

## Realization of high Tc DC SQUIDS. Characterization on a broad range of temperature

Christophe Dolabdjian, Didier Robbes, C. Gunther, Marc Lam Chok Sing, R.

Desfeux, Daniel Bloyet

### ► To cite this version:

Christophe Dolabdjian, Didier Robbes, C. Gunther, Marc Lam Chok Sing, R. Desfeux, et al.. Realization of high Tc DC SQUIDS. Characterization on a broad range of temperature. Journal de Physique III, 1994, 4 (4), pp.621-625. 10.1051/jp3:1994151. jpa-00249129

## HAL Id: jpa-00249129 https://hal.science/jpa-00249129

Submitted on 4 Feb 2008

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Classification Physics Abstracts 85.25

# Realization of high $T_{\rm C}$ DC SQUIDs. Characterization on a broad range of temperature

C. Dolabdjian, D. Robbes, C. Gunther, M. Lam Chok Sing, R. Desfeux (\*) and D. Bloyet

Laboratoire d'Electronique et d'Instrumentation, ISMRA, Boulevard du maréchal Juin, 14050 Caen Cedex, France

(Received 15 July 1993, revised 10 January 1994, accepted 17 January 1994)

Abstract. — The analysis of different types of Josephson junctions allows us to depict temperature dependences of the critical current  $I_C(T)$ , the Josephson penetration depth  $\lambda_J(T)$  and main SQUID parameters. We show that a DC SQUID can operate on a broad range of temperature, with a current modulation equal to  $\phi_0/L$  in the limit  $\beta \ge 1$ . The analysis is given within the RSJ model. For this purpose, the usual DC SQUID current biasing circuit is replaced by a voltage controlled system which detects current modulation. This voltage biasing is compatible with modulation technique usually applied to reduce the 1/f noise level of the junctions.

#### Introduction.

We here examine the constraints resulting from the development of DC SQUIDs operating over a broad range of temperature. We show its feasibility with existing high  $T_{\rm C}$  Josephson junctions. DC SQUIDs performances with large and small  $\beta$  parameters are compared on this point of view. Experimental work is based on GBJ (Grain Boundary Junctions) step-junctions SQUIDs. Furthermore, we introduce a voltage biasing system which directly gives the current modulation and is almost temperature independent.

#### Theory.

The temperature dependence of the critical current of a high  $T_{\rm C}$  junction or, equivalently its IV curve, can be quite well described by an SNS or SNINS type junction model.

The sketch given in figure 1 shows the electrical and geometrical parameters involved in the design of a Josephson junction. The main one is the Josephson penetration depth expressed as

<sup>(\*)</sup> CRISMAT URA 1318 CNRS.



superconductor banks (thin film)

Fig. 1. - Sketch view of electrical and geometrical parameters implied in a Josephson junction.

$$\lambda_J^2(T) \approx \frac{\phi_0}{4 \pi \mu_0 \lambda_{EFF}(T) J_C(T)}$$
,  $\lambda_{EFF}(T) = \lambda_L(T) \coth\left(\frac{t_F}{\lambda_L(T)}\right)$  where  $t_F$  is the thickness of the film and  $\lambda_L(T) = \lambda_0(T) \left[1 - \left(\frac{T}{T_C}\right)\right]^{-1/2}$  is the London penetration depth [1]. Junctions are called narrow or wide depending whether on their width is smaller or larger than  $4 \lambda_J$  [2]. The temperature dependence of  $J_C(T)$  allows to deduce the width w satisfying the small junction criterion over an expected temperature range  $(T_L, T_H)$ , w is obviously deduced from the  $T_L$  constraints.

From published results [3-5], we have plotted in figure 2 a few  $J_C(T)$  dependences from which the maximal width of the junction has been estimated.  $\lambda_J$  plotted in figure 3 is deduced from  $J_C(T)$  and its minimum value (at low temperature) defines the main constraint. The width





of the junctions [3-5] have thus been selected as :  $w = \lambda_1$  (10 K), so that w is always smaller than  $4 \lambda_1$  in the whole temperature range. This choice determined the critical current value  $I_C$  of each junction which are reported in figure 4.

Furthermore, the parameter  $\Gamma = I_C \phi_0/2 \pi k_B T_H$  must be larger than 10 to avoid the noise rounding effects on the IV characteristic which reduces the SQUID current modulation  $\Delta I$ . The value are reported in figure 5, expressed as :  $\Delta I = 2 I_C/(1 + \beta)$ ,  $\beta = 2 LI_C(T)/\phi_0$  [6] where L inductance of the SQUID was taken at 100 pH. In the high  $\beta$  limit the current modulation  $\Delta I(T) = \phi_0/L$ . This case also corresponds to a low rounding noise as  $I_C$  is quite important and is therefore suitable for a SQUID operating on a broad range of temperature. On the other hand, a small  $I_C$  leads to a drastic decrease of  $\Delta I$  with increasing temperature and to a significant level of noise.



Fig. 4. — Critical currents and  $\beta$  parameters of junctions. Their width is specified in the inset with  $t_F = 200 \text{ nm}$ ; normal resistance  $R_N$  are roughly temperature independent and given in the inset. Fig. 5. — Noise rounding parameter values associated with junctions of figure 4 as a function of temperature.

#### Experimental work.

Step-junctions have been realized to validate this concept. The fabrication methods were chosen to be as close as possible to standard thin film fabrication techniques. YBaCuO films are deposited on MgO substrates by laser ablation. The method of forming the edge in MgO substrates is the same as in [7]. We use a standard photoresist as an etch mask and Ar milling process. Au contact pads are sputtered through a mechanical mask for ultrasonic Al wire bounding. Standard photolithography technics are used to pattern the YBaCuO film with wet etching in EDTA. Current modulation  $\Delta I$  of two home-made SQUIDs with step junctions have been calculated by using an inductance L = 100 pH (usual value of our devices). Comparison between theory and experiment figure 6 and figure 7 shows that a better agreement is obtained in the high  $\beta$  limit since the noise rounding effect becomes negligible.

Finally, the last question is that of biasing and detecting system. To detect current modulation a voltage biasing circuit is absolutely necessary. Recently, we proposed a simple,



Fig. 7. — Measured current modulation : (a) high  $\beta$  SQUID, (b) small  $\beta$  SQUID.

low cost, and very low noise voltage regulation of low impedance devices [7] depicted in figure 8.



Fig. 8. — Sketch view of the voltage biasing circuit.

The voltage  $V_d$  is locked to the reference value  $V_c$  by the  $A_2$  stage and a feedback loop. The SQUID modulation  $\Delta I$  is roughly given by  $\Delta V_s/R_{inj}$  and the voltage  $V_d$  by  $V_p/A_1$ . Low  $T_C$  DC SQUIDs were successfully tested. The white noise level was found to be around some  $\mu \phi_0 / \sqrt{Hz}$ , both with the classical current biasing technic and with the voltage controlled biasing system. The current modulation  $\Delta I$  of our high  $\beta$  SQUID is close to a periodic triangle pattern (period  $\phi_0$ ) and the equivalent current noise  $e_n/r_D$  can be seen as an equivalent flux noise  $S_{\phi} = \frac{e_n}{r_D} \frac{\phi_0}{2 \Delta I}$ , where  $r_D$  is the dynamic resistance of the SQUID and  $e_n$  is the voltage noise at the preamplifier input, when using this biasing-detecting system of HTS SQUIDs. It

should be emphasized that the two biasing systems are equivalent as far as their input noise level is concerned, but that voltage biasing circuit allows a much broader range of operation in temperature than the current biasing one.

#### References

- [1] Gross R., Grain boundary Josephson junctions in the high temperature superconductors, to be published *Interfaces Superconducting Syst.*
- [2] Waldram J. R., Pippard A. B., Clarke J., Theory of the current-voltage characteristics of SNS junctions and other superconducting weaklinks, *Philos. Trans. R. Soc. Lond. A.* 268 (1970) 265.
- [3] Hunt D., Foote M. C., Bajuk L., All High T<sub>c</sub> edge geometry weaklinks utilizing YBaCuO barriers layers, Appl. Phys. Lett. 59 (1991) 1982.
- [4] Gao J., Boguslaviski Yu., Klopman B., Terpstra D., Wijbrans R., Gerristsma G., Rogalla H., YBaCuO/PrBaCuO/YBaCuO Josephson ramp junctions, *Appl. Phys. Lett.* **72** (1992) 575.
- [5] Ferrell R. A., Josephson tunneling and quantum mechanical phase, Phys. Rev. Lett. 15 (1965) 527.
- [6] Tesche C., Clarke J., dc SQUID : Noise and optimization, J. Low Temp. Phys. 29 (1977) 301.
- [7] Friedl G., Roas B., Romeheld M., Schultz L., Wjutzi L., Transport properties of epitaxial YBaCuO films at step edges, Appl Phys. Lett. 59 (1991) 2751.
- [8] Dolabdjian C., Robbes D., Lesquey E., Monfort Y., Active voltage viasing of very low impedance devices, *Rev. Sci. Instrum.* 64 (1993) 821.