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Rdsum4,- Dans cet article nous prdsentons une solution formelle en sdrie pour ddterminer la

distribution du champ dlectromagndtique dans un guide d'onde rectangulaire dans Iequel une

plaque didlectrique non Iindaire a dtd insdrde. La solution est ddveloppde en termes de la fonction

de Green pour Ies guides d'ondes rectangulaires dont Ies parois sont parfaitement conductrices.

Nous supposons que Ie guide d'onde est excitd en mode TEjo h la frdquence fo. La mdthode tient

compte de la gdndration de modes supdrieurs dvoluant h la frdquence fn et h des frdquences
diffdrentes. Nous supposons aussi que la plaque non Iindaire est isotropique et non homogdne

(mdme sans champ appliqud). L'artide montre comment la solution du probldme (c'est-h-dire Ie

calcul des coefficients de la sdrie) peut dtre rdduite h la solution d'un systbme d'dquations
intdgrales coupldes. La solution formelle est ddrivde pour un guide d'onde infini et un guide d'onde

court-circuitd.

Abstract. A formal series solution is presented for the electromagnetic field distribution inside a

rectangular waveguide in which a nonlinear dielectric slab has been inserted. The solution is

developed in terms of the Green function for rectangular waveguides with perfectly conductive

walls. We assume the waveguide to be excited in the TEjo mode at a frequency fo. The approach
takes into account the higher-order mode generation at fo and at different frequencies. We also

assume the nonlinear slab to be isotropic and inhomogeneous (even without any impressed field).

The paper show~ how the problem solution (I.e., the computation of the series coefficients) can be

reduced to the solution of a system of coupled integral equations. The iormal solution is derived for

two cases : an infinite waveguide and a short-circuited waveguide.

1. Introduction

This paper deals with nonlinear electromagnetic wave propagation in a guiding structure. In

recent years, wave propagation in nonlinear media has been extensively investigated. There

exists a vast literature on this topic ; we refer the reader, for example, to some works [1-4] and

to the references cited therein. Considerable efforts have been devoted to studying partial

differential equations for nonlinear propagation, to defining interesting phenomena, like

soliton formation and decay [5], and shock waves [6], and to describing a large number of

applications for which it is impossible to provide a complete list of reference~. Analytical,
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variational and approximate methods have been devised and numerical techniques are

becoming increasingly important. In the past, some numerical results in the field of nonlinear

wave propagation have constituted a strong stimulus for further theoretical studies of very great

interest.

However, nonlinear wave propagation is in general considered for propagation media of

infinite extent, both in free space and inside guiding structures (conductive and dielectric

waveguides, planar structures, etc.). Very few works have addressed the interaction of

electromagnetic waves with nonlinear bodies of limited dimensions, the scattering from which

had to be evaluated. In this paper, we discuss the case of a bounded nonlinear slab inserted in a

rectangular waveguide. We assume the waveguide to be excited in its fundamental mode, the

TEjo mode, at a frequency fo. The slab interfaces with air through cylindrical surfaces whose

axes are parallel to the E-field polarization. The dielectric permittivity of the slab is assumed to

be dependent on the internal electric field. In addition, we assume that the operator that links

the nonlinear dielectric permittivity to the electric field vector is such as not to modify the

scalar nature of the permittivity (consequently, it does not produce depolarization in the wave

field). Moreover, the slab is inhomogeneous not only due to its nonlinearity, but even when no

e-m- field is applied (I.e., the linear part of the relative dielectric permittivity itself is

inhomogeneous). The remaining part of the waveguide is empty (or filled with a linear

homogeneous dielectric). Nonmagnetic materials are assumed for all media and the conductive

walls of the waveguide are assumed to be perfect conductors. In the following section, we

develop a formal series solution for the electromagnetic waves inside the waveguide in terms

of the Green function for rectangular waveguides. This solution takes into account the

generation of direct and reflected higher-order modes at frequency fo and at harmonic

frequencies. Then, we describe how the use of a specified nonlinear operator results in a

numerical problem solution in which all the coefficients of the series expansion for the

electromagnetic fields in the various waveguide regions are given as the solution of a system of

nonlinear coupled integral equations. The case of a particular nonlinearity (whose highest
order is proportional to the power) is detailed. Finally, the possibility of solving numerically

the resulting system of integral equations is discussed. In the paper, the mathematical

formulation of the approach is presented for the cases of an infinite waveguide and of a semi-

infinite waveguide closed by a short circuit and loaded with the described nonlinear slab.

2. The Electromagnetic Field Problem

Let us consider Figure I, in which three regions are shown. For these regions, the following
mathematical relations for the electromagnetic quantities hold.

2,I. REGIONS I AND III. Under the assumptions made in the Introduction, in region1

(= < =~ (,<)), the total time-dependent electric field vector e~~~(r, t) given by the sum of the

incident and the reflected fields) is polarized along the y axis and is independent of the

v
coordinate e~~ ~(r, ii

=
e(~ ~(.<, =, t ) y.

As is well-known, e(,~
Jo,

z, t) can be expressed as a Fourier series with a fundamental

+m

pulsation wo =

2 wfo e(,' ~(>~, =, t
=

~j E(~ '(,x, z
e~"~'~' where E(' ~(>., =), which satisfies

,,=-~

" "

V)E)~'j.t., z) +
wj

~z~ ej E)'~(.t., z)
=

0 (w~~
=

nw~l (1)

iS given by

El,,( (-t, = =

I
Siu ")

.t lhjj,j, e
'~'~'~~ °

+ A,,,,, e~ '~'~'~" ° (2)

j,>
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Fig. I. -Rectangular waveguide and nonlinear dielectric slab.

where h~~
=

0 form # I and n # I, h~~
=

I form
=

I and n =

I (we assume a unit amplitude

for the fundamental incident mode), and

~g~
2

Y~,~
"

~°~ /~0 ~i ~~~
a

The corresponding vector component of the magnetic field is related to the electric field by the

Maxwell equation and is given by

~ll)~~ ~)
l ~ j~(1)(~ ~)~_

~ £(11(~ ~)~) (~)
~ ~ jW~/L~ 3z ~~ ~ 3~t '~ ~

and its x component can be expressed as

H)~ l(,;,
z ) z (~,~~ sin "~"

x[h~~~ e~~?~"~~ A~,~ e~~~~~~] (5)
" ~
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where Yj~' is the wave admittance equal to
~'~"

In region III (z m z2(x)), the total electric

w~

~o

field vector e~~~(r, t) (given by the transmitted field) is still polarized in the y direction :

e~~~(r, t)
=

e)~~(x, z, t) y. By analogy to the field in region I, we can expand e)~~(.<, z, t ) in

Fourier series whose n-th term satisfies

V)E)~l(x, z) +
wj

~zo e~ E(~~(x, z, t )
=

0 (6)

and is given by :

+ ~ j~)
E)~l(x, = =

z D~~ sin '~ "
x

e~~?~" ~ (7)

m

~

where

~ ~
2

(~~yjfl
w

j
lLo E~

a

The magnetic field vector is given by a relation corresponding to (4) (valid for region Ii, and its

~ component can be expressed as

H)~~(x, z =

(
Y$$~ D~~ sin '~"

x
e~~?~'~~~ (9)

~

m =1
~

where

y13)
~

~~~'~

mn
~°>1 /L 0

2.2. REGION II. Under the hypothesis that the total electric field, e~~J(r, t), is still y-

polarized (e~~~(r, t )
=

e(,~J(>, =, t y), in region II (zj (,i < = < z~ (x)) (I.e., the nonlinear slab),

the following homogeneous wave equation holds

V)e(,~~(x, z, t) ~zo
~~

E~(>., z, t ) e(,~~(.<, z, t
=

0 (10)
~

where E~ ix, z, t) is given by :

E~(.i~, =, t eo[e~j (>, z ) + e~~ o (e~~~(x, z, t )) (I I)

where e~j(x, =) is the linear part of the relative dielectric permittivity, which can be

inhomogeneous itself (when no field is applied) o (e~~~(x, z, t )) is a nonlinear operator and

e~~ is a constant parameter. The nonlinear operator is assumed to fulfil the constraint of not

modifying the scalar nature of the dielectric permittivity (isotropic medium). We also assume

o (e'~~(x,z, t)) to be a time-periodic function. Then, we can write: e(~~(.<,z,t)=
+~ +~jj Ef~(x,

=
e~~"° ' and o (e~~~(.<, =, t ))

=

z o,j (.i, z ) e~""° The product of these quan-

,< ~

"

,j=-m

tities can also be written in Fourier series as

+~ +~ +~z E)?'(x, z) e~"""~ z o~~(x, z) e~'~"~'~ z V'j~(i, z) e~'"~~ (12)
n

i,=-m n,=-~ h=-~
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where:

~'~~" °~
i~

~[~~(-;, z) o~(,,., z) 6h

~~~" ~'"-~

mn

(13)

where 6(,,
=

1, if m + n =

h, and 6(,~
=

0, otherwise. Now, for each frequency w,, = NW o,

relation (10) can be rewritten as :

il~l~))~(.t, Z ) + W~ /L0 ~0 ~21("' ~~ ~~j~~~' ~~ ~ ~°~ ~° ~° ~~~ ~'~~~' ~~ ~ ~~~~

and the magnetic field vector becomes

~l~~l~' ~)
#

l 3
~~~~

~~~ ~~ ~~ ~~
~~~ ~~~

X ~~)~"'~) Z) ~~~~

,,

The boundary conditions for region II are

nxel~~(x,z,t)(~~ ~,j=nxe~~~(x,z,t)(~~~~,~ (16)

n x e~~~(.x, =,
t)(-~~,j,j

= n x e~~~(,<, z,
t)(-~

~,~
(17)

n x h~~~(.<, =, t)(z=z~(,j
~ n X h~~~(~, ~, ~~(z=z

l'J
~~~~

n x h~~J(.<, z, t (,
~,j = n x h~~J(.<, z, t

~
-~j,~.

(19)

For each n, the formal solution of equation (14) can be obtained by considering the term

WI ~zo eo e~~ P~(x, = ) as an equivalent source term, according to the equivalence principle
for electromagnetic fields [7] :

vjJ~jji(.;, zi + w,i ~n ~o ~~j (>., =i El[~(,i, z)
=

W,I ~£o Eo e22 *n(.<, z) ~~°~

It should be noted that the terms V',~(.<, =) generally depend on the mixing of all the field

components, E(,(~(,<, = ), for any m. Under the above conditions, we express the field solution

as E()~
=

E))~~°~+E()~~P~ where E()~~°J denotes the solution of the homogeneous wave

equation (corresponding to (20)) in region II (with E(.i, z)
= eo E~jO, z)) and E(~~lPl is a

particular solution (dependent on P~(.<, =)) that can be expressed in terms of
tit

Green

function for rectangular waveguides

a =~ (,

E(~ ~
w

j
~z ~ F~ e~~ V',~ (~i', =' G,, (.r, z/~< ', z' da. ' d= ' (2

"

0 ~j,1

where G,,(,i, z/x'. =' ) is given by [81

G,,(x, z/x', z' )
=

(
~

sin '~ "
x sin '~ " x' e~~?~~ ° (22)

n,

Y$~ ~ ~

where yj$~ w,) ~z~ E~ E~j 16~" It should be stressed that, unlike in the linear
a

~

case, this is just a formal solution, as in relation (21), for any n, E(,~~~~ depends (through
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V'~(x, z )) on all the field components, E))~ (total field), for any j, including j
= n. Now, since

the solution for E)~~1°1 is given by

+~
~g~ <21~

~
>2)~

E)~l~°~ (x, z =

z sin .<
[Bf) e~~ ?"'~

+ C $~~
e

~ ?~"' (23)
~

n,

~

the electric field in region II can be forrnally expressed as :

El')~(~' ~ ~

i ~i~ j
.~

lB(I
+ Bmn (~)l ~~~~~~~

+
ICC)

+ Cmn(Z)1 ~~~~~"~ (24)~~l ~

where, of course, B~~(z) and C~,~(z) are unknown coefficients still dependent on

E(~l(x,
? ) and, in general, on all the other field components. Such coefficients can be defined

as

~
a =

~~ ,~,
B,nn(z)

= £° o lLo E~(yf~~)~ E22 V',> (.~', z') sin -.<' e~~?~" ° da' dz' (25)
o

=~(,)
~

°~~~~ ~~
~° ~°~Y~#) Ez~ j~

~~~'l
~

° z

~~~
'

~~~ ~~~
~ x' e~'?I,~z' ~_~, ~~,

Moreover, the x components of the magnetic field are given by

H(~~(,<, z =

(
Yj)~~

sin'~"
x

[B$)
+ B~,,~(z )] e~~~~"~

+ j
~

B~,~(z)
~

m =1
~ Ymn ~~

ict~
+ Cm, (z)i e~'~~~/ J

( I
Cmiiz )1<?7J

where

Y~~~ "

/~) (28)
,j o

From relation (24), one can deduce again that the harmonic components depend on the

others i,ia the nonlinear coefficients V'~ (x, z ). These coefficients are responsible for the mixing
of modes (at fo and at dil~ferent frequencies), which, in a linear medium, propagate without

interactions (if somewhere generated). They can be derived directly from relation (13), once

the nonlinear operator o (e~~l(.x, z, t )) in it has been defined.

3. Parallelepipedal Dielectric Slab

In order to show how to handle equations (24-28), we consider the simple case in which the

inserted nonlinear slab is a parallelepiped. We set zj(x)
=

0 and z~(.<)
= zo (Fig. 2a). The

coupling coefficients, B~,~(z) and C~~(z) of the nonlinear slab become

B~~~ (z
= w ~zo E~ yj(~l)~ '

E~~
~

V'~ (x', z') sin '~" x' e~~~~~ ~ dJ.' dz ' (29)
~ 0

~

'~~

a co
~q~ ~

<2,~,
C~~(z)

=

WI ~zo E~ y((1)~ e~~ V',,(x', =' ) sin x' e
~?~'~ dx' dz' (30)

0 z
a
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a

~ )[[))(~
E~~

j~ ~~~

~~~~'~~

~

, ten.

ii
~'

i~

a)

1
di(r,t)me.

/-

e~(r,t)
re,i.

~d~'

e~

r~

bl

~~g. 2. ~a) Infinite Waveguide containing a nonlinear slab parallepipedal in shape. b) Waveguide
terrrinated by an ideal short circuit.

Two cases are described. In the first case, the waveguide is assumed to be infinite (it is of

course equivalent to a waveguide terrninated by a matched load (at all frequencies) in the

second case, we assume the waveguide to be short-circuited (I.e., terminated by a perfectly
conductive wall).

3.I. INFINITE WAVEGUIDE. By imposing, at the interfaces zj(x) 0 and z~(x)
= zo, the

boundary conditions, we obtain the explicit dependence of each linear coefficient A~~,
Bj$), C($~, and D~~~ (relations (2), (7), and (23)) on the nonlinear coefficients B~~(z) and

C~~,~(z) (all still unknown), calculated for zj(x) 0 and z~(x) zo. In particular, for each

n and m, a system of equations is obtained by applying the boundary conditions. Considering
the linear coefficients of this system of equations as unknowns and the nonlinear coefficients as

unknown terms, for each n and m, the system turns out to be made up of four equations and

four unknowns. The explicit solution of these systems (e.g., by the Cramer method) gives the

following relations (the related trivial steps are omitted)

~
~

~

~~ ~~j~ ~,y)(~zo ~ B~ (z~) (Y)(~- l'~~~~ ~
~~~~~

~

~~ ~

j
'~)~ y)(~[Cji(0) (l"1 ~ ~~~

j~,~ a,_
(Y))~ Y))~) (e~~~" ~° e'~" '°) (31)

2 Y)( ~(Y))~ + Y))~)
~?~'~~°)

(32)
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~(0)_ ~-jy)(lzo(~ ~Q)j~~(1))2 ~~(2))2j~-JY~l'zo ~~ (~)( (2) (1))2~-JY((~zo ~
~~ det[Sjjl ~~ ~~ ~~ ~~ ~ ~'~~ ~'~~

+ 2 Y)(~(Y1)~ Y ))~) e~~?'~
~")

(33)

Djj
=

~ y)(~[Bjj(0)(y((~+ y))~) + Cjj(z~) (y))~- y)~~) + 2 y)~~l (34)
det [S~ ii

An>n "

~j )/~ e~~ ~~~~~° jc
n,,j

(o ( y]/n~ +
y))/) / ~fl~°

+ Bnjn (20 ) yj$~ y$(/) e~
~~/

~° (35)

~~

C Cl
~

~~~

~
~

~~~"~~ (Bmn(0)1(yfi)~ (y)i)/)~l /~~~~
+ cmn(20) (yil y$I)~ e~~~il~°)

n,~

(37)

Dmn
~

~

~
y$>~lB>n»(0) (y$[~ + Y]$~) + Cn>n(20) (y$~ y$)i~Jl ~~~~

e
njn

where det [Sj ii and det [S~~] are given by

dot lsiil
=

e~~?~"~~l(Y)(~ + Y)i~)~ e~?'I'°° (y)(~- Y))~)~ e~~?'~~°°j (39)

d~~ lsmn1
"

~~~~~~~~ l(y$I
+

yil)~ ~~
~~"~°

( y)/n~ y)#)~
~

~ ~ ~~~~
~~l (40)

3.2. SHORT-CIRCUITED WAVEGUIDE. In the case where the waveguide is terminated by a

short circuit, we assume z w zo, with the additional boundary conditions (Fig. 2b)

nxe'~l(x,=,t)=0 for z=zo. (41)

As in the previous case, the application of the boundary conditions gives the relations

between the linear and nonlinear coefficients

'~'°
~~

j~~
jyll'zu_

B~~(zo) Y(~~e ~~~~
2 Y)i

iiijc~~(0)
Yii e~~~=_

~
~~jYil

121~ >2)_<Y)(~- Y))~)e'?~~ ~° (Y))~+ Yl(~)e~?~~ -°j (42)

~10) ~ ~~~ (2i (1)) ~'Y)~~zu ~ ~ ~~
~~121_ iii) ~-JY()~°u ~

~~ det[Sjj] ~~
~'~~ ~'~~

~~ ° ~~ ~'~~

~~12,-
+ 2 y() ~e ~~ ~°] (43)

~~
j

~ _,~121~
~

12~_C)1
~

lBj~ (=o) (y)i~
+ y)j~) e ~~ ~~ + C11 (0) (y))~- y)]I)- e~~?" ~° +

det [Sjj j
~2~~

+ 2 y)( ~e~~?'~ ~"] (44)
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~~~~~
~- j Ymn ij ~~~~

~~

j ~))
jcm,,(0) Yii~e~~~"'° ~~"~~°

B©I
"

~~ ~
lC

mn

(0 ( yl$~ y$(/) / ~i
~°

+ Bmn (20 y In~ y
n[>~)

e
~ ~~~ ~° (46)

n,~

CInS~
-

~~~

s~~j
iBmn(zo) ~Yii~ +

Yi?) e~?~/°
Cmn~°)

(YIn~n~ YIn?) e~?~~°i (47)

where

dot js~~j
=

(y))~+ y()~) /?'~~~°
+

(Y))~- Y))~) e
~~~~~~~ ~~~~

d~~ lsmnl
~

(y$)>~+ y$~) /~~~~~
+

(y))/~ y]>[~)~~'~~~~~~~ (49)

4. Formal Series Solutions

The formal series solutions can now be completed in both cases. For the infinite waveguide,
relations (31-38) express the linear coefficients A~~~, B)$), C)$~~, D~,,~ as functions of the

unknown nonlinear coefficients B~~ (z ) and C
~~

(z ), calculated for zj (,<)
=

0 and z~(x)
= z~. By

substituting relations (31-38) into (24), we can express E(,)~(x, z) only as a function of

B~~(01, B~,~(?o), C~~(0), and C~,,~(zo). If the nonlinear operator o (e~~~(r, t)) is specified,
from relation (13) we derive the term P,,(x, z) as a function of B~~(z) and C~,,(z). Finally,

substitution into (25) and (26) reduces the problem to the solution of the following system of

nonlinear integral equations

a z

~m>i(Z)
~

WI /~0 ~0(Yj>~~ ~22 ~'fi(~m»(Z~), ~m>i(Z~), A', Z~) X

0 0

~q ~
>2~~.

x sin x' e~~?~"'~ dJ' dz ' (50)
a

a =~
~mn(Z)

~

WI /L0 ~0(Y~~/~ ~22 ~'>i(~m>i(Z'), ~nm(Z'), X', Z') X

0 =

x sin '~ " ~r' e~'?~~'~ da.' dz' (51)
a

~~~

where the dependence of $r,,(.i, =) on B~~~(=) and C~,,~(z) is indicated.

For the short-circuited waveguide, the same results can be obtained by considering
relations (42-47), by substituting into (24), and by using (25) and (26). Relations formally

equal to (50) and (51) can then be derived.

5. Choice of the Nonlinearity

In this section, under the assumptions made in Section I, we consider a particular choice for

the nonlinear operator (Eq. (I I)), which is assumed to be given by :

o (e~~'(~, z, t))
=

o~(e)~~(,x, =,
t1)~

+ oj e(~~(x, z, t (52)

where Hi and o~ are known constants. Relation (52) corresponds to a nonlinearity for the

relative dielectric permittivity truncated at the second-order term (dependence on the field
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power):

e~(x, z, t
= E~ (E~j (x, z ) + E~~[o~(e)~~(,<, z,

t))~
+ Hi e(~~(,<, =, t )] (53)

At this point, we can give expressions for the nonlinear terms P~(B~~(z'), C~~,,(='), x', z' )

included in (50) and (51). To simplify the notation, we assume the simple case in which

M
=

I and N
=

2 (more complex cases would complicate the formalism). Under all the

assumptions made and on the basis of (13) and (52), relations (50) and (51) can be easily made

explicit by direct substitution and, after performing a direct, integration with respect to the

variable ,<', we obtain

B11(Z)
"

~°~/L0 E0(Y))~) E22

~
a[3/2 02 ~l(Z~) (f2(Z~)(~ + 9/8 ~2 f1(Z~) (fl(Z')(~

0

8/3 Hi ij*(z') i~(z' )i e~~?'i~~ dz' (54)

B~~(z )
=

WI ~o Eo(y))~)~ e~~

~

a[3/2 o~ f~(z') (fj(z' )(~ + 3/4 o~ f~(z' f2(z')(~
+

0

+ 4/3 Hi ii (z')~] e~~~~~~~ d=' (55)

C11(Z)
=

W~ /L0 E0(Y))~) E22
~

a13/2 02 f1(Z') (f2(Z')(~
+ 9/8 02 fi(Z') (fj(Z')(~

+

0

+ 8/3 Hi ii (z') i~(z')i e~~~'~~~'dz' (561

Cj~(z)
=

w(
~~ e~(y)(~)~ e~~

~

a[3/2 o~ f~(z') (fj(z')(~
+ 3/4 o~ f~(z') f~(z')(~

+

o

+ 4/3 Hi ii (='j~j e~~?~~~°'dz' (57)

where:

E)~~(.K, z)
it (Z)

=

(58)

sin "
x

a

E),~l(x, z)
f2(Z)

=

~ (59)

sin "

x

a

where E))I(x, z) and E((~(x, z) are given by (24j.

6. Numerical Results and Discussion

In both cases considered in Sections 3. I and 3.2, respectively, the system solutions allow in

principle the determination of the coefficients B~~ (z and C
~~

(z ). Since no analytical solutions

can be derived for the sets of nonlinear integral equations (50, 51), a numerical procedure must

be applied. A preliminary example is now given. We considered a parallelepipedal dielectric

slab inserted in an infinite waveguide (Eqs. in Sect. 3. I). We assumed z~ =

0.6 x lo ~
m, and

the transversal dimensions of the waveguide (excited in the TEj~ mode) were

a =

2.286 x
I0~~m, b

=

a/2. The slab exhibited a nonlinearity given by (52), and the

operating frequency (fundamental frequency) was chosen equal to lo GHz.
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Under the simplifying assumptions made in Section 5, the system of equations to be solved

was given by relations (54-57), The involved integrals were partitioned along the z axis under

the assumption of uniform partition steps. In particular, we considered P
=

6 partitions, for

which Az =o/P
=

0. I x 10~ ~
m. Then, we assumed the unknown coefficients to be constant

in each partition. This allowed equations (54-57) to be reduced to a nonlinear system of 24

algebraic equations with 24 unknowns the system can be written in compact form as

F (Bjj(I),Bjj(2),. ,Bjj(P),Bj~(I),Bj~(2),. ,Bj~(P),

cij(i),en(2),. ,en(P),ci~(i),ci~(2),.
,

cij(P)j =o (60)

where B~~~p) and C~~~p) denote the unknown values of the coefficients B~~(zl and

C~~ (z) inside the p-th partition, characterized by ~p I Az w z w p AZ. In order to obtain a

solution for this preliminary example, Wolfe's method [9] was used, which constitutes a

generalization of the secant method. This method is an iterative method that required that 25

starting arrays of 24 elements (randomly generated) be fixed. The computation was considered

completed when, at a k* iteration, the residual square norrn of relation (60) was less than

10~4. However, in general, if an accurate field computation is required and a large number of

modes and many frequency components are assumed, systems analogous to (54-57) can be

obtained, which tum out to consist of many equations with many unknowns. Algorithms for

global optimization, like simulated annealing and genetic algorithms (which are currently of

growing interest to the scientific community), seem particularly suited to solving such complex

problems with many possible local minima [lo, I Ii.

The results of the above example are given in Figures 3-7 we assumed o~
=

0.01 and

Hi was made to vary between 0 and 0. I. Moreover, we assumed E21(>., z)
= e21 ~

3 (higher

values of the linear part of the dielectric permittivity tend ti mask the effect of the

nonlinearityl. In particular, Figure 3 gives the amplitude values of the coefficients of the

reflected waves in region I, Ajj and A
ii,

for different values of oj. Figures 4-6 illustrate the

fi
o A~~

a0tl
aCW

am
al

~~

Fig. 3. Amplitudes of the coefficients of the reflected waves in region I : a) Ajj
,

b) A12, for some

values of the nonlinear parameter 6j.
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field distribution inside the nonlinear slab (region II). Figure 4 gives the values of the

coefficients B
j j

and B
j~ versus 6

j,
computed for each partition p, p =

1,
,

6. Figure 5 gives
the analogous values for the coefficients C

ii
and C

j~.
Finally, Figure 6 gives the amplitudes of

the total electric fields E))J(x, z) and E).~~(x,z), computed by the obtained nonlinear

Bii~i~)

0.O3Jl o-ml 0.01 o-1 ~~

al

o-1
B12~P)

o.cool o.ooi o.oi o-i o~

b)

Fig. 4. Amplitudes of the nonlinear coefficients of the direct waves computed in the partitions of

region II ~p= I, P; P =6): a) Bj~, b) Bj~, for some values of the nonlinear parameter

6j.
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C11~P)
'~

o,9

o,s

o,7

o,5

0,4

0,3

C,2

o,1

~
o,oooi o,ooi o,oi o,1 ~

a)

C12~~')

0,2

0,1

o,oooi o,ooi o,oi o,1 ~

b)

Fig. 5. Amplitudes of the nonlinear coefficients of the direct waves computed in the partitions of

region II ~ l, P ; P =6): al C
ii,

b) Cj~, for some values of the nonlinear parameter

6j.

coefficients, for x =

a/2 and for a nonlinear parameter o equal to 0. I. From (2), it follows that

the field is continuous across the interface z =
0, as required by (16). The same conclusion

holds for
z z~.

JOURNAL DE PHYSIQUE In T ~ w, ,Aw>,Auv ,nM
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p =
6

p =
5

a E~2j ~~ ~j

~
p =

4 ~~ '

p L?I Ejj(x,z)
m

~
t~l ~ ~

p=2

p =
1

0.0 0.25 0.50 0.75 1.00 1.25 1.50

V/m

Fig. 6. Amplitudes of the total electric fields, E((~(>, z
) and E()~(x, z

), computed in the partitions of

region II ~p
=

I, P, P
=

6).

7. Conclusions

In this paper, we have proposed a formal series solution for the wave propagation in a

rectangular waveguide (excited in its dominant mode) containing a nonlinear dielectric slab of

finite size. The solution is based on an integral-equation formalism in terms of the Green

function for rectangular waveguides. We have shown that, if the nonlinear operator is

expressed in its explicit forrn, determining the coefficients of the series solution for the electric

field distribution inside all the waveguide regions reduces to solving a system of nonlinear

integral equations. We have described the formal solution by assuming a slab of specific shape
and a particular nonlinearity whose highest term was power dependent. Two cases have been

considered an infinite waveguide and a short-circuited waveguide. In both cases, the series

solutions have taken into account the mode (transmitted and reflected) generation and the

harmonic production in the various waveguide regions.
In the paper, emphasis has been placed on the mathematical formulation of the approach for

the particular configurations considered and on the reduction of the problem to one suitable for

a numerical treatment. However, a preliminary numerical example has been developed and the

obtained results reported. The authors are currently starting a wider numerical analysis, which

is necessary for both an evaluation of the effectiveness of the proposed approach and a physical
interpretation of the solutions achieved.
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