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Abstract. The dynamics of a photorefractive oscillator has been studied in the weakly

multimode case. It is shown that the eigenmodes of the empty cavity provide the bases in which the

transverse patterns of this oscillator should be analysed. The concept of mode families I.e. sets of

frequency degenerate modes, is very efficient to classify the different ranges of operation of the

oscillator with Fresnel number up to 5-7. As the complexity of the pattems increases, the

interpretation in terms of optical defects or phase singularities greatly simplifies the analysis.

Photorefractive materials have been shown to be efficient in many applications, such as pattern

recognition, volume hologriphic storage, phase conjugated lasers, II. The knowledge and

the understanding of the dynamics that they could develop when they are placed inside a cavity

is important from two points of view (I) they can help in building devices whose stable

pattems are used as a basis for the manipulation of complex images, for example by reducing

images to the components of their projection on a limited number of
«

eigen-patterns
»

[2] (it)

more fundamentally, photorefractive oscillators (PRO) have analogies with lasers [3], and thus

could contribute to understand the spatio-temporal dynamics of nonlinear optical systems.

Indeed, some properties of PROS, and in particular their relatively long response time, allow

us to access more easily to the inforrnation needed to analyse the spatio-temporal behavior of

nonlinear optical systems. In fact, as the analogy with lasers has been demonstrated through

the Ginzburg-Landau equation, dynamics of photorefractive oscillators should show analogies
with a much larger class of physical systems, namely those in which complex spatio-temporal

behaviors lead to turbulence.

In order to determine the basic mechanisms of transverse dynamics in nonlinear optical

systems, we have chosen to study first the behavior of a simple system with few spatio-
temporal degrees of freedom. Here we have used an optical cavity whose gain is provided by

two-wave mixing (2 WM) in a photorefractive crystal, and with small transverse dimensions

such that only few modes are able to oscillate in the empty cavity. By varying the diameter of

an intracavity aperture, we change the number of degrees of freedom of the transverse

variables and study the evolution of transverse patterns in situations of different complexity.
The dynamics is interpreted in terms of the empty-cavity modes (ec modes) and of their
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interactions. The paper is organized as follows we present first the experimental set-up and

recall the particular properties of the photorefractive crystals relevant to this work, together
with some notations conceming optical cavities. The next section deals with the global

response of the oscillator as a function of the gain and the cavity length. We show in particular
that in spite of fundamental differences between PROS and lasers, the ec modes play a similar

role in both systems. Parts 3 and 4 describe respectively the stationary and dynamical patterns
involved by the PRO, and interpretate them through the interactions between ec modes. In

part 5, we briefly discuss the results and their relevance to the future investigation of systems
of higher complexity.

1. Experimental set~up.

The experimental set-up is shown in figure I. The cavity is limited by three plane mirrors M

and a beam splitter BS coupling 10 fb of the beam outside the cavity. One of the mirrors is

mounted on a PZT translator in order to vary the total length L of the cavity at the scale of the

optical wavelength A. A focusing lens with focal length f is added to stabilize the cavity. An

iris allows us to restrict the transverse spatial extension of the beam inside the cavity. The gain
of the oscillator is obtained by 2 WM inside a Bij~sio~o (BSO) photorefractive crystal. The

crystal is pumped with a frequency doubled YAG laser (A
=

532 nm) with an intensity of

about 10 mW/cm2. The angle between the pump beam and the cavity axis is about 3°. The light
emitted by the PRO is monitored by a CCD camera which is connected to a Video Cassette

Recorder to record long time sequences and to a computer to analyse the instantaneous

patterns. Heterodyne detection can also be performed by mixing the signal with the pump

beam.

0ccD

Pump

M

LENS IRIS

M

M

pzT

Fig. I. Experimental set-up of the 2 WM PRO. The cavity i~ limited by three flat mirrors M and a

beam splitter BS. The lens stabilizes the cavity. The piezoelectric translator PZT permits the cavity
length to be varied.

When both a probe and a pump radiation with frequencies v, and v~ respectively are sent

onto a photorefractive crystal adequately oriented, a part of the pump energy is transferred to

the probe beam. The transfer efficiency depends on the angle between the two beams and their

frequency difference. It increases with the ratio of the pump to the probe intensities. In a cavity
such as that of figure I, when the probe power is initially zero, the oscillation is triggered by
the noise falling inside the gain bandwidth of the crystal. The gain curve is centered on

frequency no, detuned from v~ by 6 Hz typically. This triggering optical noise originates
essentially from the diffusion of the pump radiation inside the crystal. Here the value of the

gain is linked to the motion of electric charges inside the crystal. In BSO, this gain is zero
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except if a DC electric field Eo is applied to the crystal. Therefore, this parameter controls the

values of the round trip gain when the other parameters are optimized, the variation of

Eo from 0 to 10 kV/cm induces a variation of the gain from 0 to 000 % typically. This high
gain allows us to use a «

bad >I cavity, which is effectively the case owing to the large losses

introduced by the crystal itself (transmission and reflection losses). The total losses per round

trip are estimated to be 75 %, leading to a small cavity finesse of 2.I.

The theory of empty cavities shows that the longitudinal and transverse boundary conditions

lead to Gaussian eigenmodes belonging to bases such as the Hermite-Gauss or the Laguerre-
Gauss ones. The Laguerre-Gauss modes, corresponding to a cylindrical transverse symmetry,

as that imposed by the circular iris in our set-up, will be denoted in the following

A~i,, where p is the radial index, I the longitudinal one and I
=

I (resp. 2) for a cosine (resp.
sine) mode [4]. The total length of the cavity and the focal length of the lens determine the

stability of the cavity, and thus the arrangement of the mode frequencies. The free spectral

range of the cavity, I.e. the spacing between two successive longitudinal modes, is

Av~=c/L. The frequency detuning of the A~i, transverse mode with respect to the

fundamental Aoo mode is

~~PfI
"

(~ P ~
i ) ~i~ ~°~~ l~ )

"

(~ P ~
i ~~T

Therefore, once all the cavity parameters are fixed, the frequency of a transverse mode is given
by the index f

=

2p +
I, and modes with same f have same frequency. Such sets of

frequency-degenerate modes are called
«

mode families
»

[4]. In fact, modes of the same

family are frequency degenerated only in the
«

ideal
» case. Practically, breaking of the

cylindrical symmetry of the cavity, by e.g. misalignment or astigmatism, lifts this frequency
degeneracy. Thus the length of the cavity, the focal length of the lens and the global symmetry

of the cavity are important geometrical factors which have been chosen according to the needs

of each series of experiments. Parameters such as the transverse and longitudinal intermode

spacings or the effective symmetry of the cavity are adjusted by acting on these quantities.

Typical values are f
=

0.5 m and L between I and 3 m, leading to intermode spacings in the

range of several tens of MHz.

The transverse spatial extension is a key quantity of our experiments. As the laser

electromagnetic field energy is confined in a region whose diameter increases for higher order

transverse modes, this transverse extension govems the number of transverse modes able to be

transmitted by the empty cavity. This quantity may be measured by the generalized Fresnel

number N

V

ch'" ~

HM'~

m>n

where w
is the spot size of the fundamental mode and 3 is the cross section of the cavity [5].

The index indicates that the Fresnel number corresponds to the smallest value of this quantity

as the field travels along the cavity. In our case, the Fresnel number must be calculated in the

plane of the iris, and so it is equal to

.V
=

(a/M>)~

where a is the radius of the iris aperture. The results presented in the following correspond to

typical ~N' values ranging from I to 10.
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2. Phase diagram of the PRO.

Although we have not made any quantitative check of this point, it immediately appears that

the patterns emitted by the active cavity are extremely similar to ec modes, in particular
Laguerre~Gauss modes and we will use the labeling of these modes to describe them. Figure 2

shows the phase diagram of the PRO as a function of both the cavity length and the external DC

field for a cavity with Av~
=

67 MHz, Av~/Av~
=

2.5 and N
=

5. In this diagram, the

numbers indicate the mode family which is oscillating in the considered area. Hatched areas

correspond to non oscillating regions. The behavior described by this diagram is very similar to

that observed in lasers. For a given length of the cavity, the PRO oscillates on the nearest ec

modes. To overcome the losses, a minimum gain is required for oscillation, deterrnining a

threshold as in a laser. As the losses induced by the iris increase with f, the threshold is

generally lower for small £ mode families.

lo

11 ~

~
0 4 2 3 0

£
8

o
uJ

7

0 l/4 l/2 3l/4 ~

Cavity Detuning

Fig. 2. Phase diagram of the PRO as the cavity detuning and the crystal voltage Vo are varied. The

cavity detuning is given in length units, and Eo is the electric field associated with Vo. The regions in

which the PRO do not oscillate are hatched. In the other areas, a number indicates the family that

oscillates.

This first result is not so trivial in the particular situation of the PRO, as compared with the

usual lasers. In the latter, the gain curve is much larger than the empty cavity linewidth, which

is directly linked to the losses of the cavity for the considered mode. As a consequence, the

emission frequency is always relatively close to the frequency of the corresponding ec mode.

On the opposite, the gain curve in the PRO is very narrow, about 10 Hz in our case, and so the

emission frequency of the PRO remains practically unchanged when the cavity length is

scanned. The fact that the PRO oscillates for almost any cavity length when the gain is large
enough, indicates that a very strong frequency pulling exists, as it is predicted by theory [6].

Moreover, the strong frequency pulling is favoured here by the fact that due to large cavity
losses, the ec modes linewidth is also large.

This interpretation is confirmed by the measure of the output frequency of the PRO as the

cavity length is swept. This can be done easily through an heterodyne detection of the emitted

field. When mixing the output beam of the PRO with that of the pump, the pattem exhibits

fringes moving with a speed directly related to the difference Au between the two beam

frequencies. As the cavity length is increased in the range of existence of a given pattem, I.e.

typically /5, corresponding to a shift of the ec mode frequency of 67 MHz in the conditions of

figure 2, An varies typically from 4 to 8 Hz. These values are independent of the considered

mode.
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The phase diagram also indicates that the oscillating regions of each family are well

delimited, and that no overlapping of families was observed. This corresponds to the fact that

all the observed patterns are always combinations of mode of the same family, and that when a

parameter is changed so that the border between two families is crossed, the PRO jumps
abruptly from a pattern described by modes of the first family to a pattem described by modes

of the second family.
In fact, the situation described by figure 2 is very simple, as the configuration of the cavity

and the Fresnel number have been chosen so that the ec modes involved in the PRO dynamics

are grouped in families separated by several tens of MHz. For other cavity configurations or

larger Fresnel numbers, it often happens that two families of different longitudinal index are

very close, sometimes separated only by a few kHz or less. If this difference is small enough,
typically in the range below MHz, modes of both families participate to the dynamics. This

point will be discussed with more details in the next sections.

3. Stationary patterns of the PRO.

As mentioned above, when the Fresnel number remains small I.e. of the order of 3 to 5

typically, the observed pattems can always be easily interpreted as linear combinations of few

ec modes. Almost all combinations could be observed, depending on the geometry, the gain
and the transverse symmetry of the cavity, and more generally on the ec modes whose

frequency falls near the pump frequency.
When the situation is such that only one isolated mode has a resonance frequency close to

no, the output pattern of the PRO looks very similar to that of this mode. Figure 3 shows

examples of the modes Aoo, Aoj
j,

Ao~~ and Ao~j, belonging respectively to the f
=

0, 1, 2 and

3 families, together with their theoretical shape. This list is not exhaustive, as theoretically all

ec modes should be observable. In practice, it is true only for small f-modes. Indeed, as

f increases, it is more and more difficult to separate mode frequencies, as many other modes

are able to oscillate and come to interfere with the considered ones. Let's take an example : to

Fig. 3. Intensity distribution of some monomode stationary observed patterns (a) Aoo mode (b)
Ao, mode (c) Ao22 mode ; (d) Aoii mode. Pattems (e), (f~, (g) and (h) represent the theoretical shapes of

Aoo, Aoj,, Ao~~ and Ao,j modes respectively.
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observe the Aojj mode, it is necessary to lift the degeneracy between this mode and the

Aoi~ mode. In practice, it is easy to choose a cavity configuration such that the

f
=

0 and f
=

I families are well separated, say Av~/Av~
=

2, and to reduce the iris aperture

so that families with f
~

l cannot oscillate. Then it remains to introduce enough astigmatism

to separate the two f
=

I modes. As the length of the cavity is scanned, three well separated
modes appear: Aoo; A~,ji and Aoj~. The observation of a higher f-mode, as e.g. the

Ao41 mode, is much more difficult. It is necessary to choose A v~/A v~ =

5, and then to separate

the five modes of the f
=

4 family. As the cavity length is scanned, up to 15 modes appear

successively, with a frequency spacing smaller than in the previous case. This sets a practical
limit to the maximum order of the family that can be observed in stationary operation.

When the frequency spacing between two transverse modes is small enough, the observed

stationary pattern is a linear combination of these two modes. More generally, when the

Fresnel number, and so the mode-spectrum density, is increased, the stationary patterns are

often a combination of several ec modes. For example, in the f
=

I family, when the two

modes Aoj and Ao,~ have the same frequency, the observed pattern is no longer one of these

two modes, but a linear combination of them as shown in figures 4a and 6a. These two pattems

have an intensity distribution corresponding to a field distribution of the type

~ <WI ~ >lw/+~l (i)le + 2e

where Aj and A~ are the field amplitudes of the A~jj and Aoj~ modes and
w

is the light
frequency. Figure 6a (resp. fig. 4a) corresponds to ~o = w (resp. ~o =

w/2) [7]. As in typical
coupled oscillators, the single frequency

w
that appears in equation (I) could result from

locking of slightly different ec mode frequencies [8]. We have qualitatively observed that this

effect in the PRO happens for very small frequency differences, smaller than the precision of

the cavity length adjustment, I.e. typically 10 kHz.

Patterns of figures 4a and 6a are a good illustration for another approach of the

characterization of patterns that seems to be more suitable in most cases. Indeed, the pattern of

figure 6a appears to be equivalent to the Aoj mode with a change in the reference axes, owing

e.g. to a small breaking of the transverse symmetry of the cavity. in the same way, the pattern

of figure 4a is obtained in a cavity with cylindrical symmetry, without any preferred axis, and

so is a sum of the two ec modes of the family. The particular phase of w/2 seems to be typical
of the interaction of modes inside one family, as we will see later.

The pattern of figure 4a exhibits in its center a point with special properties. This point of

zero intensity, and thus of zero field amplitude, is a phase singularity, I.e. a point where the

.

Fig.

center ; inten~ity distribution of the f
doughnut

; detection of (b) showing a phase

with

= 2 in the enter. ln (a)
and

(cl, fringes result from
oise.
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phase is not defined and cannot be defined by continuity [9]. This appears clearly when an

heterodyne detection of this pattern is used (Fig. 4b). A defect similar to a dislocation appears
in the fringe grating : one fringe splits suddenly into two at this point, and therefore, the

circulation of the phase around this point is nonzero, but equal to m2w, where

m is a positive or negative integer, and is called the
«

topological charge
»

of the phase
singularity. Such phase singularities, also called

«
optical vortices », should play an important

role in the highly multimode dynamics of PROS, nonlinear passive Fabry-Pdrot interferome-

ters [10] and lasers, and in particular could be at the origin of optical turbulence [9]. Therefore

it is interesting to consider what role they play in weakly multimode dynamics. Moreover, they
introduce a new tool in understanding patterns, through the charges of their phase singularities.
Experimentally, the vortex charge can be easily determined: when turning around the

singularity, the charge is the difference between the number of fringes crossed in the top half-

circle and that in the bottom half-circle. The vortex in figures 4a, b appears thus to have a

charge of + I. Figure 4c shows a pattern that resembles very much that of figure 4a. However,

its heterodyne counterpart reveals that its central vortex has a charge of + 2. In fact, the

doughnut of figures 4c, d belongs to the f
=

2 family only the examination of the charge of

the phase singularity allows us to differentiate it from that of figures 4a, b.

Figures 5 and 6 shows some other examples of stationary patterns. As above, different points
of view may be adopted. Pattems may be considered as combinations of two or more ec modes.

Thus, pattem 5a is a combination of the three ec modes of the f
=

2 family, pattern 5c is a

t
'

>'

Fig. 5. Experimental recording of f
=

2 patterns. (a) intensity distribution of a two-vortex pattern :

(b) heterodyne detection of (aj the two vortices have charge (c) intensity distribution of a four-

vortex pattern (d) heterodyne detection of (b) the vortices have charges = I. In (a) and (c), fringes

result from technical noise.

Fig. 6. -Intensity distribution of some multimode stationary patterns: (a) f
=

I (b) f
=

3 (c)

f 5 (dl combination of f
=

0 and § 3.
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combination of Ajo and Ao~~, patterns 6b and 6c may be found back from ec modes of the

f=3 and £ =5 families respectively, while finally pattern 6d is a combination of

A~~i and Aoo. When the situation is simple, as e.g. for pattems of figures 5c and 6d, we

observed that the phase that appears in the two-mode combination is different depending on

whether these two modes belong to the same family or not. The pattern of figure 5c is solution

of equation (I) for the Ai~ and A~~~ modes and
~o =

w/2, while the pattern of figure 6d

corresponds to A~~ and A~~j modes with ~o =

0. In the first case, the two modes belong to the

same family and they add in quadrature, while in the second case, the two modes originate
from different families and add in phase. This behavior seems to be general, at least for two-

mode combination, and when the symmetry of the system is taken into account, choosing for

example appropriate axes to build the ec modes.

Indeed, this approach using ec modes becomes difficult to use when more than three modes

are interacting. However, if symmetries of the pattem are taken into account, this approach

may be extended through the use of ec modes of other Gaussian bases. In this case, patterns
such as those of figures 6b or 6c may be easily identified, since they are eigenmodes of the

Hermite-Gauss basis, respectively the TEM~O and TEMI2 modes. This type of solution

results probably from a change of the transverse symmetry of the cavity, originating in the

adjustments of the system to obtain these patterns, and making the symmetry closer to the

rectangular one.

However, the previous method of characterization of the patterns appears to be inadequate as

the number of modes increases or when temporal dynamics is considered. Let us explain first

how phase singularities can help in simplifying the analysis of data on transverse dynamics.
Stationary pattems with respectively 2 and 4 vortices are shown in figures 5a and 5c with their

corresponding heterodyne detections in 5b and 5d. Patterns with up to 7 vortices have currently
been observed. Different distributions of charges are found. In figures 5a, b, both phase
singularities have a charge I, while in figures 4c, d, two of charge + I coexist with two of

charge I. These vortices are always ordered following the rule which tells that when their

charges have the same sign, they repel each other, while they attract each other if they have

different signs [4]. In patterns where vortices have all the same charge, as in figure 5a (see also

Fig. 9 for three vortices of charge I), they are regularly spaced. When opposite charges
coexist, stationarity is obtained through the formation of crystals where phase singularities of

opposite charges alternate. This type of geometry for charges of different signs have been

theoretically predicted through an analogy with electric charges of particules, and was already
observed in lasers [4, 11].

4, Dynamical patterns of the PRO.

In the previous sections, two types of interactions between ec modes have been described

depending on the frequency difference between these modes : when ec modes are well

separated, mutual exclusion arises so that the PRO oscillates only on the mode with the

frequency closest to the central gain frequency when ec modes have almost the same

frequency, stationary patterns composed of a mixture of these particular modes are observed.

In the scale of the frequency spacing between modes, there exists an intermediate situation

where, although the modes have well different frequencies, they participate together to the

PRO operation. in this case, corresponding typically to spacing of I MHz and less, periodic

regimes have been observed. Let us remember that frequency locking, as discussed in

section 3, appears for at least two-order-of-magnitude-smaller frequency spacing.

Figures 7, 8 and 9 show sequences recorded from typical periodic regimes. The four patterns

are snapshots separated by 0.5 s (Fig. 7), 0.24 s (Fig. 8) and 0.28 s (Fig. 9), and represent the

evolution of the output pattern of the PRb during half a period (Figs. 7 and 8) or one third of a
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Fig. 7. Half a period of a f 4 periodic pattern. Snapshots are separated by 0.5 s. The second half of

the period is similar to this sequence, but reversed in time.

Fig. 8. Half a period of a periodic pattern combining the f
=

I and f 4 families. Snapshots are

separated by 0.24 s. The second half of the period is similar to this sequence, but reversed in time.

Fig. 9. One third of the period of a periodic pattern combining the f
=

0 and §
=

3 families.

Snapshots are separated by 0.28 s. The dynamics of the pattem consists in the rotation of three equidistant

vortices around the pattern center. For sake of clarity, one of the vortices has been marked by a white

index.

period (Fig. 9). The period tl~ is 3 s, 1.6 s and 2.6 s for figures 7, 8 and 9 respectively. In

figures 7 and 8, the second half of the period follows the same evolution as that shown, but

reversed in time. In figure 9, the dynamics consists in a continuous rotation of the pattern
around its center. Equation (I) is no longer suitable to describe this behakior,

as a second

frequency, much lower than the optical one, has appeared. The introduction of a small

frequency in equation (I) leads to the following expression

A e''~' e'~~ + A~ e'~'~' + ~ e'~~~ + ~ (2)
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where
w

and tl are linked to respectively the half sum and the half difference of the

frequencies of modes Ai and A~ [7]. The fact that very low tl frequencies are observed in the

PRO in the range of one Hz, although interacting ec modes may be separated by MHz, is not so

surprising. indeed, as already discussed in section 2, ec mode frequencies in the PRO are

shifted by a very strong frequency pulling which squeezes all the active optical frequencies
inside the gain curve, wide of only a few Hz [6]. As a consequence, the differences between

active optical frequencies are also of the order of one Hz.

Using expression (2), the pattern shown in figure 7 appears as resulting from the interaction

of the two modes Ao~~ and Ajj~, both belonging to the f =4 family, with phases
#

=

w/2 and
~o =

ar/2. As for stationary patterns, the interaction of modes belonging to the

same family is associated with
~o =

w/2. In the same way, the pattern of figure 8 appears as the

interaction of Aoj~ with modes of the f
=

4 family combined to form the TEM~O Hermite-

Gauss mode. The phases in equation (2) are here #
=

w/2 and ~o =

0. When symmetries are

taken into consideration, this rule seems to be general modes belonging to the same family
interact through a w/2 phase, while modes from different families interact through a zero

phase.
Figure 9 gives another illustration of a dynamical pattern resulting from the interaction of

modes belonging to two different families, namely the f =0 and f =3 ones. The

f=3 mode appearing here as a doughnut mode, is the superposition of the two

Ao~ modes. However, the approach from the point of view of phase singularities is more

appropriate the dynamics consists in the rotation of three vortices of charge I around the

center of the pattem. The three vortices are always equidistant, following their electric-charge-
like behavior. Such transverse travelling waves corresponding to the rotation of phase
singularities have already been predicted and observed in lasers [I I ]. Depending on the sign of

the charges, they can be associated with creation and annihilation of vortices. In the case of

figure 9, the three vortices have the same charge, and so annihilation is not possible, as all

vortices repel each other. The dynamics may be more complex : for example, when all three

modes of the £
=

? family compete, the vortices exhibit a complex motion including rotation,

precession, and cycles of annihilation-creation, as those observed in lasers [7, 11]. These are

just preliminary examples, and the dynamics resulting from the interaction of a great number of

vortices, is now being considered.

5. Conclusion.

We have reported here the simple basic dynamics of PROS in the case of weakly multimode

cavities. The observed behaviors are either stationary or time periodic and the patterns are

often very similar to the empty cavity modes. The analysis and the understanding of the

dynamics using mode properties have been done taking into account the symmetry of the

cavity. It results from this approach that the behavior of the PRO is very sensitive to different

parameters as the symmetry of the cavity or the frequency spacing between modes, and that the

adjustment of these parameters leads to a very rich phenomenology. In future investigations,

this high sensitivity could be used in pattern recognition devices taking advantages of the

spontaneous symmetry breakings of the behavior [12].

The PRO provides also a good system to study complex spatio-temporal dynamics and

optical turbulence. This paper shows that even in simple behaviors, consideration of phase

singularities as «
charged pseudo-particles

» appears crucial to extract simplified information

on the observed pattems, and the temporal evolution of the patterns is interpreted in terrns of

the motion of these
«

charged pseudo-particles ». By increasing the aperture of the intracavity

diaphragm, it is possible to explore a region of larger Fresnel numbers where more modes

should interact and lead to larger complexity. The statistical study of phase singularities has
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already be done [13] but the dynamics of these complex systems still remains to be explored.
Owing to their long time scale as compared with usual lasers, PRO's appear as a good system

to perforrn such studies.

The PRO's, as the lasers, are the association of an optical self-amplifier with a cavity, and

thus it is interesting to compare their properties. The main differences result from the nature of

the PRO gain process, 2WM instead of stimulated emission, and from its very narrow

bandwidth. Therefore, the emission frequency of the PRO varies only on a few Hertz, which is

possible only because of a huge frequency pulling. However, in spite of these strong

differences, we have shown that the behavior of the PRO is very similar to that of lasers. In

particular, the cavity parameters, such as the resonator length or detuning, appear to play the

same selecting role as in lasers. Moreover, most of the weakly multimode stationary and

dynamical patterns described in this paper have been observed or predicted in laser systems [4,

11]. Some simple models already propose an approach to explain these similarities, through a

common description in the near-threshold region by the Ginzburg-Landau equation [3].

Therefore, the results obtained in the PRO's could be extended not only to the lasers, but also

to a larger class of systems modelized by this equation.
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