
HAL Id: jpa-00249334
https://hal.science/jpa-00249334

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EXPHER (EXperimental PHysics ERror analysis): a
Declaration Language and a Program Generator for the

Treatment of Experimental Data
Philippe Weber, Daniel Taupin

To cite this version:
Philippe Weber, Daniel Taupin. EXPHER (EXperimental PHysics ERror analysis): a Declaration
Language and a Program Generator for the Treatment of Experimental Data. Journal de Physique
III, 1995, 5 (5), pp.605-622. �10.1051/jp3:1995149�. �jpa-00249334�

https://hal.science/jpa-00249334
https://hal.archives-ouvertes.fr

J. Phys. III £Yance 5 (1995) 605-622 MAY 1995, PAGE 605

Classification

Physics Abstracts

02.90P

EXPHER (EXperimental PHysics ERror analysis)
: a Declaration

Language and a Program Generator for the llfeatment of
Experimental Data

Philippe Weber and DalJiel Taupin

Laboratoire de Physique des Solides, Universitd de Paris-Sud, 91405 Orsay cedex, France

(Received lo June 1994, revised 4 January1995, accepted 24 January1995)

Rdsum4. EXPHER est h la fois un logiciel compilateur et g4n4rateur de prograrnme,

avec une bibliothbque assoc14e facilitant le traitement d'une s4rie de donn4es exp4rimentales
assoc14e h un mod41e physique et un langage de sp4cification du comportement de l'appareillage
exp4rimental. lL partir de cette description de l'appareillage, EXPHER produit un programme
compilable dont l'ex4cution d4termine les valeurs les plus probables des parambtres du modble

physique, leur barre d'erreur et la matrice d'erreurs finale.

Abstract. EXPHER refers to both
a package program generating compiler and Iibrary

which facilitates the treatment of
a set of experimental data associated to a physical model, and

a
specification language describing the behaviour of the experimental device. Starting from this

description of the experimental devices, EXPHER yields a compilable program dhose execution

determines the most likely values of the parameters involved in the physical model, but also

their error bars and their comprehensive error matrix.

1. Introduction

Any physicist, chemist, biologist and even a sociologist, who wants to deduce scientific infor-

mation from a set of experimental measureJrJents he has perforJrJed, is faced to three problems:

I) Establish a theoretical model describing the behaviour of his experimental device and of

his samples, that is, establish a relationship between the unknown values X he is looking
for and the data E he can observe.

it) Establish an algorithm to determinate the best values of X knowing the JrJeasurements

Eo actually observed.

iii) Build a prograJrJ noJrJatter the language, Fortran, C, Pascal or ADA which performs
this algorithm.

© Les Editions de Physique 1995

606 JOURNAL DE PHYSIQUE III N°100

Any scientist knows that no experimental measurement is perfectly precise and that each

measure deviates from the expected value (from its expectation in probabilistic language) by

a quantity which in turn depends on the physical phenomena involved. This uncertainty may

be due to an imprecise reading, to intrinsic noises (electromagnetic noises in transmission

wires), to internal instabilities (electronic white noise during signal amplification)
or to a

fundamental uncertainty of the phenomena (quantic phenomena or particle counting noise).
The consequence is that the theoretical model which describes an experiment is intrinsically
probabilistic.

No apparatus gives the final probability law of the measured quantities but, fortunately,
physical experiments and measurement devices exhibit a behaviour which is rather well known

and which can be modellized... provided the experimentalist is not too lazy. Thus, owing to

both the phenomenologic knowlqdge of the apparatus and the knowledge of the phenomenon

under study, one can nearly always establish a theory of the information flow, I-e- establish a

relationship which describes the probability laws of the outputs (that is, the measurements E)
knowing the inputs ii-e- the quantities X one wants to determine).

In other words, the experimentalist is nearly always able to establish the probability law of

the measures E (of which he knows a sampling set Eo) knowing the values of thi unknowns

X (which he does not know, obviously!). The whole of the problem is to obtain the inverse

probabilities, I-e- to determine the probability law of the inputs X knowing the actual outputs

Eo.
Solving such a problem is sometimes trivial but often infeasible, so that physicists often revert

to heuristic and questionable methods
or to statistical inconsistencies which would frighten

many a specialist of probability calculus. And when a rigorous treatment is established, the

resulting algorithm that is, the program is usually valid only under a limited ra1Jge of

conditions, so that a slight change, either in the parameters or in the formulation, can lead to

many changes in the program, which may be not only tedious but the cause fo further errors.

Describing the behaviour of an experimental device, I-e- the probability law(~ P(EjX), is if

the exclusive responsibility of the experimentalist, of course with the possible collaboration of

a theoretician, but this can obviously not be automatised.

Conversely, once the behaviour of the device has been clearly described with some specifica-
tion language, the algorithm yielding the inverse probability P(X(Eo or its main characteristics

can be derived in most cases in a quasi-automatic manner, provided one takes account of

some elementary theorems of the probability calculus. Then, if the initial problem is correctly
specified, programming this algorithm can usually be considered and it often appears quite
feasible.

Thus, summarizing these three stages:

. we created a specification language (EXPHER) to specify the physical and statistical

behaviour of an experimental measuring device;

. we created a software package of the same name, which compiles the description in

the EXPHER language of this apparatus to produce a usual program provisionally

in Fortran 77 which is the programing language usually understood by physicists
which determines the most likely values of the unknowns X, knowing the vector of the

measurements actually recorded Eoi and computes the resulting uncertainties of these

unknowns (in the common language of physicists: their error
bars);

(~)In general, we denote P(A(B) the probability of having the event A knowing the event B. By

extension A or B may be the values of random variables
or current vectors in a space of random

variables.

N°100 EXPHER, THE TREATMENT OF EXPERIMENTAL DATA 607

. after that, one only needs to compile and execute the program produced by the EXPHER
package, giving to it the experimental measurements as input data.

Remark.- At a first look of this paper, many a scientist might object.- "All that is just curve

fitting, which is provided in most mathematical packages!" Indeed we looked at some of these
packages, such as Mathematica flj, ACE/gr f2j or Kaleidagraph f3j, and we found out that the

proposed curve fitting does neither handle non-constant data variances, nor experimental data

organised into several curves or spectra, nor does it make an error estimation of the coejJicients
output from the fit.

2. Experimental Measurements:
a Probabilistic Phenomenon

2.I. THE TRANSFER FUNCTION AND THE UNIQUENESS OF THE "OUTPUT". By defi-

nition, the transfer function qE(e(X) of an experimental device describes the probability of

observing the measurements(~)
e E (e)~ "knowing" the M parameters X e (x)~ ruling the

phenomenon(~).
The uniqueness of the "measurements" vector e

deserves being emphasised: in fact, all

the experimental data related to correlated experiments must be considered as a whole in

the probabilistic sense; therefore, they must be recorded (as distinct elements) in a unique
vector. This applies not only to the whole set of the measurements building for example

a "spectrum", but this also applies to multiple and/or successive measurements of the same

quantity. The reason is that whatever the pertinence of the derivation algorithm the

resulting probability law of the unknowns X will depend on the whole of all the measures used

for that determination.

In fact, a common practice in experimental sciences consists in treating separately the groups
of measurements and, after that, to take the average of the results obtained; such a separate

treatment is statistically questionable since it postulates the independence of the various groups
of measures, leading to erroneous estimations of the final uncertainties and, even more, to

erroneous estimations of the unknowns.

In general Eo E (e)~ has many more elements than X E (x)~ but X may also have more;

this will require additional hypotheses, sometimes "fuzzy", about X.

Remarks:

.
we presently assume that the choice of the vectorial space (x)~ of the unknowns is

obvious. In fact, this is a severe
dijJiculty in most physical problems, and there the

scientific knowledge of the physicist is of major importance.

.
The function qE(ejX) is a

probability law (possibly
a

density) ruling (e)~, not (x)~.
Therefore, a coordinate change of X does not change qE(ejX) (no Jacobian),- this is not

the case of a coordinate change of
e.

2.2. FROM THE TRANSFER FUNCTION TO THE PROBABILITY LAW OF THE UNKNOWNS

This is the central problem of scientific experiments. It can be expressed as follows: once the

probability of E knowing X has been established, how to get the probability law of X knowing

the actual measurements E
=

Eo ? The answer comes from the famous Bayes Formula, I.e.:

P(E,X)
=

P(EjX)P(X)
=

P(XjE)P(E) 11)

(~)Bold lower case letters denote any column vector. e denotes here the current vector of the N-

dimensional space (e)~ of the possible measurements.

(~) BOLD upper case letters denote a column vector of random variables.

608 JOURNAL DE PHYSIQUE III N°100

2.2.I. General Case. The Bayes Formula (1) needs introducing an a priori probability law

of X, I.e. the information we know about X before the experiment is done; we denote it tx lx).
Then, classic probability calculus yields the real goal of an scientific experiment:

~'11'~ =
~'~

=
~°~ ~ ~~i~'~°~

= J
)i~o(~)~t~i~)~dx

~~~

The whole of the data treatment, of the data reduction and of the error analysis is contained

in equation (2) above.

2.2.2. The Case of tx(x) "Flat". If nothing or nearly nothing is a priori known about X,
then its a priori probability law is uniform, I-e- tx(x) is constant, at least in the interesting
domain of x. Then:

~'i~
=

~'~
=

~°~ ~ ~xi~'~°~
= j ($j((~~dx i~~

2.3. STUDYING THE PosT-EXPERIMENTAL PROBABILITY LAws. This merely consists in

studying the mathematical properties of rx(xjEo), in two steps in practice:

I) Seeking its maximum with respect to x in order to localise the region where the proba-
bility of having X is important. This is called "seeking the maximum likelihood".

ii) Estimating the "width" of this maximum, I.e. estimating the confidence region or

more simply speaking estimating the uncertainties.

2.3.I. The Maximum Likelihood. Seeking the maximum of the a posteriori priority law of X

ii-e- the maximum likelihood) deserves a comment: since this maximum is not invariant under

a non-linear space change of X, the relevance of such a seek may be questioned. But in fact,
the interesting thing is not its accurate location, but the region of (x)~ where the a posteriori
probability law is significa1Jt- Conversely, this non-invariance makes it useless to determine

the position of that maximum with a precision 100 tiJrJes better than the width of the region,
since final uncertainty of X is roughly the sum of the width of this significant region, plus the

inaccuracy of the location of its maximum.

For practical and numeric reasons, one usually deals with the logarithms of these

probabilities(~)
so that the general equation of the maximum likelihood xo is derived from

equation (2):

l~ [log qE(Eo lx)] +
~

[log
x(x)]j

=
0 (4)

3X 3X
x=xo

2.3.2. Estimating the Errors. Although this is an unfortunate common practice, determining
the maximum likelihood without estimating the errors I.e. without evaluating the size of the

confidence region, is irrelevant. This error computation in common la1Jguage is done by
evaluating the matrix(~) of the second derivatives of the a posteriori probability law [8].

%
=

~

~
log rx(xjEo) ~~~3~

~

xo

Then, the independent error of the I-th component of X is merely the I-th diagonal element

of 22.

(~) The symbol represents the transposition of a matrix or a vector.

(~)We denote matrices with upright characters with an
over-bar; e-g-:

©, E2.



N°100 EXPHER, THE TREATMENT OF EXPERIMENTAL DATA 609

2.3.3. The Case of tx(x) Implying Constraints. The previous treatment assumes tx(x) to

be derivable, but it may include constraints represented with 6 functions:

K

tx(x)
=

I(x) fl6(Ck(x)) (6)

Then the equation (4) of the maximum likelihood becomes:

lj~logqE(Eo(x) + j~logt§(x) A.j~C(x)j
=

o.
~ ~~~° (7)

C(xo) + (ck(xo))
=

o

where the A are Lagrange multiplicators, and the error matrix % is now:

~
£2~/ §f

~

)
0

'

~~~°
~~2

~°~
~(X"~0)j

(8)

terms(I..M,I.. Mj
X=Xo

where r(is the derivable part of rx. This matrix is trimmed to terms [1..M,1..M] which are

the only ones of physical meaning.

3. The Algorithms of the Maximum Likelihood Determination

3, I. THE "QuAsi-GENERAL" CASE. In theory, one has just to solve the equation system (4)

or (7) to get the maximum likelihood xo, and then compute 22 using equations (5)
or

(8). When

log qE(Eo lx), and log t((x)
are quadratic functions of x, and when C(x) is a linear function of

x, one retrieves the classical least square method. However, a more general algorithm applies
when they are " quasi,quadratic", I.e. in a domain of x far from any mathematical singularity

so that the expectation of E is locally a "quasi-linear" function of x. This gives an iteration

process giving at each step a "better" approxiJrJation k of xo (8], whose speed of convergence
depends on the linearity or quasi-linearity of Ec(xi)i

i ~
+

[i ~~~
?~~i~° ~=~~

19~

3.2. THE PARTICULAR CASE OF WEIGHTED LEAST SQUARES. In most physical situations,

the deviations of the observed measurements E with respect to the expectations Ec(x) are

statistically independent, I-e- the observed measurement is equal to its expectation Ec(x) plus

a non-correlated additive noise which mea1Js that the probability of observable measures only
depends on the difference E Ec(x):

~E(e(X)additive
noise "

~l(~ '~C(X)> X) (10)

where R becomes a normal law(~) if the noise is Gaussian:

~E(e(X)additive noise "
i~(e EC(X), a~(X)) (11)

(~)IQ(x,/)%fiexp -xa2
~x.

2w)«2(

610 JOURNAL DE PHYSIQUE III N°100

where a2(x) is the variance matrix of the experimental measures, which can be in turn a

function of the unknowns x.

3.2-1. Case of no Previous Knowledge, I.e. tx(x) "Flat". Since the matrix a2(x) is either

constant of slowly varies with the unknowns, a good approximation for seeking the maximum

likelihood consists in seeking the minimum of the argument il(x) of the exponential

4l(x) + (Eo EC(x))
a~(x)~~j

(Eo EC(x)) (12)

rather than the maximum of qE(ejx). This leads to an iterative algorithm giving at each step a

better approximation k from a previous approximation xi of the maximum likelihood location:

-1

~~~jj3Ecj a2(xi) it
x-xi

(13)

Q ~ j~(. ~"~i~ ~xi ~~ (E~ E~(xi ))~ ~
~ $~~~

+
Q~~R

where Ec and Eo are
[1..N]-vectors (N

=
number of measures),

x is a
[I..M]-vector (M

=

number of unknowns) so that
flf

is a
il..N,1..M]-matrix, Q a [1..M, I..M],matrix and R a

[1..M]-vector. After convergence, the error matrix is:

?
-

~~ °~iil~°'~~ll~

~~

~ llll~l @~ lll~lll~
~~

Q~ (14)

Remarks:

.
It can be shown f8j that the above algorithms (13) and (14) are valid for any additive

noise, provided the expectation Ec(x) and the variance a2 of E are known.

--i

.
These algorithms imply a2

,

which means one has to invert N x N-matrix a2, which

may be enormous. Fortunately, it becomes diagonal in the case of non-correlated noise..

But one should resist to the temptation of smoothing the experimental data.

3.2.2.- Case of the a priori Probability Law tx(x) not "Flat". Using previous denotations,
(6) for t[ and (7) for the constraints, the algorithm still valid for non-Gaussian noises

becomes:

1 ~E
+ %to~~ ~ c)~~~(~~~~~~~~ ~~~

~~~~~~
~~~ ~~~R°

~ W
x=xi

.

(is)

0° ~i
Q

~
3C 0
~

x=x,
°

R ~ -~xi)

~
~

~ ~ ~~



N°100 EXPHER, THE TREATMENT OF EXPERIMENTAL DATA 611

3.3. THE PRACTICAL DIFFICULTIES OF COMPUTER TREATMENT OF EXPERIMENTS

3.3.1. Computing the Derivatives of all the Expected Measures against all Unknowns

All the maximum likelihood seeking algorithms exhibit the term
(jfj

whose numerical
x x=x~

computation by means of finite differences is infeasible for computer times and accuracy reasons.

Therefore, we reverted to formal derivation.

3.3.2. Choosing the Minimisation Process of the x~. This is a main issue but, fortunately,
iterative gradient methods seem to work in usual physical cases(?).

3.3.3. Validity Tests. We mention this point, not because of its difficulty in fact it is just

a side product of the maximum likelihood seeking but because it is often forgotten by many

an experimentalist. In fact the x~-test merely consists in computing the variance weighted sum

of the squared deviations, which is simply:

il(xo) + (Eo Ec(xo))
a~

(xo) (Eo Ec(xo)) (16)

that is, nothing but the quantity il(x) of equation (12) one has just minimized to find X
= xo-

Usual x~ theory now says that the model is not disagreed "not disagreed" does not mean

"agreed"! by the experiment if:

4. The Information Needed by EXPHER to Do its Job

The aim of EXPHER is to produce a program whose execution seeks the maximum likelihood

(algorithms 9, 13 or 15) and computes the error matrix 22 (Eq. 14), thus relieving the

experimentalist/programmer from many straightforward although tedious tasks which can be

automated. To do that, EXPHER needs three types of information:

.
the list of the unknowns X E (x)

~,
including the "subsidiary" ones, those needed in the

calculation but of no interest for the physicist;

.
the expressions of the expectation of the nJeasures and their variances as functions of the

unknowns;

.
specifications about the file storage of experimental data, I.e. actual measurements Eo.

All this information is given to the EXPHER package by means of a specification language
of the same name, EXPHER. In contradiction to its reading aspect, EXPHER is not an algo-

rithmic language but a specification language giving the package the necessary information to

write an output program in a traditional algorithmic language, Fortran in a first stage, whose

compilation and execution will yield the interesting physical quantities. Thus, using EXPHER

implies three steps:

I) translating the language EXPHER into Fortran, done by the EXPHER compiler,

it) compiling this Fortran program,

iii) executing this Fortran program reading the experimental data.

(~) But more
sophisticated methods are still under consideration and under investigation.



612 JOURNAL DE PHYSIQUE III N°100

5. EXPHER and its Specification Language

Many syntactic features of EXPHER are shared with many other languages. Since this paper is

published in a review dedicated to physics rather than computer science, we shall not describe

the whole of the language (more thoroughly described in the EXPHERmanUaI) and we only

insist on those specific to its character of specification language.

5.I. THE SOURCE TEXT OF EXPHER. Like Pascal, C or ADA, instruction are separated

with ";" and " " indicates a declaration with the declared object at left and the description

on the right.
The symbol "=" is not an al§ectation an empty concept in a specification language but

an identity (like the PARAMETER of Fortran or the constant statements of Pascal).
Except in character string constants, EXPHER does not distinguish between upper and

lower case letter. But in the following text we chose to denote reserved keywords using UPPER

CASE letters, and other objects (I.e. examples) using lover case letters.

As far as semantics are concerned, a source text EXPHER only contains declarations which

must be unique for each objet(8). It is also worth emphasising that, since EXPHER is a

declaration language and not a procedural language, the order of the declarations is of no

importance(°). They may be of two classes:

I) value declarations,

it type declarations.

Unless exception (arguments and formal results of procedures see 5.4.2), the scope of the

declarations is the whole of the EXPHER text.

5.2. VALUE DECLARATIONS. This is the ordinary statement, which says that a given object
(referred to by an

identifier) is equivalent to another object or expression; this means: not only
equal, but identified with the mathematical relationship symbol "e". Then the obvious rule is

that any object must have been declared one time, not less, not more, and that it must have

a type. The normal syntax(~°) of a declaration is derived from Pascal or ADA, I.e.:

(value-declaration) (identifier) (
:

(type) )°,~(
=

(value) )°,~ ;

where (type) is either a declared type identifier or a type description, in the same was as is

done in Pascal, ADA or even Fortran 90, and which is not worth a long description in this kind

of paper. Conversely, the (value)(~~ notion is more specific to EXPHER, in the sense it may
be of three fundamental kinds:

(value)
:.

(expression) (unknown-value) (constrained-value)
(u~ik~iown-value) :. UNKNOVN.(

,

(i~iitial-value) )°~~
(constrained-value) CONSTRAINT., (co~istraint-expression)
The case where an identifier is assigned to be identical to an expression if of straightforward

meaning, but the two other cases deserve some comments:

(~) With possible exceptions due to scope rules.

(°) Obvious for computer scientists, but against tradition in physics programming...
(*) Where (...)°+

means an optional and repeatable item, (..[)~+
a

compulsory repeatable item,

(...)~°+ a compulsory item, repeatable with commas
inbetween, (...)°~~ an optional but not repeatable

item.

(~~) Optional
as the (type) in the syntax, but this only means that the type and value can

be given

to an object in distinct statements.



N°100 EXPHER, THE TREATMENT OF EXPERIMENTAL DATA 613

5.2.1. The Objects of Unknown Value. Unknown objects in the usual sense of an equation
to solve must be of type REAL or arrays of REAL. They are given the formal value UNKNOVN.

which is duly recorded by EXPHER. However, as their determination might be iterative, the

formal .UNKNOVN. statement may be followed by the indication of an "initial" value which will

be used as a starting point in the iterating process; it may also be preceeded by an integer
argument which specifies the "group" of unknowns it belongs to, that is, a pragmatic hint to

the EXPHER compiler concerning the iteration algorithm to be implemented.

5.2.2. Constrained Values. Objects which are constrained to be equal to another value

which usually depends on the unknowns must also be REAL or arrays of REAL. They

are explicitly declared which the formal value .CONSTRAINT., followed by a comma and the

expression which represents the constraint which this object must fulfill. For example

y REAL
=

CONSTRAINT., SIN(x)-2*x ;

constrains yesIN (x) -2*x to be zero, where x might be either an unknown by itself, or a value

bound to unknowns.

5.3. THE TYPES oF EXPHER

5.3.1. Primitive Types. In addition to REAL, EXPHER possesses three other primitive types,

INTEGER, LOGICAL (booleans) and CHARACTER (in fact "strings"). However, these three latter

types can only represent constants, not unknowns or values depending on unknowns.

5.3.2. The Structures. A structured type is described as a sequence of typed items, each of

which has a selector. For example:

e
STRUCT(a INTEGER, b :

REAL) ; I declaration of the type of
e

a. OF. e =
12 ; b. 0F. f

=
5*SQRT(2. 225) ; I, assigning values to both fields of

e

or

e STRUCT a, b REAL) ;

e =
(12 15, 5*SQRT 2 225) ) 1 assigning a multiple value to e

5.3.3. The Arrays. Except some details concerning syntax, arrays are declared and handled

in a classical way, at least for people knowing Algol 68, ADA, C or Fortran 90 [7].
The important point concerning arrays is due to the fact that EXPHER is a

specification

language, in which each object I.e. each element of each array, array of arrays, etc.

must be declared once and only once; then, of course, giving a value to only a part of an

array is such a common mistake that EXPHER has to be extremely strict about ensuring a

comprehensive definition of all the elements of any array. This is why EXPHER forbids(~~)
putting a sub-array at the left of an "=" sign. Thus

x
:[1..3] INTEGER ;

x[1]=12; x[2. 3]=(5,8)I

is forbidden by EXPHER, but a much more clever, more
understandable a1Jd-legal way of doing

is:

x =
(12,5,8) ;

(~~) Usual physicists, chemists and programmers will complain, just like car drivers complain about

compulsory seat belts
or prosecution when they do not stop at red lights.



614 JOURNAL DE PHYSIQUE III N°100

5.4. FUNCTIONS (OR PROCEDURES). Although the word "procedure" is more common in

the computer world, one should rather speak of "functions" which often are a simple way avoid-

ing repetitions, but in some other cases (the FILL primitive) they are necessary to describe

some typical definition schemes of EXPHER. Although this would be disappointing for com-

puter scientists, the functions are not recursive in EXPHER, and we think the usual physicist
seldom needs this feature.

5.4.1. Procedural Types. Like Algol 68 [5] but not like ADA [4] or Pascal, procedures are

considered as values by EXPHER, with some restrictions however. In particular, EXPHER

procedures possess a type which completely specifies the types of their arguments and of their

result and provided the types agree values of procedural type can be assigned to be equal

to other values of a procedural type defined elsewhere.

5.4.2. Assigning a Procedural Constant to an Object of Procedural Type. In other words,
this is the usual declaration assigning a name to a procedure whose text is given. Normally a

simple statement like

it: FUNCTION
=

FUNCTION(I,j:INTEGER, k:REAL > REAL): I+j*k;

is sufficient to do that, but the body of the procedure may require internal declarations (of
restricted scope); then the procedure may also be declared like:

tf: FUNCTION
=

FUNCTION(I INTEGER > resu INTEGER):

BEGIN

n INTEGER
=

INPUT (I,*) ; I Read one data on file I

resu =
n+I i Increase it by I to build the result

END

5.4.3. Vectorising Procedure Calls. Normally, a procedure call gives a result of the type
stated by its declaration; however,

a function whose argument is stated as a scalar can be

given an array, or an array of arrays instead. Then EXPHER considers that the result is in

turn an array obtained by invoking the function for each element of the input argument.
Of course, such a feature could be replaced in usual procedural languages with a loop over

all element of the given array, but this is no more possible in a declaration language like

EXPHER. For example, using the SIN (sine) function whose type is FUNCTION (REAL > REAL),
the statements

x : [2]REAL; y: [2]REAL
=

SIN(x) ;

assign the array of the sines of the elements of
x to the array y, I.e. the equivalent of the

following (forbidden) assignments:

y:I21REAL; yiii
=

sly(xiii); y121
=

sly(x121);

S-S. "PRIMITIVE" FUNCTIONS. As we already say in section 5.4.3, many usual classiques
(filling arrays, sums, various products, etc. are performed in traditional languages Fortran,
C, Pascal by means of loops which require updating a variable. Such a logic is incompatible
with a declaration language like EXPHER, unless reverting to recursivity which is just in fact

another way of presenting the problem. Besides, such loops are hardly compatible with other

required operations such as formal derivations. This is the reason why EXPHER offers some

primitives which perform these operations in a clearly controlled manner. We present the most

significative of them below.



N°100 EXPHER, THE TREATMENT OF EXPERIMENTAL DATA 615

5.5.1. The FILL Primitive. This extremely useful primitive enables filling an array of any

dimension or bounds with values depending on the indices, or on functions of the indices. In

short, FILL is called with as many bound arguments as in the resulting array, plus one function

argument which will be invoked with arguments equal to each valid set of indices, and whose

result will fill the corresponding element of the resulting array. By the way, we think it strange
that no common programming language provides such a feature which would save much tedious

programming of the initialisation of arrays. For example:

x:
[1..2]LOGICAL

=
FILL(1. 3,1..3,ft);

ft:FUNCTION
=

FUNCTION(I,j:INTEGER > LOGICAL)i I=(4-j)I

will build a 3 x 3 logical array named
x

whose second diagonal is true while all other elements

are false.

5.5.2. The SUM and PRODUCT Primitives. For the same reasons I-e- avoiding loops

EXPHER has a SUB primitive which computes the sum of the values of an expression depending

on a summation index. For example:

SUB(I, z-3. y+5, v(I)+x[I+2]+SQRT(x[I]))

will compute the sum of all the values of v(I) +x [I+2] +SQRT (x [I] ) when the summation index

I varies from z-3 to y+5. The primitive PRODUCT has the same syntax, except that it performs

the product of the given terms.

5.5.3. Properties of Arrays. Other obvious primitives yield the lower and upper bounds and

the number of dimensions of an array.

5.6. EXPRESSIONS. An expression may consist of a single object, or it may result from an

operation, or it may be a conditional expression.

5.6.1. Operations and Operators. Operator symbols have an obvious meaning; they are: +,

-, *, /, **, <*>(~~), =, <>, <, >, <=, >=, .AND., DR. and .NOT..

5.6.2. Conditional Expressions. Their syntax looks like Fortran 77 constructs, I-e- :

(conditional-expression) IF (boolean-expression) THEN (expression)
( ELSEIF boolean-expression)
THEN (expression) )°+
ELSE (expression)
ENDIF

but it is to be emphasized that, although the keywords look similar, this kind of construction

generating a conditional value rather than conditionally performing an instruction appears in

very few languages (Algol 68, l~$ [6], C). Although useful, it is not necessary in procedural
languages, but compulsory in a declaration language like EXPHER. Example:

x =
3+ IF n=I THEN 2 ELSE n+I ENDIF * 5 ;

5. 7. VECTORIAL FACILITIES. In order to facilitate operations on arrays, EXPHER assumes

that, if an operator 8 can operate between all fields of two structured values a
and b of the

same type, then a z b exists, and it consists in letting z operate between all the fields of both

structured values. The same principle holds between two arrays of the same type.

In the same way, a structure or an array can be multiplied or divided by a scalar, if all fields

of the structure or all elements of the array can.

(~~) For matrix products.



616 JOUIINAL DE PHYSIQUE III N°100

5.8. REFERENCING FILES. To produce a relevant executable program, EXPHER obviously
needs to know the names of the files to read at execution time and their data structure.

5.8.1. Declaring a Data File. This uses a predefined type named FILE; for example:

xdat FILE
=

l'mydata.dat',2) ;

assigns the external file mydata.dat to the Fortran input unit number 2 and calls it xdat for

references inside the EXPHER source text.

5.8.2. Reading Data. This is performed by the INPUT primitive whose syntax refers to a

logical unit and to one or several Fortran format specifications (see examples in sections 7A.I

and 5A.2):

INPUT ( (logical-unit)
,

(formats) )

5.8.3. The Case of Array of Undefined Bounds. EXPHER allows input arrays and proce-

dure arguments to have bounds specified with a question mark ("?") rather than an explicit

expression. In the case of a procedure argument, this obviously means that the missing bound

will be taken from the actual given argument but, in the case of an input array, this means

that the missing bound(s) will be read in the input file before the contents of the array. This

clearly enables arrays whose bounds depend on the data given at execution time.

6. How EXPHER Performs its Job

Although it may look like, EXPHER is not a compiler. Indeed compilers actually record a

minority of declarations (values, variables, types) but their main job consists in reading and

translating a source text step by step. Conversely, EXPHER first stores all the information

pertaining to each object that is, not only its type but the whole tree of the operations defining
its value. Only after that does it analyse their logical structure of the objects and of the

unknowns to build a maximum likelihood seeking algorithm and the computation of the error

matrices.

6.I. THE VARIOUS STEPS OF THE TREATMENT BY EXPHER

6.1.1. Reading and Compiling the Source Files. EXPHER reads two source files, namely
the description of the predefined objects (functions, types and constants) and the user source

file where the actual experiment is described in the EXPHER language. Then each object
explicitly declared or not is stored in a temporary data base with a number of qualifying
items: name

(a character string), class (I.e. operator, type or sub-type, value), type (pointer
to the description of its type), kind (function, structure or

array), bounds (for arrays)
or

arguments (for procedures) or fields (for structures), description (a pointer to the description
of that object, namely an operator with its operands or the components of a type).

In addition, some boolean flags tell whether it is an unknown or a constraint, etc.

6.1.2. Creating the Objects Involved in the Data lYeatment. EXPHER analyses the various

fields of the created objects in order to establish an appropriate algorithm to seek the maximum

likelihood; then it creates the fundamental objects involved in the algorithm, such as
Ec(x),

x, Q
,

R, etc.

6.1.3. lYeating the Objects of Stated Value. EXPHER examines their value and, if possible,

it decomposes this value into elementary expressions. Then it looks whether this elementary

expression exists; if it does, a pointer to this existing expression is made, otherwise a new object

is created. Thus, the description of any object is build as a tree of elementary expressions.



N°100 EXPHER, THE TREATMENT OF EXPERIMENTAL DATA 617

6.1.4. Formal Derivation. Computing the error matrix 22 (Equ. (14)) implicitly requires

formally calculating the derivatives fl~. To do that, EXPHER has to internally perform

formal derivations. This is not very difficult since the values of the object have been represented

as a tree of operations whose formal derivation is easy, although manually tedious.

6.2. WRITING THE USER'S PROGRAM FIT FOR EXPERIMENTAL DATA TREATMENT

6.2.1. Data Storage. EXPHER generates static storage only for static data, I.e. those whose

size is known at EXPHER compile time. The others mainly arrays are dynamically
stored, with types separation (integer, real, character, boolean) for compatibility reasons due

to the final programming language(14).

7. Using EXPHER

7.1. AVAILABILITY. EXPHER is a freeware product, of course not to be modified with-

out the authors' agreement. The current version is available through anonymous ftp at

hprib.lps.u-psud.fr (a HP9000/uNIx), in the subdirectory "publexpher" which contains

the EXPHER manual in IST~K and in Postscript. Second level directories provide the var-

ious versions of EXPHER depending on the target system (VAX/VMS, RS6000/AIX(uNIx),
HP /HP-UX(uNIx), SUN/SUnOS(uNIx) and the PC/MS-DOS version which uses the f2c [11]

converter and the gcc/djgpp C compiler by D-J- Delorie). In addition, another sub-directory
named master provides the "master" files and programs needed to generate all these versions,

and possibly some others.

7.2. INSTALLING EXPHER Just compile the relevant source files and link them using
the provided macros and put the executable in a convenient directory. Then EXPHER has just

to be invoked with the name of the description of the experiment in the EXPHER language as

a command parameter.

7.3. COMPILING WITH EXPHER. Unless errors occur, the use of EXPHER produces an

output Fortran program which has just to be compiled using the Fortran 77 compiler. It is

to be noticed that EXPHER running on a given computer can yield a program fit for another

system: this is just a specific option to give it.

Then, output Fortran program has just to be executed, provided it has access to the data

files specified in the EXPHER source text.

7.4. SOME EXPERIENCE WITH EXPHER

7.4.1. An Example in Solid State Physics: Dielectric Constant Measurement. Both the real

and the imaginary parts of the dielectric constant of (TMTSF)2(AsF6 )o.e3 (SbF6 )o.07 have been

measured, at a temperature of 2 K and as a function of the frequency (in fact the pulsation
w) in the range [100~-20000 Hz] with a step of1000 Hz [9]. These sets of measurements (er)
and (e~) are recorded in files eps-r.dat and eps-I.dat, respectively, and the uncertainty of

these measures is estimated to 2%, I.e. a constant relative error.

(~~) Presently Fortran 77, but Pascal or C would pose similar problem



618 JOURNAL DE PHYSIQUE III N°100

In this domain of low frequencies, the dielectric constant is empirically assumed of the form :

e(~J)
=

er(~J) + J6i(~J)
= i+llla)~~ +J il~~ll[1 (18)

where 0 < a < 1 is a coefficient describing the width of the distribution of the relaxation time

constant T
around its central value To-

Starting from these experimental data, one
wants to determine three unknowns, namely

e(0), To et a. Since e(w) is not a linear function of the unknowns To and a, starting values to

initiate the necessary iteration are needed, and we chose e(0)start
=

1, Tostart =
0.0001 and

°start "
°.7.

The source file describing the experiment in EXPHER language is then:

I. Basic utility declarations

freq_deb real
=

1000. 0 I. declaring the starting frequency
freq_f in real

=
20000. 0 ; 1 declaring the ending frequency

ecart real
=

loco. o ; the frequency step

n integer
=

nint ((ireq_fin-freq_deb) lecart)+I ; '/. size of experimental data

Spectre TYPE
=

[n]real I. a "type" declaration

epso real
=

unknovn.
,

1. 0 1 e(0) is an unknown of initial value 1.0

tau real
=

unknovn., o.oool ; i To is an unknown of initial value 0.0001

alpha real
=

unknovn., o.7 1, o is an unknown of initial value 0.7

Declare what are the data, what was expected and the expected deviations

tok [2] [n]experim ; $ we call tok the [2,n]-array of the experimental

.~
measurements; experim is a predefined structured

type consisting of a measure, an expectation
'I and an experimental deviation (expected deviation).

measure.of.tok
=

fill(2,fiiim) (introduce the measured data; see below 5.5.1)
expect.of.tok

=
fill(2,experience) ; $ (say what is expected; see below 5.5.1)

error.of.tok
=

o.02*absr(measure.of.tok) i, uncertainty of 2% in magnitude

'/. Define the procedures used before

iiiim function
=

junction(nexp:integer > spectre):
it nexp=I then spectre(input(il,*)) g One part of data is in a file,
else Spectre(input (f2,*)) 1 the other in another file,
endii ; and both coerced to type spectre.

experience function
=

function(nexp:integer > Spectre)
fin(n,expectation,nexp); (expectation has an additional

argument,nexp).

expectation function
=

function(I,nexp:integer > resu:real):

begin

x real
=

freq_deb+(I-I)*ecart ;

resu =
if nexp=I then er(x) else ei(x) endif

end;

er function
=

function(x:real .> real)

eps0/(1.0+(2*pi*x*tau)**(2*alpha));

ei function
=

junction(x:real .> real)

eps0*(2*pi*x*tau)**alpha/(I.0+(2*pi*x*tau) ** (2*alpha))



N°100 EXPHER, THE TREATMENT OF EXPERIMENTAL DATA 619

courbes calcu14es et points expdrimentaux de la constante didlectrique
2.5 10°

2 10° 6r~
1.5 10° ei

I lo°

o.5 lo~

0 10~
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

frdquence (Hz)

Fig. I. Computed and recorded values of er and e,

Declaring the input data files

I I it ie
=

( ' eps r dat '

,

I ) g contains experimental data (er )
f2 file

=
l'epsi. dat'

,

2) Z contains experimental data (ez)

I (end of EXPHER source file

After reading that, EXPHER generates a rather serious program of hundreds of Fortran

statements, which in turn refers to a specific library. After 15 iterations (5 seconds of CPU

on a HP9000/755) the execution of the program produced by EXPHER gives the following
results:

e(0)
=

2.222 + 0.011 *10°

To =
3.95 + 0.04 *

10~~
s

a =
0.752 + 0.005

and the reduced Chi-2 value is x)
=

1.155 which is pretty good. The comparison of computed
(expected) data with experimental ones is given in Figure 1.

7.4.2. A Geological Application. While one of the authors (P.W.) worked in tuning the

software itself, the other (D.T.) tried it on examples provided by Jacul and Raterron [10].
Writing in EXPHER language the initial code took half an hour. This consisted in fitting 38

data values with the formula

ik
=

Aa( exp
~

(19)
RTk

JOURNAL DE PJJYSIQIJE JJl T 5. N° 5, MAY 1995 27



620 JUURNAL DE PHYSIQUE III N°100

where A, n and E were three couples of unknowns (depending on the T temperature range)
and the values with subscript k experimental data. The EXPHER source code was:

npts : integer
=

input(9,*);
coupleex : type =

struct(tk, sigma, epsil, erreps: real);

exp_data :
[npts]coupleex

=
fill(I..npts, read_exp);

read_exp :
function=function(I: integer:> in_vat:coupleex):

input(9, *, *, *, *1;

epsiion :
Inptslexperim;

measure of. epsilon
=

In(epsil -of. exp_data);

error -of. epsilon
=

0.01* (erreps ,of. exp_data);

expect of. epsilon
=

fill(I. npts, calc_expect)I

calc_expect function
=

function(kk:integer :> real):

if tk ,of. exp_data[kkl <1413

then

log_grand_A[11 + petit_n[11*In(sigma -of. exp_data[kk])
-grand_E[I]/(R * tk ,of. exp_data[kk])

else

log_grand_A[2] + petit_n[2]*In(sigma -of. exp_data[kk])
-grand_E[2] /(R * tk ,of, exp_data[kk])

endif;

log_grand_A :
[2]real

=
I, ,unknovn. ; I these unknovns in same group #I

grand_E :
[2]real

=
I, unknovn. ; I these unknovns in the same group

petit_n :
[2]real

=
I, unknovn. ; I these unknovns in the same group

xxx: file
=

l'jaoul,dot',9);

r: real
=

8.32;

Unfortunately, at the first trial the resulting (reduced) x)
was awful, namely more than 400.

This was due to the fact that the various ok were subjected to experimental errors, of the order

to 10%, I.e. one should consider two classes of values of a, the ok which were measured (or
posted) and the actual values of the same parameters, namely a~~k~.

If
we

had directly programmed the "regression", this change would have needed several days
of work, but using EXPHER, it was done in half an hour, giving:

npts : integer
=

input (9,*);

nsigma : integer
=

input(9,*j;

coupleex : type =
struct(tk: real, I_sigma: integer, epsil, erreps: real);

exp_data :
[npts]coupleex

=
fill(I.,npts, read_exp)I

read_exp :
function=function(I: integer:> coupleex):

input(9, *, *, *, *)I

coupiesig : type =
struct(I_sigma: integer, sigma: reai);

exp_sigma :
[nsigma]couplesig

=
fill(I, nsigma, read_sig);



N°100 EXPHER, THE TREATMENT OF EXPERIMENTAL DATA 621

read_sig :
function=function(I: integer:> couplesig):

input (9, *, *);

epsiion : Inptslexperim;
sigma_eff [nsigma]experim;

measure -of. epsilon
=

In(epsil -of. exp_data);

measure -of. sigma_eff
=

sigma -of- exp_sigma;

error -of. epsilon
=

0.01* (erreps -of. exp_data);

error ,of. sigma_eff
=

O-I * (sigma .of, exp_sigma);

expect of. epsilon
=

fill(I, npts, calc_expect);

expect of, sigma_eff
=

sigma_unk;

calc_expect function
=

function(kk:integer :> real):

if tk -of- exp_data[kk] <1413

then

log_grand_A[I] + petit_n[I]*In(sigma_unk[I_sigma -of. exp_data[kk]])
-grand_E[I]/(R * tk -of. exp_data[kk])

else

log_grand_A[2] + petit_n[2]*In(sigma_unk[I_sigma -of, exp_data[kk]])
-grand_E[2]/(R * tk -of, exp_data[kk])

endif;

log_grand_A :
[2]real

= I, -unknovn.

grand_E :
[2]real= I, unknovn-

petit_n :
[2]real= I,.unknovn.

sigma_unk :
[nsigma]real

= 2, unknovn., sigma -of. exp_sigma

xxx: file
=

l'jaoulxxz.datt,9);

r: real
=

8.32;

With this new description, the resulting reduced x)
was of the order of 60. In fact, this is

of little importance since we are not presently dealing with geophysics but, afterwards, several

other tests were made, each of them requiring about ten minutes of coding, plus some dozens

of minutes getting valuable output data.

References

ill Wolfram S., Mathematica, second edition (Addison-Wesley, 1991) pp. 172-173.

[2] Turner P-J., ACE/gr, User's Manual, Software Documentation Series (1993) pp. 47-49.

[3] Kaleidagraph learning Guide, version 2.0, Synergy Software.

[4] Le Verrand D., Le langage ADA, manuel d'dvaluation (Bordas, 1982).

[5] Buffet J., Arnal P. and Qudrd A., Ddfinition du langage algorithmique Algol 68 (Hermann, 1972).

[6] Knuth D-E-, The lj~lbook, (Addison-Wesley, 1984).

[7] Metcalf M-and Reid J., Fortran 90 Explained (Oxford University Press, 1990/1992).

[8] Taupin D., Probabilities, data reduction and
error

analysis in the Physical Sciences (Les dditions

de physique, 1988) pp. 57-58 and 63-64.



622 JOURNAL DE PHYSIQUE III N°100

[9] Traetteberg O., Thbse (Orsay, 1993).

[10] Raterron P. and Jaoul O., J. Geoph. Res. 96 (1991) 14.277-14.286.

[11] Feldman S-I-, Gay D-M-, Maimone M-W- and Schryer N-L-, "A Fortran-to-C Converter", Com-

puting Science Tech. Rep. 149 (AT&T Bell Labs, 1993).


