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Abstract. It is shown that the simultaneous use of the coupled-mode formalism and of the

rigorous theory of diffraction in linear optics leads to a simple modal theory of grating couplers on

nonlinear waveguides. Two examples are considered optical Kerr effect and second harmonic

generation. In Kerr-type grating couplers, despite its simplicity, this modal analysis is able to

predict
«

exotic
»

behaviors such as, for example, chaos.

1. Introduction.

Grating couplers for nonlinear waveguides have been the object of many studies. This is

mainly due to the fact that they allow the resonant excitation of normal modes of the structure

guided waves or surface plasmons. The associated electromagnetic (EM) resonance may give

rise to different effects. For example, in second harmonic generation (SHG), grating couplers

allow an enhancement of several orders of magnitude of the second harmonic intensity as

compared to the off-resonance situation, whereas optical bistability may exist when dealing
with the optical Kerr effect.

These nonlinear interactions at grating couplers may be studied, a priori, in two ways.

I In the first one (referred to as method I ), no hypothesis is made regarding the transverse

field map [1-3] (transverse : along the y-axis perpendicular to the mean plane of the grating).
The differential equations, deduced from Maxwell equations, which describe the EM field(s)

at the existing frequency(ies) are integrated along y. Thus method I applies whether or not the

resonant conditions are fulfilled. As a result, this method is general but has the two following
disadvantages : I) large amount of computer time is required and it) is restricted to only plane

waves. Point it) is a serious drawback when dealing with Kerr type grating couplers. Indeed it

is known that the finite width of the incident beam strongly modifies the response of this type
of couplers ; to a lesser extent, this is also true for SHG in the presence of sharp resonances.

@Les Editions de Physique 1994



2452 JOURNAL DE PHYSIQUE III N° 12

2) The second method (referred to as method 2) takes full advantage of the fact that these

grating couplers in guided wave nonlinear optics are used in the immediate vicinity of an

isolated resonance :
of the order of a few times the width at half maximum of the resonance

curve. Therefore the coupled mode formalism [4, 5] is particularly well suited for this kind of

study since it shows that the transverse field map corresponds to that of the linear regime.
Hence, in the nonlinear- case, the two following important consequences

a) the transverse field map is known and it is no longer necessary to integrate along j~ as for

method I

b) The in-coupling of the pump field together with the phenomenon of diffraction is

accounted for by using the rigorous theory of diffraction in linear optic-s [6] in which the

groove depth of the grating is not considered as a perturbative parameter.

The only nonlinear quantity which enters the calculation is the overlap integral which

involves the known transverse field maps and the nonlinear susceptibility.
The aim of this paper is to present method 2 and to apply it to optical Kerr effect and to SHG.

The organization of the paper is as follows section 2 is devoted to general considerations

conceming the coupled-mode formalism. The grating coupler on a Kerr-type waveguide is

considered in section 3 and SHG at a grating coupler is treated in section 4.

2. General considerations.

Use of the coupled mode formalism [4, 5] leads to the following procedure

al define the unperturbed structure ;

b) find its normal modes ;

c) specify the source terms

d) write down the equation(s) of evolution of the norrnal mode(s) amplitude and

e) solve the evolution equations..

For nonlinear effects at grating couplers (Fig. I), this leads to

POINT a. The unperturbed system consists of the grating coupler without any incident

beam. Thus the corresponding structure is linear and leaky with modes having a longitudinal

wavevector component y~ which is complex (even in the absence of dielectric losses).

POINT b. The norrnal modes are found using the rigorous theory of diffraction in linear

optics [6].

POINT c. The source terms depend on the geometry and also on the features of the nonlinear

interaction SHG, optical Kerr effect with the existence of diffusion, Kerr-type nonlinearity

input
beam 6

medium 3

medium 2

x

Fig. I. A grating coupler region 2 represents the nonlinear medium.
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which is instantaneous or not. One of these source terms describes the in-coupling of the

incident beam(s) and, as already stated, is derived from the rigorous theory of diffraction in

linear optics [6].

POINT d. The existence of source terms leads to x-dependent mode amplitude c~(x) which

obeys the following equation [4, 7]

N( ~~'
=

jw (E(~(y) P~~(,I, y)) e~~~~'- jw (E[~(y) P~(x, y)) e~~~~' (la)

In equation la)

I) ± refers to forward (+) and backward (-) propagating modes of the unperturbed structure

(a exp( jwt) time dependence is assumed).

ii) (.. ) stands for an integral in the cross-section plane :

I; )
=

dY

iii) NC
=

(U (t
x H$~ E$~ x

H$ )) (16)

u : unit vector along the.I-axis.

E[, H[ respectively y-dependence of the electric, magnetic field. The integral in the cross-

section plane is calculated from y =
cc to y =

+ cc. The superscript t denotes the adjoint

structure deduced by transposing of the dielectric permittivity and the magnetic permeability
matrices [4, 7]. Thus the quantity y[ fulfills [4, 7] :

Y$+Ym=°. (icy

iv) The first bracket accounts for the existence of the nonlinear effect of the guiding layer
which gives rise to the nonlinear polarization P~~(x, y). The second one describes the in-

coupling of the incident beam, the resulting source polarization being P~(x, y).

POINT e. This point is considered in the two next paragraphs.

3. Grating coupler on a Kerr-type waveguide.

For the sake of generality, we consider a non-instantaneous, non-local Kerr-type nonlinearity.

In that case, equation la), generalized in the time domain, has to be associated to a material

equation which describes the spatio-temporal evolution of the nonlinearity. Use of reduced

units leads to the following set of spatio-temporal equations [8, 9]

I
~~ ~~'

+

~~~ ~~' ~~
+ 2 in

o

~~ ~~'
q [A U(a-, t)] F + iF

=

is (,I, t ) (2a)
it jx2 Ax

L? ~~~/~.l'
~~

~

~~/~>" ~~
=

u(>., t IF (x, t)j2 (2b)

where [8, 9]

F : total electric field of the resonantly excited guided mode, S input beam, no. angle of

incidence, A detuning, q =
± I wether the nonlinear medium is self-focusing (q

=
+ I or

self-defocusing (q
=

I ), U nonlinear term, L diffusion length, T: nonlinear response

time.
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The space x and time t variables are scaled respectively to the width of the resonance curve

and to the resonator build-up time.

It can be immediately checked that in the limit of L
=

0 and
T =

0, equations (2) yield the

usual spatio-temporal modal equation.
It is worth noticing that as explained in the introduction, the validity of equations (2) rests on

the possibility of isolating a single resonance and of remaining
«

close
» to it. Thus, as long as

reduced quantities are used, equations (2) apply whatever the geometry of the Kerr-type

resonator may be (prism coupler with guided mode resonances, Fabry-Pdrot with Airy

resonances, etc. ). In other words, the solution F of equations (2) gives the response of all the

optical resonators corresponding the same set of reduced parameters. Of course, the relation

between the quantity F and the EM field radiated outside the resonator does depend on the

geometry of the device [7, 10]. Thus it is no longer necessary to specify the geometry of the

Kerr-type resonator provided it is the quantity F which is of interest.

The set of equations (2j allows us to study the optical response of Kerr-type resonators (for

example a grating coupler) illuminated by a Gaussian beam. The results [9] are plotted in

figure 2a for a defocusing nonlinearity and in figure 2b for a positive one. As can be seen on

these figures, instabilities are present in both cases leading, for positive Kerr media, even to a

chaotic regime.

4. EM resonance enhanced SHG at grating couplers.

As in the previous section, the starting point in equation (la) written for the angular
frequencies

w
and 2

w.
It is assumed that the EM resonance occurs both at the pump frequency

w
for a mode p with longitudinal wavevector component yi~, and at the SH frequency

2
w

for a mode m with longitudinal wavevector component y~~ I.e. that phase-matching takes

place.
We make the usual undepleted pump approximation but take into account the finite-width of

the pump beam. Thus its envelope A, depends on x: A;
=

A,(.I). Then, according to

equation (la), the amplitudes cj~(x) and c~~(x) of the resonantly excited guided modes at

frequencies
w

and 2
w

obey the following set of equations

~~~~
=

jA,(x) t~
~

e~~~° ~~°" ~'P~' (3a)
dx °

~~~°'
=

j 2
w

£~ (x ) c(~ e~
~~ ~~P ~~~~' (3b)

dx

with po
=

ko sin 0, ko
=

w/c, 0 : angle of incidence of the pump beam, « =

~
" (d :

d

periodicity of the grating), qo. integer which labels the resonantly excited evanescent

diffracted order at the pump frequency, t~,
~~

in-coupling coefficient for this diffracted order

qo at the pump frequency
w

calculated using one of the methods developed in reference [6],

£~(x) : nonlinear coefficient directly related to the overlap integral [4, 5]. The existence of a

modulated region in the grating coupler explains the x-dependence of £~.

Equations (3a) and (3bj are important since they constitute the basic set of equations for

SHG at a nonlinear grating coupler illuminated by a finite width pump beam and account for

the angular dependence and spatial evolution of the amplitude of the resonantly excited

evanescent diffracted orders at w
and 2

w
respectively. Thus these two equations describe the

diffraction process in nonlinear optics at the pump and SH frequencies.

In general the nonlinear medium includes a modulated region and a homogeneous one.

Therefore £~(x) is the sum of two terms, one for each region

£m(x)
=

£# ~(x) +
£j~ (4)
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where the first terra of the right hand side of equation (4) refers to the modulated region.
According to the periodicity of the grating, £(~~(x) can be expanded in Fourier series

£j' i(x)
=

z £j'
)I

elf«'

I

In order to gain some physical insight into SHG at grating couplers, let us consider a plane

wave pump field A,(x) no longer depends on a.. Thus

cj~(x)
=

A, C~ e'~~°~~°"~~'P~'

~~°
Po +

Iii
yp

and

~.
~(')

~ ~(21
2m 2m 2m

with :

~(() ~ ~2jj~(11 ~P.«o

2m " W
m,

f
~

~

x

t
(~0+~0«-yj~) [2flo+ (2q~+I)«-y~~]

x
e~~~°+ ~~~°+~'"~ ~2m'' (5a)

~

~ + q~ « Y2m (5b)
tP. qo

e
~~~~ '~j~i

~

2 wi~2 <I-~
~~~ ~ ~~ ~ y~~)2 12(Pn + qn « Y2ml

Phase matching takes place when EM resonance occurs both at w
and at 2

w.
For usual

dispersive media, this is only possible for c() which arises from the modulation of the

nonlinear susceptibility. Let i~ be the integer which labels the Fourier-component of the

nonlinear susceptibility which leads to phase matching. In this case, the phase matched

contribution to the SH amplitude comes from c() and corresponds to I
=

to. Then, according
to equation (5a), the periodicity of the grating fulfills :

~ ~~
l~etf,

m

(~

°~~~

l~eff,
p

W

~~~

n~~~,~(2 w
), n~~~ ~(w) being the effective indices for the modes m and p at 2

w
and

w

respectively.
The calculation of £j'~i is achieved by recalling that

. f['~t~ only involves the normal modes [4, 5] of the grating couplers [6] at w
and

2w,

. there is no analytical expression of the transverse (along y) field map in the modulated

region of the grating couplers [6].

Thus the calculation of f(' 'I is performed using the rigorous theory of diffraction in lineal"

optics [6] at w
and 2

w.

The simplification introduced by the modal analysis can be better appreciated by comparing
with the rigorous theory of diffraction in nonlinear optics developed in reference [3] : instead

of the complicated flow chart figure 5 of reference [3], the SH amplitude c~~ is given by
equations (5). In these expressions, the only computations correspond to a linear diffraction
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study at w
and 2

w
in order to get the numerical values of t~

~~
and fj'~i~. The formalism

presented here has the additional advantage of allowing an easy physical insight in the SHG

process at grating couplers.
Some numerical calculations have been performed considering a w

-2
w

interaction

between TE~ modes at these two frequencies. The refractive indices of the different layers of

the grating coupler for SHG (Fig. I) have been chosen in such a way that phase matching

occurs inside the homogeneous guiding layer. Under these conditions, it is the Fourier

coefficient i~
=

0 which has to be retained in the expression of c[$' since it is this Fourier

coefficient which leads to phase matching in the modulated zone. The results are plotted in

figure 3 the solid curve and the crosses correspond respectively to the modal approach
developed in this paragraph and to the full numerical method I. The agreement between both

methods can be considered as excellent.

3.5 10 ~

3.0 10 ~

2.5 10 ~

12.0 lo ~

~
~l.5 10

1-o io ~

5.o i o ~

48. 5 4 8 -47. 5 4 7

angle of incidence (degree)

F'ig. 3.-SHG at a grating coupler. Pump wavelength: 1.06 ~m. Grating profile: sinusoidal,

periodicity 0.4 ~m, groove depth 0.12 ~m. Waveguide thickness 0.58 ~m. Indices of the different

media at the pump fi.equency medium I 1.7 medium 2 : 2.0 + j0.0005 medium 3 1. Al the SH

fi.equency medium I 1.7 medium 2 : 1.94175 + j0.0005 medium 3 1. Solid curve modal

approach, crosws method 1.

5. Conclusion.

It has been shown that the simultaneous use of the coupled mode formalism and of the rigorous

theory of diffraction in linear optics provides a very convenient means to study nonlinear

effects at grating couplers on waveguides. For stationary plane wave studies, analytical

expressions are obtained where method requires large computer calculations. The obvious

advantage is that a physical insight is gained. The finite width of the input beam as well as

diffusion and transient effects of the nonlinearity are known to be very important when dealing

with optical Kerr effect. Indeed, the plane wave solution is never recovered even for an

infinitely wide incident beam. In addition self-pulsing or chaos may be present.

The geometry of the resonator is not important but it is the ability to isolate a single

resonance that is important. Thus the analysis presented in this paper applies not only to

nonlinear grating couplers but also to other nonlinear optical resonators such as nonlinear

prism couplers, nonlinear Fabry-Pdrot, nonlinear interference filters, nonlinear distributed

feedback devices. Moreover, this method has been extended to the time domain leading, in
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that way, to a powerful spatio-temporal theory of phenomena occurring in nonlinear optical

resonators.
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