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Abstract. An exhaustive classification of the density perturbations and magnetic field

generation induced by a large amplitude HF wave is made in the steady state case in a moving
frame associated to the HF wave packet in the case of one-dimensional spatial variation of the

envelope of the HF electric field and the condition of the quasi-neutrality is also specified in this

case. The classification depends on four parameters, the skin depth Lo, p the ratio of the kinetic to

magnetic pressure, a
I V(/C((V~ the velocity of the moving frame, C

~
the Alfven velocity)

and
v

I C~/c~. Explicit expressions of the low frequency density n~ and induced magnetic
field B~

are given according to the value of Lo compared to al ', the slow space scale of the

perturbations, to the value of p compared to a
and to the value of

v.
A few consequences of this

model are discussed.

1. Introduction.

Non-linear phenomena related to the propagation of a large amplitude high-frequency wave in

a plasma have been studied extensively in the past years. Of particular importance is the

knowledge of the low frequency density n~ and magnetic field B~ perturbations induced in the

plasma by the so-called ponderomotive effects due to inhomogeneous high-frequency fields.

The earlier works dealt with low frequency perturbations n~ only in unmagnetized
homogeneous or inhomogeneous plasmas I]. In anisotropic plasmas (Bo # 0 ), the situation is

much more complex. Density perturbations n~ have been classified according to the nature of

the low frequency modes in the electrostatic approximation [2] the classification was based

upon an ordering scheme for characteristic lengths and times al ', 3,, 3=). Porkolab et at. [3]

have determined the influence of various parameters (C~/V~, p, r~, 3,) on the expressions of

n~ and B~ in the case of a homogeneous plasma and an incident electrostatic wave. Relativistic

mass effects on the plasma motion have also been included in the analysis [4].

In this paper, we consider the ponderomotive interaction of a magnetised plasma with an

extraordinary wave which is a Bernstein mode in our case. For the one-dimensional case, we

show that explicit approximate expressions of the non-linear density and magnetic field

(*) Unitd de Recherche Associde au CNRS 835.
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perturbations can be derived in terms of the incident field amplitude. Under this assumption,

only a Bemstein mode can propagate perpendicularly to the external magnetic field. The upper

hybrid mode can not be studied because its group velocity is along the magnetic field. As one

can see in the article of Porkolab et at. [3] no attention about this point is taken into account.

Also we assume that the low frequency responses of the plasma are in equilibrium with the HF

wave packet that is to say the non-linear perturbations follow the displacement of the HF

wave packet. Here we are interesting particularly to write the expressions of the LF non-linear

perturbations moving at the velocity V~ compared with the plasma. These LF (low frequency)

responses may be classified in terrns of four parameters describing the system situations

studied in other works appear as particular cases of this classification.

An outline of the paper is as follows. In section 2 we derive, using the two-fluid plasma
model, non-linear coupled equations for the low frequency responses n), n) and B~. In order to

close the system, we make the usual quasi-neutrality assumption, n)
=

n) (I,e. V E~
=

0), and

write the evolution equations of the non-linear perturbations n~ and B~. In section 3, we deal

with a one-dimensional quasi-stationary case in a moving frame, with the Berstein wave

(electrostatic wave) propagating perpendicularly to the applied magnetic field. At first the

validity conditions leading to the usual quasi-neutrality assumption are established ; quasi-
neutrality, n)

m

n), is assumed throughout the rest of the paper. Then we classify the LF

responses n~ and B~ in terms of the four parameters Lo
=

c/w~~ (the skin depth for current

excitation by electromagnetic waves) p, the ratio of the kinetic to magnetic energy density ;

a =

C(/V( related to the group velocity of the LF motions and the Alfven velocity and

v =

I C(/c~ depending on the ratio of the Alfven velocity to light velocity. We determine

the different regimes that follow from the values of these parameters and give for each of them

the expression for the non-linear driving terms and the relative magnitude of fi~ and

B~. In section 4, we discuss some conclusions that can be drawn from the classification, for

example on the evolution of solitons and the physical meaning of the skin depth and the spatial
scale of the LF perturbations in the expression of n~ and B~ in terms of (E(~.

2. Basic equations.

The external magnetic field Bo is constant and parallel to the =
axis. A large amplitude high

frequency wave
(E~, B~) propagates perpendicularly to the applied magnetic field. The HF

wave is supposed to be extraordinary and corresponds effectively to the Bemstein mode. The

plasma is described by the two-fluid model for ions and electrons :

fi~
+ V (n~ v~)

=

0
~~

(l)
3v~

m~ n~ + m~ n~ v~ Vv~
= n~ q~ (E + v~ x B Vp~

3t

where
a = e, indicates the particle species and the other symbols have the usual meaning and

the system (I) is closed with the Maxwell equations

dB
~ ~ ~

3t

VXB=~+po£q~n~v~
~~ (2)

V.E= £q~n~
~o

V.B=0
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with n =

No +
n~

+ n~, v =

v~
+ v~, E

=

E~
+

E~ and B
=

Bo + B~ +
B~ where F for the high

frequency part (lst order) and S stands for the slowly varying par (2nd order). Since we are

dealing with low frequency perturbations, we shall use the usual two-time scale expansion
method. After averaging over the fast time scale, the fluid and Maxwell equations then write

3~n( + V No u(
=

0

No m~ 3~
u(

= q~ No(E~ +
u(

x Bo) VP (
+ F~~

V x
E~

=

~~~

/~ (3)

V x
B~

=

~~
+ po ~ q~ No u$

3t

V"E~
"

iqa~~
So

V B~
=

0.

P
~

=

yn$ T~ is the thermal pressure (y
=

I for simplicity) and u$ is the renormalized fluid

velocity [5]

~S ~S ~

'
j~F ~F j

« « p/ a a

0

The ponderomotive force F~ is derived from the usual expression [5]

Fp«
=

No ma (VI VV[ + q« (No VI x B~) q« (n[ VII x Bo + ma hi (n[ VII

which can be written under the well-known following form [6]

F~~=-NOVW~+Box (VXM~)

where the ponderomotive potential and the induced magnetisation are, respectively
,

~"
~ '~~

'~~ ~

~~~
~° ~'~~ ~

~~~l

M~
=

~° ~"
(w~ x wi)

4
w

where w~ =
p~ E~, wi is its conjugate and p~ the mobility tensor. The brackets mean

averaging over a period of the high frequency motion. To obtain (3) we have neglected terrns

assumed of a higher order, such that n~ u~.

Using Heuraux's formalism [7], we obtain after some algebra the equations coupling the low

frequency responses n), n) and B~

~ (3) + wj~ + wj, )
V

x r~ r~ V x
B~

+
~

3) r~ r,
B~

+
~)

+

j~
3)B~ +

c c c c

+ vu ~([V x
,

r~
iv( Vn) [V x

,

r,] u)~ Vn)

w~~
3)(n) n() I V x r~

~~~
+ V x r~

~~
x

(4)
m~ m~

x (po~(u( Vn) u(~ Vn() + 3~V x B~) w~, w~~ d((B~ I) I
=

0
c~
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where
v~~

and v~, are the thermal velocities of electron and ion, c is the light velocity,

r~ «
j w~~ I x

,
r, » %~ w~, I x and 5)~, [V x

,

r~ are operators which can be written in

the following form

~°ce ~°ci ~y~ + ~°ce ~t ~x~'

%~i

SJZ
" ~°ce ~°ci ~xi' + ~°ce ~t ~yi' ~Tld IV ~

,

~
al

" ~~°ca ~yi'

V %~i

w~~ %~ %~
i

The variables have the following meaning : w~~ and w~, are the electron and ion plasma
frequencies, w~~ and w~, are the (unperturbed) electron and ion cyclotron frequencies, and

I the unit vector along Bo. It is easy to show that the operators r~ and r, commute, I-e- the

commutator [r,, r~]
= r, r~ r~ r, =

0 and we have used simplications as

~j [V x
,

r~] ~ E'
=

0 and
~~~~ ~~'~

=

0.

~,

~la ~, ~e

The second evolution equation is obtained more easily from the scalar equations and reads

%)Bo B~ Bo V x V x
B~

+ Ho (m, %)
n)

+ m~ %)
n) T, V~n) T~ V~n))

=c~

~ P 0(v F~e + v F~~) (5)

In order to close the set (4, 5), we make the usual quasi-neutrality assumption,
n)

=

n) (I.e. V E~
=

0). We shall give in section 3 the validity condition of this assumption in

the one-dimensional case. Changing to the normalized variables n(,=n),/No, b~=

B~/Bo, we obtain after some tedious algebra two equations coupling the low frequency

responses n~ and B~ given in equation (10) of Heuraux et al. [7].
Strictly speaking, in deriving equation (10) in Heuraux et il. [7], it is made two more

assumptions, namely m~ Mm, and F~~ » F~,, but these are not necessary and used only to

simplify the expressions. The second inequality may be wrong if wo = w~,, but the validity of

the two-time scale analysis (wo » %~) and of the two-fluid model (w~~ m w~~, I-e- w~, »

w~,) excludes this case.

3. A classification of the LF responses in the one-dimensional case.

Now we assume a weak inhomogeneity, %,»L~' (L, the inhomogeneity length), and

%, » %~.
These assumptions are justified if the plasma is lighted up

~iith
an extended HF source

compared to the plasma. That is to say we look at the density and magnetic field perturbations
associated to a soliton which moves toward a magnetized plasma. This situation is associated

to the quasi-steady state assumptions in a moving frame because, under the quasi-adiabatic
assumption, the LF perturbations follow the soliton with the same velocity. The advantage of

this one-dimensional restriction can permit to reduce the set of Zakharov equations to NLSE

whichever gives the velocity of the soliton [8] and permits to describ all the cases which can be

found under the assumption of the weak inhomogeneity. Under these conditions, it is also

possible to have a picture about the evolution of the soliton during its motion through the

density gradient. However this study is closed to few particular cases applied for Bernstein

wave. In fact in more realistic cases, the HF wave has a finite spatial extension which imposes

to treat this problem in ?D space and time to take account the relaxation phenomena which can
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appear. Our study deals with only nonlinear slow perturbations associated to a soliton

propagating perpendicularly to the extemal magnetic field. Under these considerations, one

can exhibit a mecanism which can explain the destruction of the soliton due to the change of

the nature of slow perturbations (modulational instability criterion) induced by a increase or

decrease of the soliton velocity through the density gradient, this in the limits of the validity of

the model.

Under the assumption %, » %~. %~
one can see after some algebra from equations (4), (5) that

the components B), B(
are smaller than B) in the steady-state case. This results can also be

derived from an article on the 3D non-linear magnetic field generation [9].

From equations (4, 5), assuming B), B) w
Bf the evolution equations become

Ii
~ ~

w)~
~ ~

w)~ T~
~ ~

T~
~ ~ ~ ~ ~

(%) + w~~ w ~,) j %, %~
+ j %~

b~
= j %,n~ + %,n, + ii (n~ n~ ) + SNL

c' c' c' m, m,

C(
%(

)) bf ~~
%)n) v( %)n) + %)n)

= %,F~~~ (6)
c~ m, m~ No

where SN~ corresponds to the terms containing F~~ in equation (4), C~ is the Alfven velocity
and Cs is the ion acoustic velocity.

After eliminating b) in these evolution equations (it is faster to start from the fluid and

Maxwell equations to do it) and if we take into account the fact that the low frequency
fluctuations have characteristic times much longer than the inverse electron frequencies, we

may write a simplified expression relating the ion and electron densities

%)n)
n)

=

n)
+

~

(7)
Wi, + WI,

This condition encompasses the cases analysed by Porkolab and Berezhiani [3, 4]. From

equation (5) it immediately follows that LF responses exhibit significant departures from the

neutrality only in two cases a) strongly magnetized, tenuous plasma, wj~ ~ w~~ w~, and b) in

other cases (w~~ » w~, when LF time scale much less than wp '. In most cases, however, the

LF responses are essentially quasi-neutral, n)
m

n)
m

n~. We shall use this hypothesis in the

following paragraphs.
We will focus now on the situation where the incident HF wave is electrostatic in the one-

dimensional case. The system of equations (6) rewrites in two coupled equations for the low

frequency density and magnetic field perturbations, n~ and B~ which can be decoupled. The

decoupled equations for n~ and B~ write

Ln~
=

p %)(Zp Sp / I,~
r

£B~
=

p " ~ ~
%)Zp

~

~ Li l~

~~~

Here n~
=

n~/No and B~
=

B)/Bo
are the relative density and magnetic field perturbations and

is a linear operator that writes

L= +" ~~ ~~
u

(a +p-I)%().
L( L(r
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The expressions of Sp and Zp are given in the appendix for an extraordinary wave. For

simplicity, we shall restrict ourselves here to the case of an electrostatic wave
E~(E,, 0, 0).

Then the expressions of Sp and Zp write

~P
~2~~jj~j2 ~~~

~
~~~

~

~~~ ~~~~~'~
~~~ ~~

~~~ ~~~
~~~~~~

where V~ is the phase velocity of the HF wave.

The source terms are obtained from the definition of the ponderomotive force written in

terms of ponderomotive potential and magnetization current and it is easy to deduce that

Zp depends only the induced magnetization.
We have introduced the parameters Lo

=
c/w~~(x) (the plasma skin depth with respect to

current generation by electromagnetic waves),
a =

I V(/C( (C~ is the Alfven velocity),
p

= Ho No (x (T~ + T, )/B(,
u =

I C (/c~ and r
=

I V(/c~. In the following, we shall study

the different types of LF responses in terms of Lo, a, p, u, r and the slow space scale of the

perturbations %j '

Note that
a can be either positive (sub-Alfvenic regime) or negative (super-Alfvenic

regime). Most situations correspond to the first case. Although the present analysis is not

relativistic, it must be noted that Berezhiani et al. [4] give a criterion for the existence of

relativistic effects on the soliton formation in the incident field. The criterion takes into account

two types of nonlinearities in E ~, one is associated to the ponderomotive force and the other

corresponds to the relativistic effects [4] ; with our notations, it writes

Hence, for non relativistic plasmas submitted to intense HF fields, relativistic effects can

modify terms in the non-linear evolution equation for the HF mode, but leave unchanged the

LF equations.
Therefore, we will ignore condition (9) in the subsequent classification and put

r
=

1.

3.I CASE u m
I, C (

w
c~. In the limit of validity of fluid model %) w II (L( p ), the spatial

scale length is much larger than the Larmor radius. The nonlinear source terms are important

only for
w m w~~, thus we have Sp

m
2Zp. Then equations (8) reduce to

(" + P ) n~
=

p (L( ~((zp sp) sp)
, ~~ ~~

(a + p ) B~
=

p (a + p I L( %(Zp Sp)

I) The most frequent situation corresponds to a low-p plasma with a sub-Alfvenic mode

(a
m

).

Here we have two subcases :

al If L(
%( » I (short wavelength perturbations), then we have

n~
=

pL( %)(Zp Sp and B~
=

psp

In this case,
B~

w
n~

b) else L( %) « I (long wavelength perturbations), we have

n~
=

psp and B~
=

psp.

Here B~
m

n~.
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These cases can be found in previous works [3] but with no clear classification parameters.
iii For a high-p plasma with a sub-Alfvenic or trans-Alfvenic mode if p » a [, since in this

case the validity of the fluid model excludes the inequality L(
%( » I, one finds for the case

L( %) w

h~
=

Sp and B~
=

Sp

Again we have B~
m

n~. This situation includes the case when the LF mode is the Alfven

mode.

iii) Case p w a I [, u m
I. This situation occurs in low-p plasmas when the LF mode is

the fast mode (super Alfvenic perturbations).
a) L(

%) » I, we obtain

n~
=

~
(Zp Sp) and B~

=

pZp
"

l

Then B~
=

(a I n~
can be much greater than n~.

b) L(
%( « I. One finds

n~
=

)
Sp

a

and we have two subcases

. (£Y
I)L(%( Ml

~L_ P
~

p
"

for which B~
m

n~. One recovers the case studied by Kaufman et al. [10].

. (£Y I IL(
%)( m

B~=P ~"j '~Llilzp+)sp.

Hence, B~
~

n~. In this case, corrections due to the V~/V~ term in Sp can become important.
The density and magnetic field perturbations are comparable, but weak since pla

~
l.

Since
a may become negative, the change in the sign of

a
will change the sign of the

dispersion term. It results that rarefaction waves (cavitons) correspond to sub-Alfvenic

perturbations and compression waves to super-Alfvenic perturbations, as already noted by
Kaufman et al. [10]. Similarly, we point out that in the super-Alfvenic regime, the generated

magnetic field adds to the external magnetic field, in contrast with the most common case of

sub-Alfvenic perturbations.

3.2 CASE
u m

0, Cl
m

c~. This case has never been studied so far. Since
a m

I, equations
(8) reduce to

~~ ~~ ~~~~~ ~~~ ~~~ ~~~~~ ~~~
' (l I)

B~
=

psp

Hence, when L(
%) » I, one has B~ « n~, and when L(

%) « I, one finds B~
»

n~, This case

exhibits very well the effect of the skin depth on the determination of the nature of the

nonlinear responses.

If we compare these results to the case of an unmagnetized plasma, it is easy to show that the

perturbations are smaller (for a given pump) except for the case of high p plasma.
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4. Discussion.

The equations (8) may be used, together with the evolution equation of the HF wave, to write a

self-consistent set of evolution equations (Zakharov-like equations) in the slab model under the

WKB hypothesis. It would be interesting to solve numerically these equations however, from

the above simplifications of equations (8), we can make a qualitative analysis of the field

evolution. With the help of these simplified solutions the HF evolution equation may be

reduced to a generalized NLSE equation, whose solutions are envelope solitons (Langmuir-
like or cusped) [I1, 12]. In the inhomogeneous plasma all types of solitons are accelerated in

the density gradient [8]. If we assume that the nonlinear perturbations follow the HF wave

packet (quasi-adiabatic hypothesis) and that the velocity V~ of the moving frame is slowly

varying in the density gradient, it is clear that the linear operator on the lhs of (8) changes i>ia a

because the velocity of the soliton V~ depends on the position in the density gradient [8]. The

nonlinear source terms are little modified by the variations of the soliton velocity. The soliton

can not indefinitely accelerate. Indeed,- when the soliton velocity increases, the nature of the

responses changes according to the above classification. In particular, when
a

becomes

negative, it changes from a rarefaction wave to a compressional wave. Then the criterion for

modulational instability (dispersive and nonlinear terms should have the same sign) is no

longer satisfied and the soliton is destroyed by dispersive effects. A temperature or magnetic
field inhomogeneity can produce the same effect via the parameters a, p, Lo and

u.

In general, when the LF perturbations evolve over a characteristic length %j much greater

than the skin depth Lo, the excited magnetic field is negligible compared to the density

fluctuation. This is due to the fact that the nonlinear currents can not reach large values over

distances that are greater than the skin depth. Hence, there can be efficient magnetic field

generation only for cases where the skin depth is of the order of the scale length of the LF

fluctuations Lo
%~ m I. The evaluation of the relative variations of perturbations are

esseitially
determined by the value of u, a

compared to p, and Lo compared to %j ' because the validity of

fluid model imposes r~ %, « I. The introduction of the
u parameter leads to new cases with

nonlinear responses varying as [E, [~ or %) [E, [~.

In conclusion, for one-dimensional propagation perpendicular to the external magnetic field,

we have derived explicit solutions for the nonlinear low frequency responses of a plasma to a

high frequency wave which can only be a Bernstein wave because we have taken into account

the group velocity of the HF wave which has not been made in the previous studies [3, 9].

These density and magnetic field perturbations are proportional either to [E,[~ or

%)
[E, [~. Hence, over a large range of parameters (determined by the values of a, p, u

and

Lo), the HF field envelope perturbation can have the particular form of cusped or Langmuir
solitons like.

Appendix.

We express in the following the non-linear source terms in two different cases: the

electromagnetic wave (extraordinary mode) or its electrostatic limit.

ELECTROSTATIC wAvE E~(E,, 0, 0). -From the expression of the ponderomotive force

F~~, one can find

Sp
=

~°~
~ ~

(w ~
+ wj~) + w

~
~~

Kp
(w~ w~~) V~
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and

2
~

2
e~ E ~

~~ (i~~ ~e)~ ~~ ~~~~~ ~~
N01Te T)

where V~ is the phase velocity of the HF wave.

In the vicinity of the upper hybrid resonance Sp
m

2Zp when w~~ m w~~.

ELECTROMAGNETIC wAvE E~(E,, E,~, 0). After some tedious algebra, the ponderomotive

sources can be written as

Wp~ ~
V

Sp
=

~ ~ ~
(w + wj~) Kp + 2

w w~~ Ep ~ (Pp
w w~~ Ep)

(~° Wce) ~W

wj~w~~ ~
ZP~

~
~~

~

ww~~Kp-w~Ep- (w~-w~)Ip- ~
x

~°(W ~wcel ~~ v~

~2
x

(w~- wj~)Ip
+ 2~Hp + 2 w~Lp

Wle

~ ~
~0(E,(~+(E,(~,

~
~0(Ey(~

p
~o(W~(E,(~+Wle(E>.(~)_

~ ~~~ ~ 4No(T~ + T,) ' ~ 4No(T~ +
T,1' ~ 4No(T~ + T~) '

~o Im (E, E~* cc ~o
Ep

=

ip
=

dr Im (E, %,E~ cc )
4 No (T~ + T,) 4 No(T~ + T,)

so
and Hp

=

it Im (E~, %,E,* cc
)

4 No(T~ + T,

In this derivation, the polarisation of the HF extraordinary mode is taken account, that is to say
the terms proportional to Im (E, E~* + ccl vanish.

The polarisation of the HF wave modifies the source terms of equations (8), and implies that

the classification can be changed. For example when
w m w~~, an electrostatic mode gives

Spm2Zp and 2SpmZp for the extraordinary mode in an underdense plasma (purely
electromagnetic mode).
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