameter (often called system temperatttre).

In the following sections, the mathematical problem formulation is outlined and the im-

plementation of the statistical-cooling procedure is described. Moreover, the results of several

numerical simulations are reported and utilized to discuss the validity of the proposed approach.

2. Method Description

In this section, we outline the mathematical formulation for the proposed approach. Let us

assume a time-periodic incident electric field vector, E, ix, t) (x: position vector), illuminating a

bounded nonlinear object. The object is assumed to be lossless, isotropic and inhomogeneous;
its inhomogeneity is due both to the nonlinear nature of the dielectric permittivity and to

the inhomogeneities of the linear part of the dielectric permittivity. General relationships
between induction vectors and field vectors can be derived by using Volterra series expressions

[12]. However, in many practical cases, some heuristic assumptions are made (e.g., Kerr-like

nonlinearities) that seem acceptable for a wide range of applications. In this paper, we assume

that the nonlinear dielectric permittivity can be expressed as:

eNLlx, t)
=

eel£L~lx) + l~lElx, t)ii (11
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where x is the position vector, t denotes the time, eL~(x) is the linear part of eNL(x, t), and

R(E(x, t)) is an operator that is assumed to fulfil the constraint of not modifying the scalar

nature of the dielectric permittivity and to be a time-periodic function. Then, we consider

the harmonic vector components of the total electric field, ek(x)exp(j2~k lot), k
=

1,...A,
where lo is the fundamental frequency of the time-periodic incident electric field and A is the

maximum order of the harmonic terms (a series truncation is used). For any harmonic vector

component, an inhomogeneous wave equation can be derived as described in reference [6]:

v x v x ek(x) klek(x)
=

Yk(x) (2)

where kk
"

2~k fo(eo~to)~/~ and yk(x) is an equivalent excitation term that can be written as

the sum of a linear and a nonlinear term

Yk(x)
=

kl(£L~(x) i)lek(x) + el(x)I + kltk(x) (3)

where e[(x) is the k-th harmonic vector component of E;(x) and tk(x) is given by:

tk(x)
=

~ ~bj~gp(x)eq(x) (4)

p q

where b(~ =
1, if p + q =

k, 6(~ =
o, otherwise; gp(x) is the p-th harmonic component of

R(E(x, t)) [6]. Once Jt(E(x, t)) has been specified, the vectors tk(x)
can be rendered explicit.

By using the well-known integral solution of equation (2) iii terms of the Green tensor for free

space [15,16], we obtain a set of A coupled integral equations (k
=

1,.. A):

ek(x)
=

ellx) /
kl(CL~lx') i)yk(x') rklx,x')dx' (5)

D

where yk(x) (relation (3)) contains the unknown terms ek(x') and tk(x'), D is the domain ofthe

nonlinear object, and rk(x, x') is Green's dyadic function (at a frequency fk
"

k lo)- Moreover,

the static component (k
=

0) can be taken into account by considering the polarization vector

po(x) given by:
p0(X)

"
£0(£L~IX) i)jeo(X) + y0(X)j j6)

from which we obtain:

eolx)
=

j4jo)~~ /
i(x, x')po(x') ndx'

/
i(x, x')~ Po(x')dx' (7)

s D

where ~ ix, x')
=

ix x') fix x'(~, S is the surface including D, and n is the outward normal

unit vector. Relations (5) and ii) indicate explicit functional relationships among the harmonic

components of the electric field vector. By discretizing the continuous model, we obtain an

algebraic system of nonlinear equations that can be expressed as:

0~(F) Jt,
=

0 I
=

1,.. 3(-4 + 1) x N (8)

where N is the number of subdomains used and the unknown array F has 3 x (A +1)
x N

elements corresponding to the Cartesian components (cp, p =
0,..2) of the (A +1) harmonic

vector components (including the static one) of the total electric fields inside the -AT subdomains

(n
=

1,..N):

~ (~~,c0 ~~,cl ~~,c2' ~~c0 ~~cl ~~c2' ~~,c0'~~,cl' ~~,c2'

n n n
N N N jt (g)~A,c0>~A,cl.~A,c2;. >~0,c0,~0,cl>~0,c2
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where t indicates the transposition operation. The problem solution can now be reduced to

the minimization of an energy function, R(F), defined as follows:

~jlUzlf) llz)~ (lo)

In order to find a global minimum for R(F) (usually, multimodal),
we apply a statistical-

cooling procedure [10,11]. This procedure employs the Metropolis algorithm and requires that

a suitable scheduling of a control parameter (often called system temperatttre) be defined. The

iterative scheme of the procedure requires that F be initialized as follows:

F
-

Fo (11)

where Fo is randomly generated. In this paper, we use two sequences (for the real and imaginary
parts) with uniform distributions and zero mean values. The sequences are such that the

amplitude of any field component does not exceed twice the maximum-amplitude of the incident

electric field inside the dielectric object. At each step~ a sequence of random arrays Fh~ is

generated (h being the step index and j =
1,...3(A +1) x N) and assigned to F. The range for

the choice of the values Fh~ is dynamically changed according to the degree of thermodynamic
equilibrium (related to the probability that a local minimum may be reached). This procedure

can be expressed as:

Fh~ - F(h_1)j + Vh~ilh~ (12)

where Vh~ is the half-amplitude of the range (at step h) for the choice of the values of F, and i~h~
is an array whose single non-zero value (the j-th) is a random variable uniformly distributed

between -1 and 1. The generated configuration is accepted or not according to the Metropolis
criterion [10], which states that:

. if a given configuration produces a change zhR(F) (in the energy function)

~ accept that configuration if:

AR(F) < ° (13)

~ accept it with a probability tt =
exp(-AR(F) IT), if:

AR(F) > 0 (14)

Therefore, reject it with a probability v =
1- u. The control parameter T is then modified

according to a logarithmic schedttiing, similar to that proposed in reference [17] and given by:

T~+i
=

Tojnji + h)j-11 jis)

where h is the step index, To is the initial value of T, and ( denotes a value that allows a fine

tuning of the temperature value. It allows the algorithm to escape local minima in an efficient

Way.

3. Numerical Simulations and Discussion

In this section, we report the results of some numerical simulations. We consider the three-

dimensional dielectric scattering object shown in Figure 1 (~o being the free-space wavelength
of the fundamental frequency). The object is assumed to be homogeneous in the linear part

of its nonlinear dielectric permittivity, eL~(x)
=

4.0, and its nonlinear part shows a Kerr-like

dependence on the total electric field:

RlElx, t)i
=

fllElx, t)l~ l16)
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Fig. 1. Problem configuration.

The scatterer is illuminated by an incident electric field resulting from the sum of two uniform

plane waves at the frequencies lo and 2 lo, Polarized with the electric field in the
z direction and

propagating in the y direction. For the electric field, we consider a series expansion truncated

at the 4-th harmonic term.

In Figure 2, the amplitudes of the harmonic vector components (e)i ix) are plotted verstts

different values of the nonlinear index fl inside the object at the positions (see Fig. 1) (a)

xi "
(0,0.0), 16) x2 "

(~o/100, 0,0), (c) x3 "
(0, ~o/100, 0), (d) x4 =

(-~o/100, 0.0) and

(e) x5 "
(0, -~o/100, 0). Note that, as the the nonlinear index fl increases, a significant

generation of harmonic components occurs at frequencies different from those of the incident'

fields. Moreover, the amplitudes of the total electric electric field, for fl
=

0.0, coincide with

those obtained by the authors (as a consistency check) by using the moment method [8] for

direct scattering by linear dielectrics.

For illustrative purposes, Figures 3 and 4 present the trends of the characteristic parameters
of this minimization method. Figure 3 gives the decrease in the energy function R(F), as

compared with that of the control parameter T, at different cooling iterations.

In Figure 4, the number of generated configurations accepted for the statistical cooling pro-

cedure is plotted verstts the number of temperature iterations: (a) configuration adjournments
for which the energy function increases; (b) adjournments for which the energy function de-

creases; in this case, the trend is approximately the same as that of positive adjourments, for

the statistical equilibrium is reached at only one temperature iteration, I-e-, equal numbers

of positive and negative resets of unknown accepted configurations; (c) configuration adjourn-

ments for which the energy function value is minimum as compared with other values calculated

at the previous temperature iterations. The time-dependent relative dielectric permittivity was

also computed. Figure 5 gives the obtained results for the same points inside the object as in

Figure 2. Table I gives the CPU times for some significant values of the nonlinear index fl. An

IBM RISC 6000 computer was used.
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Fig. I. Amplitudes of the harmonic components of the electric field versus the nonlinear parameter
fl, for cb #

4.0, inside the dielectric object (Fig. 1) at the positions a) xi =

(0.0,0), b) x2 #

(~o/100. 0, 0), c) X3 "
(0, ~0/100, 0), d) X4 "

(~~0/100, 0, 0) and e) X5 "
(0, -~0/100, 0).

Finally, it is worth noting that the consideration made in reference [17] about the possibility
of extending the formulation of the functional dependence D(E) to the functional dependence
of B(H) holds true even for the present approach. According to the duality principle, an

analogous formulation, in particular, a similar series solution can be derived for the distribu-

tions of the magnetic field vectors scattered by bounded magnetic objects. For such objects,

a relationship (analogous to Eq. (1)) can be defined that relates H(x,t) to ~tNL(x, t), under



N°11 3D SCATTERING BY NONLINEAR OBJECTS IN FREE SPACE 1911

. k=0 D k=I D k=~ k=3 A k=4

m/
01

M

o ooi

o oooi

oooi ooi oi lo

Nonline3r index, p

C)

. k=0 D k=I D L=~ . k=3 © k=4

o i

ooi

o ooi

ooooi oooi ooi °1 °

Nonlinear index, p

d)

Fig. 2. (Continued)

the same assumptions as valid for the dependence of the dielectric permittivity on the total

internal electric field vector. In the present case, as each harmonic vector component of H(x, t)

would satisfy a vector equation analogous to equation (2), where the excitation term would be

an equivalent magnetic source, the duality theorem [15] only requires that, in the formulation

developed in Section 2, E(x,t) eNL(x,t), co, and po be replaced with H(x,t), ~tNL(x,t), ~to,

and co, respectively.
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Fig. 2. (Continued)
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Fig. 3. Behaviour of the norm of the residual
error versus number of temperature iterations.

4. Conclusion

A numerical approach to the computation of the full-vector electromagnetic scattering by
three-dimensional nonlinear bounded dielectric objects in free space has been proposed. The

approach starts with an integral-equation formulation previously derived and suitable for weak

nondispersive nonlinear isotropic media whose dielectric permittivities can be expressed as

functions of the internal electric fields through an operator that produces a time-periodic
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Fig. 4. Number of adjournments required by the statistical-cooling procedure versus number of

temperature iterations: a) positive adjournments, b) negative adjournments, c) optimal adjournments.

Table I. CPU times (ms) reqttired for the sottttions of the electromagnetic problems related

to the geometrical conjigttration shown in Figttre 1, for different vatttes of the nonlinear index fl.

fi =
0.001 fi =

0.01
=

0.I fi =1.0

9.o 3.0 66.0 1094.0
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Fig. 4. (Continued)
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Fig. 5. Minimum values, maximum values, mean, variance values of the equivalent dielectric permit-
tivity CNL(x,t) inside the dielectric object (Fig. 1) at the positions xi " ID, 0, o), x2 =

(~o/100, 0, o),

x3 "
lo, ~o /100, 0), x4 "

(-~o /100, 0. 0) and xo =
lo, -~o /100, 0), during

a
period of the fundamental

frequency (to
=

if lo) for
a

nonlinear entity denoted by #
=

1.0.

function when the incident illumination is periodic in time. The numerical problem has then

been dealt with by developing a numerical solution based on a statistical-cooling procedure.
The reported results seem to confirm the possibility of solving the above complex nonlinear

problem effectively by a numerical approach, in particular, by computing the distributions of

the fields scattered at the fundamental frequency and the harmonic components of the fields

inside nonlinear objects of arbitrary shapes, to which analytical methods cannot be applied.
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