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Abstract, A theoretical modeling of dual wavelength operation of erbium-doped fibre lasers is

presented. The model is a generalization of the one used in the single mode theory, based on the

existence of isolated ions and ion pairs coupled via the laser field. Analytical results are obtained

in the steady state. The linear stability analysis of the coupled equations shows the existence of

two pairs of complex conjugate eigenvalues and two real negative eigenvalues. These results

imply that the system is driving by two frequencies one associated with the classical relaxation

oscillation and a low frequency characteristic of a bimodal system. When the ion pair concen-

tration is increased, the real part of one pair of conjugate eigenvalues becomes positive. In such

a situation, self-pulsing and chaotic dynamics occur together with anfiphase effects between two

mode intensities. Locking of the low frequency on a subharmonic of the high frequency is also

obtained leading to nT-periodic orbits.

1. Introduction

Multimode lasers are a fascinating field of investigation due to their various and complex

dynamics. Among them antiphase, or winner takes all, dynamics have recently received great

attention [1-3]. In this context, rare-earth doped fibre lasers are of particular interest because

of their large variety of dynamical behaviors [4-6].

Erbium-doped fibre lasers (EDFL) can operate spontaneously either in a c-w- or a self-

pulsing regime when lasing around 1.55 pm, depending on both the ion pair concentration

x and the pumping rate [7]. Indeed for x =109b EDFL are self-pulsing for pumping rates

ranging from the threshold to a higher value beyond which the laser becomes c-w- A simple

theoretical modeling of the dynamics has been proposed in [8]. The model is based on the

existence of isolated ions and ion pairs coupled with the laser field. We have found that when

EDFLS having a pair concentration x=189b operate simultaneously at 1.55 pm and

1.536 pm, the laser exhibits antiphase effects between the two wavelength intensities and

chaotic dynamics [6]. Moreover, we have reported a quasi-periodic route to chaos for a fibre

having an ion pair concentration of x= 7.596 operating with dual wavelengths [9]. A six-

dimensional model has been numerically solved which gives good agreement with the experi-

mental data.

In this paper, we investigate the model proposed in [9]. In Section 2 we present the model

and transform it into a suitable form allowing the derivation of the bimode steady state. This

latter is calculated in Secfion 3 where the evolution of the intensities versus the pumping
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ratio is investigated. Section 4 is devoted to the linear stability analysis of the coupled equa-

tions. In particular it is shown that the system is driving by two frequencies and that, depend-

ing on the x value, the steady state is unstable over some range of pumping rates. The

coupled equations are numerically solved in Section 5. Antiphase effects are obtained in both

the transient regime leading towards a stable c-w- state and the nT-periodic regimes for un-

stable steady states. The chaotic regime is analysed.

2. Theoretical Modeling

A simple model of erbium-doped fibre laser for single mode operation has been developed

in [8]. In this paper we propose and investigate an improved model for dual wavelength op-

eration. From the beginning, it should be clear that we are modeling the relaxed multimode

laser by two supermodes or clusters of modes respectively centered around 1.55 and

1.536 pm [5, 9]. In [6] we have reported antiphase dynamics and chaos for two-wavelength

operation of an EDFL with an ion pair concentration of x =
189b. The antiphase states cor-

respond, in our work, to the two wavelength intensities. In particular, we have observed a

chaotic regime in which periodic windows appear. In [9], the dynamics of an EDFL with

x= 7.596 has been studied in the same experimental configuration. In this case, starting

from a c-w- state for high pumping rates we have identified a quasi-periodic route to chaos

when the pumping ratio is decreased. The typical scenario is : c-w- ~ T-periodic ~ 2T-

periodic ~ 3T-periodic ~ chaos ~ T-periodic. Antiphase dynamics occur in the nT-periodic

and chaotic regimes. A low frequency spectra analysis reveals the existence of two frequen-

cies. The observed periodic regimes correspond to a frequency locking of the low frequency

on a subharmonic of the high frequency. Moreover, the chaotic regime is achieved when no

locking and high coupling occur between these two characteristic frequencies.

A theoretical model has been proposed in [9] for dual wavelength operation. The model

was based on the well-known two-mode laser model where we have added two equations for

the population dynamics of ion pairs. The analysis was, however, restricted to numerical

simulation of the nonlinear coupled equations. The theoretical dynamical scenario versus r

was found to be the same as that observed experimentally which provides justification for the

simple model used. In the following we will give the set of equations describing the dynam-

ics of the EDFL in dual wavelength operation :

ad~
-=A-a~(I +d~)-2d~(I~ +flI~) (la)

at

ad~
=

a~( I + d~ + yA 2 d~( flI~ + I~ ) (16)
at

ad~
-=a~(I-d~)-a~~(d +d~)/2+(2-3d~)(I~+I~)y (lc)

at

ad
-=A-a~(I -d~)-a~~(d_ +d~)/2-d_(I~+I~)y (Id)

aI~
-=I~(- I +A(d~ + fld~)(1-2x) +Ad_ xy) (le)

at

~~~=I~(- I +A(d~+ fld~)(1-2x) +Ad_ xy) (lo
at
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where I~
~

are the normalised laser intensities, d~
~

the corresponding population inversions

for isolated (amplifying) ions and d~ =n~~ ± n~~ are associated with ion pairs (saturable

absorber). A represents the pumping rate, x the ion pair concentration, y is the ratio between

the absorption cross-sections of an ion pair and an isolated ion, n~ is the population of level

[k) for the isolated ions and n~ is the population of level [kl) for the ion pairs. a~ = i~ /i~,

a~~ = ij /z~~, A
=

a~N~ i~, N~ is the erbium concentration, i~ is the photon lifetime and i~
is the lifetime of level )k), fl is the cross-saturation parameter and y represents a dichroism in

the pumping process in order to take into account the small anisotropies of the laser. In the

experiment the net gains for the two frequencies are different because of small anisotropies

induced by twists or bends of the fibre. For convenience and simplicity, we have assumed in

system or bends of the fibre. For convenience and simplicity, we have assumed in system (I)

that the effect of an ion pair is the same for the two fields as well as the losses.

Equations ( la) and (16) describe the population dynamics of isolated ions, equations (lc) and

(ld) the population dynamics of ion pairs and equations (le) and (lo the dynamics of the

two fields considered here. The set of equations (la, b, e, f~ is similar to that used in [5] in

the case of bi-polarized Nd-doped fibre laser.

The notations used are illustrated in Figure I which shows the schematic energy diagram

of an isolated ion and an ion pair. Isolated erbium ions are described as two-level systems

(Fig. la). Ion pairs are assumed to be three-level systems (Fig, lb) where the states II ),
)12), )22), correspond respectively to two neighboring ions in the states (~I~~~~,~lis/2),
(~ I,~~~,~ I~~~~ ), (~

I~~~~,~ I~~~~). The resulting energy diagram is obtained by neglecting the

interaction energy between the two ions. The short lifetime (i~~) of level )22) results from

the energy transfer between two excited neighboring ions [8].

+U~
+A

22
2

~13/2

q
12

~~ls/2
°i

_~

ii

(a) (b)

Fig, I. -Schematic energy levels of: (a) an isolated ion and (b) an ion pair.

Let us make the following transformation for the variables :

d~ =
(D + d)/2 (2)

d~=(D-d)/2

I~ =
(I + I)/2

I~ =
( I I )/2
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Combining system (I) with transformation (2) yields :

~~=-2a~-a~D+A(I +y)-d(I-fl)I-D(I +fl)1 (3a)
at

~~=-a~d+A(I -y)-D(I -fl)I-d(I +fl)1 (3b)
at

ad~
-=a~(I -d~)-a~~(d_ +d~)/2+(2-3d~)Iy (3c)

at

ad
fi

=
A a~( I d~ ) a~~( d_ + d~ )/2 d_ Iy (3d)

at

~ ~~~~fl)(1-2x)I+(_~ ~AD
~

~ ~~~ ~ ~~ ~ ~d- XY 1 ~~~

Hi Ad AD
-=-(I-fl)(1-2x)1+ -1+-(1+fl)(1-2x)+Ad_xy I. (3f~

at 2 2

System (3) is now in suitable form to allow the determination of the bimode steady state.

3. Steady State

In this section we are interested in obtaining the steady state values of the dynamical vari-

ables which will be used for the linear stability analysis. System (3) has three stationary

states [5] ii the off-state (I~ =0,I~=0) stable up to the laser threshold A~~ ; iii two

single-mode states (I~ ~ 0,I~ =0) stable between A~~ and A~~ and (I~=0,I~ ~ 0)

always unstable ; iii) the bimode state (I~ ~ 0, I~ ~ 0) stable beyond the second threshold

A~~~. The calculation presented in this section has been performed with the help of Math-

ematica [10] and is restricted to the bimode stationnary state because we are mainly inter-

ested in the dynamics due to the coupling between the two modes. We first express D, d,

d~, d_ and I as functions of the steady state value of I and then solve an equation for I. At

the steady state all the derivatives vanish. Above the lasing threshold (I,e. 1~ 0) system (3)

becomes

-2a~-a~D+A(I +y)-d(I -fl)I-D(I +fl)1=0 (4a)

-a~d+A(I -y)-D(I -fl)I-d(I +fl)1=0 (4b)

a~(I-d~)-a~~(d_ +d~)/2+(2-3d~)Iy=0 (4c)

A-a~(I -d~)-a~~(d_ +d~)/2-d_ Iy=0 (4d)

-1+~~(l
+fl)(1-2x)+Ad_ xy=0 (4e)

2

A(I fl)d(1-2x)=0 (4f~
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where the bar indicates the steady state values.

Equation (4f~ leads to :

d=o. (5j

Equations (4a) and (5) give :

-2a~+A(I+y)
~

a~ + 1 + fl1 ~~~

Equations (4b), (5) and (6) yield :

~

A(I -y)(a~+I+ fill
1= (7)

(-1+ fl)(2a~-A-Ay)

Combining (4c) and (4d) leads to :

~
-2a~a~~+2a~A+a~~A-2a~Iy-2a~~Iy+6AIy

2( a~ a~~ + a~ Iy + 2 a~~ Iy + 3 I~ y~ )
~~~

~
2a~a~~-a~~A+2a~Iy+2a~~Iy+41~y~

~
~ 2(a~a~~+a~ly+2a~~Iy+3I~y~)

Combining expressions (6) to (9) with equation (4e) leads to a third order polynomial equa-

tion for the steady state intensity1:

-6(1+ fl)I~y~+

-2a~-4a~~-2a~fl-4a~~fl-6a~y-6Aa~y-6Aa~fly+I~y l0Aa~xy-2Aa~~xy+l0Aa~flxy-2Aa~~flxy+3AyA+ +

3 AflyA + 3 AyyA + 3 AflyyA 6 AyxyA 6 AflyxyA

2 a~ a~~ 2 a 2 a~~ fl 2 a~~ y 2 Aa( y 4 a~ a~~ y 4 Aa~ a~~ y

2 Aa( fly 4 Aa~ a~~ fly + 4 Aa( xy + 6 Aa~ a~~ xy + 4 Aa( flxy +

6 Aa~ a~~ flxy 2 Aa( xy~ 2 Aa~ a~~ xy~ + Aa~ yA + 2 Aa~~ yA +
~

Aa~ flyA + 2 Aa~~ flyA + Aa~ yyA + 2 Aa~~ yyA + Aa~ flyyA +

~

2 Aa~~ flyyA 3 Aa~~ xyA 3 Aa~~ flxyA 2 Aa~ yxyA

4 Aa~~ yxyA 2 Aa~ flyxyA 4 Aa~~ flyxyA + 6 Aa~ xy~ A

- 2 a(
a~~ 2 Aa( a~~ 2 Aa( a~~ fl + 4 Aa( a~~ x + 4 Aa( a~~ fix

2 Aa( a~~ xy + Aa~ a~~ A + Aa~ a~~ flA + Aa~ a~~ yA +

=
0 ( lo)

Aa~ a~~ flyA 2 Aa~ a~~ xA 2 Aa~ a~~ flxA 2 Aa~ a~~ yxA

2 Aa~ a~~ flyxA + 2 Aa( xyA + Aa~ a~~ xyA

The threshold is obtained from (lo) by taking1= 0 and solving for A :
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~t/1 ~

2a~a~~(1+A+Afl-2Ax-2Aflx+Axy)
~A(a~~+a~~fl+a~~y+a~~fly-2a~~x-2a~~flx-2a~~yx-2a~~flyx+2a~xy+a~~xy)

(II)

This expression matches those obtained in the single-mode model by taking y= I and

fl= 0. In fact the threshold value obtained in this way corresponds to the extrapolation of

the bimode solution for1= 0 and is very close to the exact threshold of the single-mode

state A~~~. Let us define the pumping ratio as r= A/A~~. For r a I equation (lo) has only

one positive real root. As reported in [8] for the single mode case, the threshold increases

with x.

At this stage it is interesting to look at the evolution of the steady state intensities I~ and

I~ versus r. These evolutions are given in Figure 2 for several values of x. Note that the laser

efficiency decreases while x increases. Moreover, due to the different gains associated with

the different wavelengths, the two modes have different thresholds. The lasing threshold

given in (11) is very close to the threshold of the mode with lower losses. The efficiency of

the first lasing mode decreases when the second mode switches on because of the cross-

saturation. Similar results have been reported experimentally in [5, 6]. For consistency, the

parameters used in this section and hereafter are the same as those used in the single mode

theory [8] :

i~=10ms, i~~=2ps, ij=200ns, N~=5X10~~cm~~,

aj=1.6X10~~°cm~s~~
,

y=0.2.

The remaining parameters are : fl
=

0.5, y =
0.85.

4, Linear Stability Analysis

We perform here a classical linear stability analysis of system (3) around its steady state ob-

tained from relations (5) to (lo). Let us consider small variations from steady state :

AD D-D

Ad d-d

Ad
~

d
~

d
~~~

~

Ad ~

d d
~~~~

AI I-1

6i I I

These variations evolve with time according to system (3) linearized around its steady state

solution

a6X

=
LAX (13)

at
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Intensity

o,oi

(a)

Pump
2 3 4 5

Intensity

0.003

0.0025
~~~

0.002

o,oars

o,ooi

o,coos

pump
2 3 4 5

Fig. 2.- Evolution of the steady state intensities versus the pumping ratio : (a) x =
0, (b)

x =
o-lo-

The upper and lower curves correspond respectively to ( and I~.
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where

-a~-(I +fl)I (- I +fl)I 0

(-1+fl)I -a~-(I +fl)1 0

0 0 -a~-a~~/2-3yI
~

0 0 a~ a~~ /2

All +fl)(1-2x)1/2 All -fl)(1-2x)1/2 0

All +fl)(1-2x)i12 All -fl)(1-2x)1/2 0

0 ( + fl ) D 0

0 0 1 + fl) D

a~~ /2 y( 2 3 d~ 0

a~~ /2 yI yd_ 0
~~~~

Axyi 0 0

Axyi 0 0

The eigenvalues are calculated from the characteristic equation1

det(L-JI)=0, (15)

Among the six eigenvalues of (13), two (J~, J~) always remain real negative, while the

other four are two pairs of complex conjugates, One pair (J~, J)) of complex conjugate

eigenvalues has a negative real part while the other (J~, J()
can have a positive real part

depending on the ion pair concentration x. Figure 3 gives the evolution of Re (J~,~) and

Im ( J~
~

) for r varying between I to lo and for several values of the ion pairs concentration.

These results demonstrate that there exist two eigenfrequencies (due to the imaginary part of

the eigenvalues). The higher frequency is responsible for the classical relaxation oscillations,

while the lower is characteristic of a bimode system and is responsible for the antiphase ef-

fects. Note that the latter frequency appears when the second mode reaches its threshold.

Moreover, one sees that for high pair concentrations, there exist r values leading to

Re(J) >0 implying that the steady state is no longer stable. As reported in [8], the

r-interval for which the steady state is unstable broadens when x increases.

5, Numedcal Calculafion

In this section, system (3) is numerically solved using a fifth order Runge-Kutta method with

an adaptative integration step, We consider different cases of interest i the transient behavior

leading to a c-w- state, the nT-periodic regimes and the chaotic regime, In fact, for a given
intermediate ion pair concentration, the three dynamical behaviors can be obtained simply by

decreasing the pumping ratio from an upper value which is high enough to allow a c-w-

operation.

5.I. CW REGIME. The c-w- regime can be achieved either with low ion pair concentration

whatever r, or with intermediate x values for pumping rates high enough to allow a saturation

of the paired ions. The eigenfrequencies of the system can be visualized in the transient re-

gime. Figure 4a shows the evolution of the intensities in the case x =109b and for a pump-
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Fig. 3. Evolution of the real and imaginary parts of the eigenvalues versus r
for several values of the

ion pair concentration x. (a) x=09b, (b) x=59b, (c) x=109b and (d) x=159b. The upper and

lower curves correspond respectively to Im (2~ ) and Im 2~ ) for the imaginary part and to Re 2~ ) and

Re 2~ for the real part of the eigenvalues.
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ing rate r=4. As expected from the results given by the linear stability analysis, together
with the frequency of the relaxation oscillations ( f~ ), there exists a lower frequency ( f~ ) for

which the two supermodes are in antiphase. Similar results are obtained for x =
59b and for

any pumping ratio. Figure 4b gives an example for r= 3 where the two frequencies are

clearly seen. Note that for x= 0, the results are similar to that of reference [5] since sys-

tem (3) reduces to a classical two-mode laser model.

12

#
(
]

11

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

t(ms)

12

11

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

t(ms)

Fig. 4. C-w- regime : (a) x =
109b and

r =
4 ; (b)

x =
Sib and r =

3.

5.2. PERIODIC REGIMES. The nT-periodic regimes appears for intermediate or high x-values

in some range of pumping rates between the c-w- regime and the chaotic regime. The numeri-

cal simulations are given in Figure 5 which shows the time evolution of the two modes,for

different pumping rates and for x=109b. Figure 5a gives the transient regime for r= 3.4

for which the system is T-periodic. As in the transient c-w- regime, the antiphase phenomenon
is also present in the transient regime leading to the T-periodic orbit. When the pumping rate is

decreased, the system becomes 2T-periodic as shown in Figure 5b for r =
3. The transition is

continuous. A low frequency analysis of the time signals shows that in this case, there is a

frequency locking of f~ and f~~~ [9]. While the pump is further decreased, the system changes

suddenly from a 2T- to a 3T-periodic regime as shown in Figure 5c for x=109b and

r= 2.3. For the 3T regime, a frequency locking of f~ and f~~~ occurs [9]. Antiphase effects

occur in the asymptotic regimes for the nT-periodic orbits such as n a 2. Note however, that
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this phenomenon is not visible in the case of perfect symetry between the two modes (I.e, same

pumping expressed by y= I) where no nT-periodic orbits such as n a 2 have been ob-

tained. It is worthwile to stress that the antiphase phenomena is due to the cross-saturation

between the two modes and not to the asymetric pumping.

12

11

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

t (ms)

Ii

12

0 0.05 0.1 0.15 0.2

t (ms)

Ii

~7
~
©
~
©

12

0 0,1 0.2 0.3 0A

t (ms)

Fig. 5.- Self-pulsing regime : (a) T-periodic for x =109b and r= 3.4 ; (b)2T-periodic for x =109b and

r =
3.0, (c) 3T-periodic for

x =
109b and

r =
2.3.
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5.3. CHAOTIC REGIME. The chaotic regime [11] is achieved from the 3T-periodic regime by
decreasing the pumping rate. The transition is sudden as we have experimentally reported

in [9]. Figure 6 shows the chaotic behavior in the case of x=109b and r=2.2. Similar

results are obtained in the interval r=1.6-r= 2.25. A first retum map is given in

Figure 7 corresponding to the time series of Figure 6. This map of two-mode chaos shows a

two-dimensional distribution, suggesting that its strange attractor has a higher dimension than

that of the single-mode chaos where the first retum map is close to a one dimensional

Ii

0 0.1 0.2 0.3 0A

t(ms)

Fig. 6. -Chaotic regime for x=109b and r=2.2.
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Fig. 7. First retum map in the chaotic regime corresponding to Figure 6.
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curve [12]. Figure 8 shows a representation of the strange attractor in the phase space defined

by D, d~ and I~. The attractor is distributed three-dimensionally. The calculated correlation

dimension [13] of the attractor is about 2.8. This fractal dimension is compatible with that ob-

tained experimentally which was found to be lower than 4,I for any pumping rate [6].

Ii

~,
~'~

°'7'
0476

o 478
~ io->

fl
#I

jS

11

l%

'

"0~~
~9

'

,

'

,.
'

'

o

d+

4P£

o.,,

Fig. 8. Portrait of the strange attractor in the phase space defined by D, d~ and (.

5.4. BIFURCATION DIAGRAM. It is convenient to represent the dynamical behavior of an

EDFL in a bifurcation diagram which gives the maxima of the peak intensities when r is var-

ied. Figure 9 gives the evolution of the maxima of I~ versus r. For high pumping rates

jr > 3.75), the system is c-w- (in this case, we have plotted the steady state intensity). For

slightly lower pumping ratios the laser becomes self-pulsing via a Hopf bifurcation [14]. For

r= 3.3, the system becomes 2T-periodic via a continuous transition. By further decreasing

the pumping ratio, the laser suddenly becomes 3T-periodic for r =
2.75. This behavior occurs

until the pumping rate has reached the value
r= 2.25 for which the system is suddenly cha-

otic. A chaotic regime exists from this critical value to r=1.6. For this particular pumping



294 JOURNAL DE PHYSIQUE III N° 3

rate the laser once again becomes T-periodic for the mode with lower losses (I~ in our case),

the other mode does not lase because of the dichroism in the pumping process.

:"' chaos
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,
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e .. .,
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,,,....,,,,..:.....'
,,..:....

l.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Pumping ratio

Fig. 9. Bifurcation diagram for (.

6. Conclusions

This paper has been devoted to the theoretical modeling of erbium-doped fibre laser in a

dual-wavelength operation. The model is based on the wellknown two-mode laser equations

where we have added two equations for the population dynamics of ion pairs. The linear

stability analysis has shown that a lower eigen-frequency appears together with the eigen-
frequency responsible for the relaxation oscillations. Moreover, the presence of the ion pairs

leads to unstable steady states. The numerical simulations for x =
10fb has shown that, for a

decreasing pumping rate, the dynamical scenario is : c-w- ~ T-periodic ~ 2T-periodic ~ 3T-

periodic ~ chaos ~ T-periodic. Antiphase effects between the two modes has been obtained

in the periodic and transient regimes. The chaotic regime has been characterized. In particu-

lar, the correlation dimension of the strange attractor has been found to be 2.8.

A basic question remains conceming the identification of the route to chaos. We have nu-

merically observed that the route to chaos is quasi-periodic for x =
129b c-w- ~ T ~ 2T~

4T~ QP2 ~ chaos ~ 3T ~ chaos, the third frequency or QP3 is not observed in the sce-

nario [11] as in the numerical experiment by Curry and Yorke [15]. The route to chaos

QP2 ~ chaos ~ 3T is similar to the one observed in the Rayleigh-B6nard instability for the

B-structure [11]. The main differences are the appearence of two subharmonic bifurcations

before QP2 (2T, 47~. After QP2 the system experiences non-periodic motion with some sharp

lines (3T lines) (the dimension of the attractor ranges from 2 to 2.3). This transition from

quasi-periodic motion to substructures indicates the progressive destruction of the two-torus
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towards a strange attractor. It has been mentionned[15] that the conversion of quasi-
periodicity into chaos could occur from a two-torus if the three-torus is so unstable that the

third uncommensurate frequency cannot be observed. In this respect, note that the QP2 re-

gime is described in a narrow range of r values. We could wonder wether this conjecture
does not apply for the QP2 regime when x-values are lower as the route seems to

T~ 2T~ 3T~ chaos. Further investigations are needed to describe the lower x-values

regimes.
The model is qualitatively in good agreement with our experimental results given in refer-

ences [6] and [9] it predicts the same route to chaos and also the antiphase effects and the

frequency locking between the low frequency and a subharmonic of the high frequency.
However, there is a systematic discrepancy between experiment and theory the periods of

the signals and the pumping rates at which the dynamics changes are found to be different. It

is possible to match more closely the experimental results by a little change of the param-

eters. Nevertheless, for consistency, we have kept the same values that one used in the

single-mode theory [8]. Note that the model developed in [8] leads only to the description of

the self-pulsing effect, it does not lead to chaotic dynamics.
The model presented here could certainly be applied to describe the dynamics of the

erbium-doped fibre laser operating on two polarizations with a suitable adaptation of the pa-

rameters.

The authors would like to thank the referees for their valuable comments to improve the

manuscript.
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