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Rdsumd. On passe en revue les aspects fondamentaux des vortex dans les supraconducteurs
lamellaires (natureh ou superrdseaux artificieh), en mettant l'accent sun le role de l'anisotropie et

des trbs courtes longueurs de cohdrence. Ces composds se divisent en trois classes, de

T~ croissant~: chalcogdnures, supraconducteurs organiques et oxydes de cuivre h haut

T~. La premidre partie de l'article rdsume les aspects quantitatifs dus h l'incorporation de

l'anisotropie dans les descriptions 3D Ginzburg-Landau ou London du rdseau de vortex:

anisotropie des champs critiques et du rdseau de vortex, coefficients dlastiques et fusion. Ce type

de modkle ddcrit une grande partie des propridtds des composds moddrdment anisotropes tels que

Y :1?3. La seconde partie concerne les systdmes lamellaires h couplage Josephson et identifie

darts quels rdgimes ]es vortex prdsentent un caractdre quasi-2D. Des effets qualitativement

nouveaux comme les vortex Josephson, les vortex 2D, la transition de Koster]itz-Thouless et le

lock-in des vortex sont passds en revue. Cette analyse est adaptde aux composds du type

Bi:221? et aux superrdseaux, mais aussi h Y :123 pour certains aspects.

Abstract. The fundamental aspects of vortices in layered superconductors (natural or artificial

multilayered materials) are reviewed, focusing on the role of anisotropy and very short coherence

lengths. These materials divide into three classes, with increasing T~'s : chalcogenides, organic

superconductors and hi gh-T~ copper oxides. The first part of the paper summarizes the quantitative

features of the vortex lattice, due to the incorporation of anisotropy in the 3D Ginzburg-Landau or

London descriptions : anisotropy of critical fields and vortex lattice, elastic coefficients and

melting. This kind of model describes most of the properties of moderately anisotropic compounds

as Y : ]23. The second part concerns the Josephson-coupled layered systems and identifies in

which regimes vortices exhibit a quasi-?D character. Qualitatively new features as Josephson

vortices, ?D vortices, Kosterlitz-Thou]ess transition and lock-in of vortices are reviewed. This

analysis is adapted to compounds a~ Bi : 2212 or multilayers, but also to Y :
123 for some aspects.

Introduction.

More than 6 years after the discovery of superconductivity in copper oxides, great progresses
have been achieved in the understanding of the macroscopic properties of these compounds.
On the theoretical level, a satisfactory description of vortices in layered systems has been
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developed, in parallel with more and more accurate and specific experiments on single crystals

and epitaxial films. From this point of view the results are much more encouraging than those

conceming the microscopic aspects, since up to now no consensus exists on a basic

(conventional or not) high T~ mechanism. On the contrary, the well-developed phenomenology
of vortex lines in layered materials shows both conventional aspects (with quantitative

differences from
«

old
»

superconductors), as well as truly new features, characteristic of the

strong anisotropy and very short coherence lengths of these materials.

THE MATERIALS. Most usual superconductors (Pb, Al, Nb, A15 materials) possess a

crystalline structure showing no anisotropy (mostly cubic symmetry). There exists also a

family of oxide superconductors which are cubic perovskites and show relatively high
T~'s : Ba(Pb)BiO~ [I] and Ba(K)BiO~ [2] (T~ w13 K and 35 K respectively). One can also

mention the Chevrel phases M~MO~XS (T~w15K) [3], and the recently discovered

A~C~O compounds IA
=

K, Rb, cubic, T~ w33 K) [4].

On the other hand anisotropic superconductors exist since the early 70's. First, the class of

dichalcogenide of transition metals (TaS~, Nbse~ and others, as well as their intercalated

compounds) is characterized by a moderate to strong anisotropy in the normal conductivity,
increased by intercalation [5], Secondly, the class of organic materials (Bechgaard salts),

studied extensively by Jerome and coworkers, contains both quasi-lD compounds (family of

[TMTSF]~X), usually low T~ materials, and quasi-2D ones which reach T~
=

10.4 K with

(BEDT-TTF)~Cu(CNS)~ [6], One can also mention the intercalated graphite compounds as

C~K [7], while the C~o compounds may be considered as isotropic 3D organic materials.

Third, high-T~ cuprates, with La~_~Sr~Cu04, YBa~CU~O~_s (noted Y :123), Bi~Sr~CaCU~O~
(noted Bi ; 2212) and TI~Ba~CaCU~O~ (noted Tl

:
2212) families, as well as parent compounds,

are layered materials covering a large range of anisotropy. This range has been considerably
enlarged by the synthesis of artificial multilayers of superconducting and insulating materials

such as Y ; 123/Pr ;
123 [8], superconducting and metallic materials as Y : 123/ (YPr) : 123 [9]

or Bi : 2212/Bi : 2201 [10]. Let us also mention the wide area of multilayers obtained by
alternating transition metals (V, Mo) with semiconductors (Si, Ge) and which can involve

similar physics, although on scales much larger than the atomic distances. One may also quote

the molybdenum bronze LiMo~O17, which is a low temperature quasi-2D superconductor but

shows some analogies with the behaviour of the cuprates [11]. Therefore low dimensionality
superconductors show a large range of T~'s but contain the highest T~ materials known up to

now.

SIMPLIFIED ELECTRONIC STRUCTURE. A phenomenological description relies on a small

number of microscopic parameters, among which the electronic structure parameters [12], Due

to the extreme complexity of the realistic band structure and the lack of precise knowledge
concerning the relevant quasiparticles at the Fermi level in the metallic state, it is useful to start

with simple models, The first one is a simple free electron model with anisotropy, manifesting
in a mass tensor. For an uniaxial layered material one takes a mass m~~ within the layers and

m~ along the normal to the layers (c-axis). The resulting elliptical Fermi surface is

characteristic of a weakly anisotropic material. The second one concerns strongly anisotropic

structures and involves a tight binding parameter t~ across the layers. If t~ « e~, the Fermi

energy in one layer, a new situation occurs where the Fermi surface is opened, close to a

cylinder with modulated section. In this last case the effective mass m~ along the z-axis is such

as m~~/m~
m

(t~le~)~ and the electronic anisotropy can be extremely large.

Such descriptions oversimplify the actual layer stacking which characterizes for instance

copper oxides and results in a very complex band structure. ,~lthough it is generally admitted

that superconductivity directly originates from CUO~ layers, other layers (CUD chains in
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Y : 123 materials, BiO and TIC layers in Bi- and Tl-based materials) play certainly a role, not

only in fixing the charge carrier density. For instance, superconductivity can be induced in

metallic layers by the proximity effect and yield peculiar temperature dependences [13]. Some

consequences on the upper [14] and lower [15] critical fields, and effective anisotropy [16]

have been derived.

PHENOMENOLOGICAL MODELS. Most of the theoretical analysis relies on the Ginzburg-
Landau (GL) description and its generalizations. This model is purely phenomenological but

can be obtained from the BCS microscopic description close to T~, so that the order parameter
is very small. It allows to calculate the spatial variation of the order parameter phase and

amplitude in various situations. However one sometimes extends the results of the GL theory
outside its range of validity, in order to obtain qualitative results. Fortunately, for extreme

type II materials (f WA, the field penetration length), which is the case for all high-

T~ compounds up to now, one can replace the GL theory by the London model, except close to

H~~ [17]. This electrodynamical description is valid down to scales of order f and holds in the

full temperature range. It essentially provides the spatial variation of the phase.
Mass anisotropy is easily incorporated in the GL or London descriptions. The solution

giving the flux lattice can be complicated for a general field orientation and reveals original
properties (transverse magnetization, vortex chains), recently observed in experiments. The

anisotropy of the vortex lattice has a dramatic influence on its elastic properties, themselves

essential for their pinning properties as well as for thermal fluctuations of vortex lines. A large
part of the theoretical work has been devoted to such properties, and a large part of experiments

can be explained within this description, including the observation of the so-called

irreversibility line. However, more work is necessary to decide whether this line indicates

depinning of vortices, melting of the flux lattice or a vortex glass transition.

On the other hand, the GL model encounters an obvious limitation when the transverse

coherence length is smaller than the layer spacing d. This occurs when the electronic parameter

T~ is smaller than the mean-field gap A in a single layer. Then one usually replaces the 3D

model by the Lawrence-Doniach (LD) description where the layers are coupled by Josephson
tunneling [18]. The Josephson coupling parameter can be deduced from microscopic

parameters in simple cases [19], but is usually set as a phenomenological parameter. It can be

strongly influenced by proximity effects for instance [13-16].

The LD model matches the 3D model close enough to T~ such as the layered structure is

unessential, but in the so-called quasi-2D regime, it brings new features on the vortex

properties. Even in the 3D regime, some effects reminiscent of the layered structure appear,
such as the lock-in transition of vortices [20-21].

The present contribution (I) presents a theoretical view of the intrinsic properties of vortices,

at thermodynamic equilibrium and in the absence of extrinsic pinning. The discussion of

pinning and critical currents will be the subject of the contribution by P. Manuel (II, same

issue). On the other hand, irreversible phenomena involving magnetization measurements

have been reviewed by Senoussi [22]. Section is concerned with the anisotropic 3D

description, and section 2 with the LD description and its consequences. The MKSA unit

system will be used throughout the paper. The experimental aspects are not reviewed, only a

few papers have been quoted. The list of references is of'course not exhaustive.

1. The anisotropic 3D description.

I.I THE 3D ANISOTROPIC GINzBURG-LANDAU AND LONDON MODELS. Let us restrict

ourselves to an uniaxial layered material, the crystallographic c-axis being parallel to the z-axis

normal to the layers and the.<y plane parallel to them. The GL free energy with a diagonal mass



172 JOURNAL DE PHYSIQUE III N° 2

tensor (m~, m~, m~) (with m~ = m~ =
m~~) and order parameter V'(r) V'[ (rj exp(i~ (r))

takes the form (F
=

Fs F~) [23]

F
=

d~r (a(T) V'[ ~
+ b(T) V'[~ +

~~
(i Vii +

~ ~
Ajj

') ~

+
2 4 m~b h

fi2 ~
~

2

l~~
b~

~~~~@ ~~~~~ h

~~ '~
~ ~2Jlo

where Ajj =
(A~, A~, 0), Vii =

(V~, V,, 0) and b
=

curl A. The transverse coherence length are

tab(T)
=

(h~/4 m~b la (T) )~~~

within the layers, and

, ~~+ j
~

~~~ ~ ~ ~ ~~+ ~i
/~

across the layers. The equilibrium order parameter is V'o
=

([a(T)[/b)~~~ with a(T)
=

«o(T T~), T~ being the mean-field temperature. One has

~ ~~b
~ ~~~

which defines the anisotropy parameter 11

In a weakly anisotropic metal, this continuum model holds if the Fermi energy

e~ is much larger than T~ or the mean-field gap A. Given the relation [23]
« =

(6 ~~/7 c(3 ii kB T~le~, this implies that the coherence lengths are at all temperatures much

larger than the typical interatomic distances. This is in principle always valid close enough to

T~ since the coherence lengths diverge at T~. Moreover, in the strongly anisotropic case

(t~ « E~), t~ must still be larger than
L-~ T~.

At length scales much larger than the f's (I.e. if H « H~~), one may set V'[
=

V'o and the

free energy per unit volume becomes a London free energy [17]

F
=

fi
+

d~r [b~ + A j~ (c url b 1
~

+ A (curl b )~
~ (3)

~~o
2 ~o

where A~~
=

(m~~/2 ~o
V'j e~)~~~ characterizes screening by currents flowing in the layers, I.e.

Jjj =

(I/~o) (curl b)jj and
~

=

(m~/2 ~o
V'j e~)~~~ characterizes screening by currents flowing

across the layers, I-e- Jr
=

(I/~o)(curlb)~. One has A~
=

rA~~, which indicates poorer
screening by (weak) interlayer currents. The first term of (3) is the condensation energy,

B~ is the thermodynamical critical field.

One must emphasize that screening of a field normal to the layers (hereafter denoted simply

as «
normal field ») involves only the London length A~~, while screening of a field parallel to

the layers (« parallel field ») involves A~~ when screened in the z-direction, and A~ when

screened along a layer direction.

Cuprate superconductors are extreme type-II materials, with K~ =
A~~/f~~ of order loo (for

normal fields) and
K~j =

(A~~ A~/f~A f~)~~~
=

rK~ even larger (for parallel fields). Organic

materials pertain to the same category, while dichalcogenides are less strongly type II and C~K

is type II for parallel field and type I for normal field.

The case of biaxial materials (showing a strong anisotropy in the layers or even quasi-lD)
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involves three coherence lengths and three London lengths. For sake of simplicity we review

here only the case of uniaxial materials, applicable to high-T~ cuprates if one neglects the weak

ah anisotropy. Biaxial materials as organic compounds should reveal a richer phenomenology.

1.2 CRITICAL FIELDS H~i AND H~~. The upper critical field is obtained from the linearized

GL equations derived from (I) with the V'[ ~ term omitted [24]. The calculation follows from

the isotropic case by a simple scaling and gives for a sample of size much larger than the

f's [12]

trio ~p~
~~~~

2 ~/l0 f(b
~~~~

2 ~~l0 tab fc
~~~

with ~Po =

h/2 e, so that H~~
i
/H~~

;
=

r, superconductivity is less easily destroyed in parallel
fields. For the general orientation, H making an angle o with the ?-axis, one has [12]

Hc2(°1 l~li E(6)
=

~/C°S~ ° +
r~ Sin~ ° ~5)

shovling that H~~(o cos o
i

H~~~ if tan o « r, and H~~(o ) sin o
i

H~~
i

if tan o w r. The

first scaling is exact if r is infinite and characterizes nucleation in decoupled layers (2D case).
The scaling function e(o) and the crossover angle Ho

=

tan~~(r)
are ubiquitous in the

anisotropic 3D properties (see Eq. (4)).

The calculation of the first penetration field H~i requires that of the free energy of an isolated

and straight vortex line, as the solution of the London equation with a &function current

source, which reads

b + Aj~ curl ~' curl b
=

~Po18 (r ro) (6)
Rlab

where m denotes the mass tensor, I the vortex line unit vector and ro its position in plane

normal to I. The standard derivation [17] gives for the symmetric directions

so that H~i ~/H~i
ii

is of order r, which means that the parallel directions are « easy »
for flux

penetration. In the general case, the energy of a single vortex line making an angle
~o

with the z-

axis is approximately [25]

~~
(8)jz,,(~D)

=

j~~j
~j~

~~~~~~ E(i°~~~~~

and first penetration occurs at the angle q7 such as G
=

F ~Po H cos (o ~o =

0 and H is

minimal. As a result lies in the (H, c) plane, with tan ~o i

r~
tan o and the first penetration

field for a single vortex is [25, 26] (Fig. la)

~Po Ln [Kle(o)]
H~, (o )

=
~

(9)
~ ~~0 ~ab ,/COS~ 0 +

l~~ SIn~ 0
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c ~ c

p~H
~

(~) (b) ~

v
i

ab ab

M

Fig. ]. Vortex penetration in a tilted field. H a) at H~i,
~g

indicates the vortex direction b) for

H » H~i, ~g indicates the direction of B.

In practice, for large l~ vortex lines enter nearly parallel to the layers, due to the much smaller

kinetic energy of the superconducting currents in this geometry.

One remarks that equations (5) and (9) (to logarithmic accuracy) can be written under the

same form for both critical fields (I
=

1, 2) [12]

H~, ( o ) cos o 2 H~~ 6 ) sin o 2

Hc<z
~

Hc< I

~~~~

However it has been recently shown for o # 0, 90° that it is slightly preferable to form a

chain of vortices than an isolated vortex line [27]. The origin of this effect is the oscillating

nature of the spatial field variation around a flux line, yielding an attractive interaction at a

distance of order A in the (I, c plane containing the chain. In different words one can say that

the currents stay nearly parallel to the ab plane, yielding a dipolar-like attraction of vortices

tilted with respect to the c-axis. The free energy difference between a single line and a chain is

maximum around ~o =

60° and increases with the anisotropy. It is of order of ~ome §& of the

total energy.

1.3 STRUCTURE OF THE VORTEX LATTICE. The structure of the flux line (vortex) lattice for

H~i
<

H « H~~ is obtained by solving equation (6) where the right hand side is changed into

~Po I ~j 8 (r r~ ), where the summation runs on the periodic flux line structure. The orientation

of the unit vector I (parallel to the induction B
=

(b) ) is determined consistentdy as a function

of the field direction (determined by the angle o with the c-axis) and is very close to it unless H

is less than a few times H~j (at equilibrium).

The results in weak field (H m H~i) yield an array of chains parallel to the (I, c) plane or

(H, cl plane [28]. As the field increases above H~i, the distance between chains decreases and

a (distorted) triangular lattice is progressively recovered. Thus the chains can be observed only

close to H~j. Recently decoration of ah surface of untwinned Y :123 crystals has revealed

patterns which would correspond to cutting the chains of flux lines by the ab plane [29].

The dependence of the magnetization with field intensity and orientation has been studied in

detail by Buzdin and Simonov [28]. A low fields, flux lines run approximately parallel to the

layers but the magnetization remains very close to the z-direction (it results from in-plane
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currents screening the normal field component). As the field is increased, flux lines quickly
rotate towards the field. This results in an anomalous behaviour for the magnetization
component parallel to the field it first decreases above H~i, then, depending on the field

orientation, it may increase and exhibit a second maximum.

At higher fields (H~i « H « H~~), one obtains
a distorted triangular lattice of Abrikosov

vortex lines, oriented nearly parallel to H [30]. The side-to-base ratio b~/bi of the triangles and

the angle between the unit vectors hi and b~ (in the plane normal to the flux lines) are

( 2 cos p
~~~ ~

e(o)
~~~~

If tan o « r,
e (o

~ cos o and one easily verifies that the decoration pattern obtained by
cutting the tilted flux lattice by an ah plane yields an approximately isotropic triangular lattice,

just as if r was infinite (Fig. 2). Actually, for weak layer coupling the dominant interaction

between vortices is the intralayer one, due to dominant screening of the normal field

component, and stabilizes a nearly isotropic hexagonal lattice in any ah plane cut. These

hexagonal lattices are shifted from layer to layer in order to form flux lines parallel to the field.

On the other hand, as o gets close to 90° the flux lattice becomes more and more anisotropic.
When tan o fir, e(6)~ l/r and b~/bi

i
r

~5/2.
Here screening of the parallel field

component becomes dominant. For a field exactly parallel to the layers, the hexagonal lattice is

compressed in the z-direction and expanded in the plane direction, with the same ratio as the

f's or the A's. Therefore, if the average vortex distance parallel to the layers is

a~, then the distance normal to them is a~ia/r. This shows that at a field of order

Ho
=

~Po/2 mo
~rd~, where d is the layer spacing, a= i

d and the 3D London model must fail

(see Sect. 2). The anisotropic vortex lattice has been observed by decoration in Y :123

(H flab) [31]. Decoration experiments in 2H-Nbse~ in tilted fields provide a rough

agreement concerning the distortion but do not yield the correct orientation [32]. Other

experimentq are needed, as well as refinements of the London theory.

~
(b)

H

z x

~
/

,

,

,

', ~
l~

Fig. 2. Tilted vortex lattice (H » H~,). Insert a shows the distorted hexagonal ceil in the plane XY

norrral to the vortices, and insert b the nearly isotropic cell of the lattice projected on the jv surface (ah

planej.
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For a vortex lattice oriented close to the layer direction, different vortex structures

correspond to very slightly differing free energies. This can lead to very small shear

moduli [33] and a chain structure has been proposed [34]. Other authors have found soft elastic

modes, thus predicted an reconstruction of the triangular lattice when the ah direction is

approached [35]. Actually, it is not clear which structure would replace the distorted triangular
lattice. A possibility, suggested by decoration experiments on Bi ; 2212 samples [36] is a

lattice with a basis corresponding to chains embedded into a triangular lattice [37]. Besides,
the formation of decomposed or combined lattices (two sublattices interpenetrating one parallel
and one normal to the layers) has been suggested [38-39], but for very large anisotropies or

field orientation very close to the ah direction (see Sect. 3). Observations report unusual chain

patterns in Bi ; 2212 samples (high anisotropy) [36], and zigzag pattems in 2 H-Nbse~ (low
anisotropy) [32]. This problem deserves more study and might reveal quite new kinds of vortex

structures.

The anisotropy of the vortex lattice, associated with screening currents flowing preferentially
close to the layer directions, has an important consequence: the magnetization has a

component normal to the field (Fig. lb). This was pointed out by Kogan who calculated the

components M~ and M~~ (respectively normal and parallel to the layers) from the flux lattice

free energy (H w H~i ) [40]

where
1~

=1.15 for a triangular lattice. One obtains

~Po cos o 1~B~~
M~

=

~

Ln (13)
4 ~~~ Aj~ E(o) eBe(H)

~P~ sin 1~B~~
=~~~

4 ~~~
Al e(H)

~~
eBe(H)

~~~~

where Ln (e
=

I. If tan « r, M~~ is negligible and the magnetization is essentially normal to

the layers.
To first order in the magnetization one obtains the reversible torque per unit volume,

T~
=

M~ Bjj M~~ B~
=

dF/dH, given by the expression [40]

T@ ~

~° ~ ~ j
~~~ ~ ~°~ ~

Ln l~)j~~, (15)
~~~A~~e(H) e e

It is zero for the parallel and normal orientations and exhibits a maximum at H~ such as

tan H~
w

r. One finds again the change of regime at an angle very close to 90° in case of

strong anisotropy.
For moderate anisotropies this formula provides an accurate fit of experimental data and

gives the value of the parameter r. For instance, values from 5 to 8 are found for

YBa~CU~O~
s

with maximum T~ w
0.1 [41], but rincreases rapidly with desoxygenation,

as shown by Janossy et al., attaining for instance r
=

20 for 8
=

0.35 [42]. One can also

measure independently the components of the magnetization [43].

For larger anisotropies as in Bi- or Tl-based systems, the results seem to be sample-

dependent and give increasing values of r as the quality gets better. The value r
=

55 was

reported early for Bi : 2212 [44], but r may be larger in realty [45]. Accurate measurements

meet the difficulty of sample alignment to less than 0.1°, but a more fundamental question is
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raised by the validity of the 3D London model for such anisotropies. This point will be

discussed in Part B. In addition, thermal fluctuations can influence the results [46]. Never-

theless the 3D interpretation yields a lower bound on 11

More generally, torque magnetometry, performed in the irreversible regime, and coupled to

relaxation measurements, provide unique informations on pinning mechanisms and their

anisotropy (twin boundaries for instance, or lock-in of vortices by the layers, see Sect. 4) [47].

1.4 THE SCALING TRANSFORMATION IN STRONG FIELDS. The properties of the anisotropic
flux lattice may be partially deduced in some cases from those of the isotropic one by a simple
scaling of coordinates [26]. Such a scaling is obvious when the field lies along the crystal axis,
but does not hold for a general orientation in the latter case the direction of the local field b

fluctuates and is only in average parallel to the flux line direction. However, an approximate
scaling procedure exists which holds in high enough fields [48-49].

Let us rescale the coordinates.<, y, z as I
= .<, J

= y, ?
=

r=. Then the vector potential and

field transform as A~
=

A~, A~ =
A,,, A~

=

A=/r and b~
=

b,/r, b,
=

b,/r, b;
=

b~, and the

Gibbs energy density G
=

F HB obtained from equation (I) becomes [48]

G
= jd~i(a(T)[V'[~ +

b(T)[V'[~+ ~~
(iQ +

~~i) ')~j
+

~ 2 4~lab h

)jd3F(~~~(~(~~~+(-r2(l~fi~+I,,fi~j-b~fi~j.
(16)

o o

The anisotropy has been transferred from the electronic part to the magnetic part of the free

energy. There is no general solution, but in high enough field, the spatial modulation of b can

be neglected (it is of order H~i/H), so b
w

B and the magnetic part can be dropped. Such a

procedure would be exact for
K

infinite but is valid in a wide range of fields for extreme type II

superconductors [48-49].

Equation (16) and the corresponding London free energy show that the vortex lattice derives

from the isotropic case, with an effective field fi such as tan
I

=
tan H/r, thus much closer to

the c-axis- In the rescaled coordinate frame, the screening currents run in the plane normal to

fi, and the vortex density is fixed by the effective field intensity

li
=

Be(o) (17)

where the scaling function e o is given by equation (5 j. Going back to the original frame, it is

straightforward to show that this results in the anisotropic vortex lattice obtained directly (see

Sect. 1.3, Eq. (I I)), More precisely, the second term of the free energy given by equation (12),

corresponding to the first terrn of r (Eq. (16)) is simply obtained from the isotropic one by

replacing B by fi, while the term
B~/2

~o is unchanged. This leads to the expression (15) for the

torque.

The scaling procedure also allows to obtain easily the magnetization close to B~~, which may

also be obtained directly [50]. In the isotropic case, M is proportional to
V'~ and is calculated in

perturbations in (B~~ -B). One obtains [24]

F
-

&
~ ~~

ii
Iii' ~~

i ~~j
('8)
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where PA =1.16 for the triangular vortex lattice. Equation (18) yields the magnetization
through B

=

m~(H + M) and H
=

dF/dB. In the anisotropic situation the free energy follows

from (18) by substituting B by b and B~~ by B~~
=

in the second term. Then one obtains for

instance the torque [50-51]

B~~(H)[B~~(H) B](I r~~) sin (2 H)
~

2 mo[1 + (2 K~ I pA]
~~~~

A similar procedure can be used in the fluctuation region (B ~B~~(H)) to obtain the

diamagnetic susceptibility and torque [51].

The scaling procedure is extremely useful for obtaining without much effort a high-field
approximation to the elastic coefficients of the flux line lattice, from which the thermal

fluctuations of the flux lattice follow [48], As another consequence, pinning properties
involving homogeneous disorder, and the corresponding critical currents, can be rescaled from

the results in the isotropic case [48, 49]. Moreover, the angle dependence of resistivity, as well

as critical currents, in single crystals and thin films should obey the scaling relation.

Braithwaite et al. observed in Y : 123 the 3D scaling in a wide angular region [161]. However,

due to other causes of anisotropy (pinning for instance), this is not always true, One must

remark that, to make the difference with the two-dimensional (B cos scaling (see Sect, 2),

one needs to orient the field rather close to the layers (some degrees in Y : 123, some tenths of

degrees in Bi:2212). The two-dimensional scaling, widely observed in Bi:2212 was

explained by Kes et al, by a 2D behaviour of vortices (r infinite) [52]. However, very close to

the layer direction Raffy et al. observed a 3D scaling [53], As explained in section 2, the

behaviour of Bi : 2212 and other very anisotropic materials can indeed be 2D or 3D depending

on the conditions of the experiment. One must notice that, even in materials like YBa~CU~O~
which are essentially anisotropic 3D systems, some effects of the layered structure may appear

close to the layer direction, for instance the lock-in transition (see Sect. 2.4), and mark a

deviation from the 3D scaling.

1.5 ELASTIC COEFFICIENTS OF THE FLux LATTICE. The general problem of calculating the

energy of any arrangement of curved vortices (specified by r
=

r~ for a vortex line ii can be

solved, thanks to the linearity of the London equations. Vortex line elements interact through

the screening currents they create, up to a distance of order A, While in the isotropic case two

vortex elements dr, and dr~ pertaining to lines and j interact only through the scalar product

dr~ dr~, in the anisotropic case the interaction involves a tensor f~p

The explicit form of f~p is given by Brandt [54, 55]. It allows to calculate the elastic

coefficients of the vortex lattice, and also the barrier against cutting of vortices, which can be

important for depinning and flux flow phenomena [56].

In the isotropic case, with field along the z-axis, one considers the small displacement

u, (= of line I. Three-dimensional Fourier transform u (k is taken, the longitudinal component

k~ ranging from co to + co and k~
=

(L-,, k,) running through the Brillouin zone of the

triangular vortex lattice. Then the linear elastic energy of the lattice can be written as

~3~
F~j

=

u~(k) ~P~p(k) up (- k) j (21)
2 8

~
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~P~p (k) is the elastic matrix. It is very important to notice that it is dispersive, I-e- it depends
explicitly on the wavevector k [54, 57]. This is due to the long-range nature of the interactions

between vortices. Those interactions extend to the length A, usually much farther than the

mean vortex separation ao =
(~Po/B)~~~, if H w H~i. The resulting non-local character of the

elastic interactions, emphasized by Brandt, is an essential feature of the elastic theory of the

vortex lattice, The general expression for ~P~p(k) can be found in references [54, 55].
Long-range deformations (of wavelength much larger than ao) are conveniently described by

the simplified expression

~P«p(k)
=

icjiik) c~~ik« kp + &«p[c~~1]~ + c~~(k)k)1 1221

with k~ =k(A+k), Let us recall the usual meaning of the elastic moduli Cjj, C~~,

~44.
The coefficient Cii, referred to as the bulk modulus, describes the rigidity of the vortex

lattice against uniform compression. The coefficient C
~~

is the shear modulus. The tilt modulus

C44 represents the stiffness against local rotation of the vortex lattice direction with respect to

B, Only C
i

and C~~ are relevant for a 2D lattice of point vortices, The simplified expressions
for these moduli read (for B « B~~ and

K w I)

~Po B
C66

~
~

(23)
6 ~A Mo

~2 j
Cii (k)

=

~ ~
(24)

Mo I + k A

~~~~~~
~

l +

~
~

~
(~A

~
~~~~

(kBzi~laoi (B/~Po))~~~ is the radius of the Brillouin zone), Within the continuous

approximation (22), only Cii and C44 are dispersive, C~~ becomes dispersive at short scales.

These elastic moduli are the basic quantities which enter most theories of vortex pinning,
and an essential feature is the dramatic dependence of the tilt and shear moduli on the

anisotropy. We hereafter give the expressions for C
ii

and C44 for fields oriented along the c-

axis or the ah planes of an uniaxial superconductor. The expressions of the elastic moduli for

any orientation have been derived [35, 37, 58, 59]. One may also deduce them in the high field

limit with the help of the scaling transformation [48].

First, if the field is along the c-axis, one has instead of (24j and (25) [60]

~ ~~~
82 + k~ Al

~~
~~

~0 (1 + k~ A~b)(I + k~b ~/
+ k~ ~~b)

~44(k)
=

~~ Ii
~

Ln k

~~ ~ ~~~ ~~ ~ ~~ ~~b k~Z Al
(~~)

while C~~ is not modified. In equation (27), k is a function of k~ and the various parameter~

[61]. The second term in C44 is the isolated vortex contribution and dominates at small B. It

simply comes in this limit from the expansion of the single vortex line energy. All other terms

in equations (23)-(?7) are of collective origin,
The bulk modulus differs from the isotropic one only if longitudinal deformations are also

present (k~ # 0), and is notably decreased only for very short wavelength kj' On the other

hand, the tilt modulus is dramatically diminished by the anisotropy k(~ Aj~ being replaced in
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the denominator by k(~ A ), the tilt modulus is smaller by a factor r~ for tilt angles smaller than

tan~ r! Such an effect directly comes from the much longer range (w A ~) of the interactions,

allowing much larger distortions for the same amount of elastic energy. This feature has a

crucial importance in the depinning properties and is also at the origin of a possible melting
transition (next Sect,).

If the field lies along the ah plane, some elastic coefficients are dramatically modified, For

instance, the shear modulus splits into a «
hard

» component C(~ (shear direction along the c-

axis) and a «
soft

» one C[~ (shear direction parallel to the ah plane) [62] (Fig.3)

(6
~

16
~ ~~6

"

~C66(B fl
c ), (28)

(a)

easy

(b)

hard

Fig. 3. Easy (al and hard (b) shear deformations of the anisotropic vortex lattice (Hflab).

The extreme softness along parallel shear makes the vortex lattice parallel to the ah planes
already difficult to observe in Y : 123 [31]. In Bi : 2212, its coherence is probably destroyed by

a small amount of thermal or quenched disorder.

On the other hand, the tilt modulus has also soft and hard components, respectively related

to in-plane and out-of plane tilt [61]. The out-of plane tilt modulus has the peculiarity of being

essentially dominated by the individual vortex contribution, itself proportional to the second

angular derivative (in r~) of the vortex line free energy (8) at ~o =

90°. This is important for

discussing for instance the lock-in transition (Sect. 2).
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The above remarks allow to treat the problem of vortex cutting, as a function of the angle

" between two vortex lines, In an isotropic superconductor their interaction energy vanishes

when
« =

90°. Thus parallel vortex lines must bend in order to minimize their cutting energy.
In an anisotropic superconductor (B fl

c ), the interaction vanishes only when
« =

180° (if not,

some component of currents in the ah plane remain). A full discussion of the problem shows

that, due to the small tilt modulus, anisotropy makes globally cutting easier. This is an

important feature for depinning of vortices in case of strong pinning [54].
Besides linear elasticity, one must also consider plastici~y of the vortex lattice, especially in

anisotropic superconductors : small elastic constants favour the formation of dislocations,

either by thermal fluctuations or due to internal stresses generated by pinning and the Lorentz

force (see Sect. 2) [54, 55].

Let us mention that the interactions between vortices close to a free surface are different

from the bulk, This results in modified elastic properties [63], and may lead to different vortex

arrangements [64].

1.6 THE MELTING TRANSITION. The possibility of melting of the vortex lattice at

temperatures much lower than T~ was first proposed by Nelson [65], Fluctuations of the vortex

lattice are indeed very large in cuprates, due to «
high

» temperatures and anisotropy, together
with nonlocality, as emphasized by Brandt [66]. The application of the equirepartition
principle allows to write down the average fluctuation of the vortex lattice deformation

ju~ (k) up (k)j
~

k~ T~oj/(k ) (29)

fr°nl Which one obtains (using Eq. (22) the mean square fluctuation iii ) ~ of a vortex position
[60, 66]

~
~

l/2

(u) ~
~

k~ Tmo A~~
~

(30)
B10/

It is enhanced by the anisotropy (factor l~, and by a factor B/B~i compared to the local

elasticity result of reference [65]. At high enough temperatures, long-range correlation will be

lost and the vortex lattice melts. In analogy to crystal lattices, one can use the Lindemann

criterium ((u)~)~~~
i

0.15 ao to roughly evaluate the melting temperature (ao is the lattice

spacing). This gives

Far from T~,
this gives the dependence B(T~) ~ Tj~,

and
close to T~,

(Figs. 4-5). This is no more valid for very small B (close

This evaluation
ctually gives an upper limit to the

heoretical
elting ransition.

T~ will be decreased by the presence of defects,
or

y the resence
of dislocations in

lattice
The melting line

epends n
the : it is much

lower
in

Bi : 2212 systems than in ; 123. It be ysically
haracterized

by the
vanishing of

stiffness. Above T~, one has a « liquid vortex
hase

» characterized by the loss of

correlations (Fig. 5). It is commonly believed that such a phase would be hardly inned and

could not sustain high urrents without This might not be
true

in case of very

strong inning. The possibility of melting at
emperatures

uch
lower than T~ is

aspect of
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H
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rtex

o~ ',,
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,
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H~~

eissner

~

c
Fig.

the ritical

(a) ~b)

T>T~ l~
T<T~ ~

Fig. 5. Thermal fluctuations for a 3D superconductor a) T
<

T~, b) T
~

T~.

More technically, the melting problem has been approached through mapping wandering

vortex lines onto the
«

world lines
»

of bosons (replacing the z coordinate by time) [65]. As a

function of field and temperature, one may obtain a normal liquid or an «
entangled

»
liquid of

vortex lines above T~. The latter phase bears some analogy with entangled polymers. Nelson

and Seung argued that in the latter case, finite shear stiffness is obtained with a few pinning

centers, and the viscoelastic response to an external current would allow finite critical currents

in practice. However, the possibility of cutting (easy in cuprates) and recombination of vortices

should strongly affect the viscoelastic properties of this phase [67]. A detailed theoretical

discussion of melting in presence of disorder can be found in reference [68]. Also, the theory

of melting has been reconsidered by Feigel'man by taking into account long range interactions

and disorder [69], and a theory of pinning of the vortex liquid has been developed in

reference [147].

Below the melting temperature, disorder already destroys long-range order of the vortex

lattice. A vortex glass phase has been suggested, bearing no long range order but possessing

shear stiffness, thus able to sustain critical currents [70]. The properties of such a phase are

reviewed in reference [68]. It is characterized by the absence of an upper bound on the energy
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barriers against motion of vortices. Hence this phase shows no resistance at low temperature

and is truly superconductive. The existence of a true glass behaviour may be impeded by

nucleation of dislocations in the vortex lattice which limit the barrier height. If energy barriers

are limited, one is faced to the more traditional concept of thermal activation (Kim-Anderson

theory and its refinements for high-T~ materials) and there is no true vortex glass. However a

vortex glass behaviour may occur at low temperature where a large range of barriers is

relevant. The debate is not so academic from the experimental point of view, since the vortex

glass theory makes predictions concerning nonlinear current-voltage characteristics at low

currents and at the glass-to liquid-transition, which seem to have been observed [71, 72]. On

the contrary, the Kim-Anderson model, as well as the TAFF (thermally activated flux flow)

mechanism, lead to ohmic characteristics.

Many experiments indeed show the existence of a line in the (H, T) plane, characterized by

the onset of dissipation and reversibility of magnetization (see [54] for references and a critical

discussion). This line is often called
«

depinning line », or «
irreversibility line ».

Depending

on the experiment or on the quantitative criterium retained, its position may vary. It is not yet

clear whether this line can be or not attributed to a (first order) melting or to a (second order)

vortex glass transition, or simply to a collective depinning effect (which is not a phase

transition). In fact, different phenomena may occur in a restricted range of temperatures or

fields. Recently, a few experiments on untwinned Y : 123 crystals have perhaps answered the

question. Safar et al. have found a first order transition in the very low current characteristic, in

the dissipative regime [73].

On the other hand, Farrell et al. have detected a dissipation peak in a torque experiment, also

slightly above the depinning threshold [74]. In both experiments the B(T~) variation is

quadratic close to T~, as predicted. Another evidence for a phase transition has been given by

Charalambous et al. for H parallel to the ah plane [75]. Very recently other groups confirmed

the existence of a melting transition [76, 77]. Hence it may be that, as temperature or field are

increased, depinning first occurs, followed by a true melting transition. Figure 4 shows an

oversimplified phase diagram for the vortex lattice.

2. Josephson-coupled layers and strongly anisotropic systems.

2.I THE LD MODEL AND THE DIMENSIONAL CROSSOVER. Lawrence and Doniach have

proposed a phenomenological functional for a system of identical superconducting layers with

spacing d and coupled by Josephson tunneling [18]

F
=

d ~j d~r (a(Tj V'~ ~
+ b(T) V'~ [~ +

~~
(ivjj +

~/
Ajj V'~

~
+

~

2 4 ~lab

~ ~' ~'~
~

~'~ ~~~ ~l~
nl ~ ~

~~ ~~ ~l~ ~~~ ~~
t

~~~~

where the order parameter V'~(x,y) is defined in layer n. The Josephson coupling

f, can be expressed in terms of an effective mass m~, by f,
=

h~/4
m~

d~. This LD model has

been justified microscopically by Bulaevskii [19], and it turns out that for a simple open Fermi

surface, the «transverse » mass m~ is indeed related to the parameter t~ by h~/m~d~
=

t)le~, thus f,
=

t)/4 p~ [12]. Howe,ler, real systems possess a complicated electronic structure,

and the analogy with Josephson junctions relies on the extremely short transverse coherence

lengths (some I). A real structure may be modelized by alternating superconducting and

insulating layers, or by superconducting and metallic (normal) layers. The first case (SIS
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structure) can be directly, described by equation (32), but the second one (SNS structure)

involves complications such as the proximity effect. It may be more conveniently described by

a 3D anisotropic model, or, more generally, by 3D models involving a periodic modulation of

the parameters [78]. Therefore, in the LD model studied here, the parameter m~ or the coupling
f,, as well as the effective anisotropy parameter r

=

(m/m~~)'~~, must be considered as

phenomenological.
Besides the parallel and transverse coherence lengths f~~(T) and f~ IT), the LD functional

defines a new length scale, obtained by comparing the parallel gradient term and the finite-

difference term, respectively associated to the in-plane and the transverse stiffness of the order

parameter~ This shows that large differences V'~~i(r) V'~(r) are allowed within a range

A,
=

rd. This length thus characterizes the
«

shear stiffness
»

of the order parameter and is

directly involved in lateral excursions of vortex lines parallel to the c-axis- A, is usually called

«
Josephson length », which may be misleading since it has not the same meaning as the

Josephson screening length of a junction (see Ref. [92]). For example Aj160-801 in

Y : 123 and 600-1 000 h in Bi : 2212, while A,
~

A
~~

in more anisotropic materials, leading to

exotic properties [38].

At lengths scales much larger than the f's, one can simplify the LD model and set

[V',~[
=

v~o'= ([a(T)[/b)~~~ This leads to a nonlinear LD functional for the phase

~~ of the order parameter, which is the equivalent for this model of the London functional

j7
=

~~~~ ~j
~r~

(V(( Xn(~ + ~~d2 ~~ ~~~ ~~~ ~"
~~~

~
8 ~~Mo ~ab(T)

n

~2
~

+ d"r dZ (33)
2 mo

where

~ l,Xn(r
=

~~ (r) ~
A dl (34)

h
o

defines the gauge-invariant phase.
One can define screening lengths A

~~
and A

~,

identical to those of section I. These are large

compared to the layer spacing and are hence insensitive to the layered structure. In other

words, the electron density (or the order parameter amplitude V'~[) appearing in the

A's are quantities averaged on the whole sample volume, while superconducting electrons

exist only within the layers n.

Due to the long scale of the field variation (A~A w d ), the finite difference equations resulting

from equation (33) may be replaced by 3D differential equations [79, 80]. However, the order

parameter keeps variations at the scale d and the current sources in the layers are point vortices

centered at r~~ (in the
«

London
»

description). For instance the equation for normal flux

reads [39]

V~b~
=

~j
b~

~Po ~j jr r,~ )j (z nd ) (35)
Aj~

~ ,

which immediately results in B~
=

4l~ n~~, where nz~ is the density of 2D vortices per layer.

When the Josephson length is smaller than the parallel coherence length (A,
<

f~~(T)), the

system behaves as if the order parameter varied smoothly from one layer to another, and

A, becomes unessential. The finite differences appearing in equations (32, 33) can be

linearized, leading to an effective anisotropic 3D description. On the other hand, when
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A,~ f~~(T), the continuous description is not valid and new effects are expected. This

dimensional crossover occurs at a temperature T* defined by f~~(T*)= A,11,
or

f~ (T*)
=

d/ /.
It occurs provided the parameter p =

2 fj((0)/r~d~ is less than one. If

p <
I, and f~~(T) shows a GL variation, one has T*

= T~ (I p ). The theoretical values for p

range from around 0.I in Y ;123 to 0.001 in Bi : 2212 and are nearly zero in quasi-2D
multilayers. This crossover can be observed in Y : 123, and deviations from the 3D London

behaviour have indeed be observed in torque experiments below 80 K [81] (see Sect. 2.4). One

must notice that dimensional crossovers may occur at lower temperatures (and thus be

observed in more anisotropic materials), if concerning other physical properties. As will be

emphasized in the following, 2D or 3D behaviour depends on the comparison of a length scale

specific of the experiment with the Josephson length A,.

2,2 THE ZERO JOSEPHSON COUPLING CASE : 2D VORTICES, This limiting case is interesting
in many respects. First, it may be close to the situation of very large anisotropy, encountered in

Bi : 2212 materials and artificial multilayers. Secondly, it leads to a linear GL or London

problem which can be solved by standard methods. This (often called 2D) limit should not be

confused with that of a real 2D superconductor (modelizing very thin films). Indeed, the

electronic coupling is 2D but the magnetic coupling between vortices are 3D in nature.

The first calculation involving 2D vortices appeared in a paper by Efetov [82], Buzdin and

Feinberg expressed the free energy of a system of 2D vortices as the sum of two-body

interactions [83] (see also Guinea [84], Clem [85], Fischer [86], as well as references [79, 80]

where a «
homogeinized

»
version of the 2D London equations was used)). The detailed field

and current distribution has been given by Clem for a single 2D
«

pancake
» vortex. The

magnetic field is dipolar-like and extends to a distance of order A
~~

in the z-direction (Fig. 6b).

(a) ~b)

Fig. 6. Single vortex and sketch of field lines : al in a thin film b) in a multilayer superconductor

without Josephson coupling : field lines are bent and are confined in a layer whose thickness is of order

Aab.

In an infinite multilayer system, the free energy of a single 2D vortex diverges. On the other

hand, in the same layer, the interaction of two vortices of same polarity is repulsive and

logarithmic at any distance R
~

d and f~~ (instead of exponential as for vortex lines in a 3D

superconductor) [83]. If d « A~~, one has for an infinite stack of layers the interaction energy

F~_~
=

°

~
Ln

~
(36)

~
~~~ab ~ab

The total energy of a vortex-antii>ortex pair is just the opposite. It is finite, the divergent parts
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compensating each other. The logarithmic form at all distances is in contrast to the result for

thin films where the interaction varies like I/R for R
~

A j~/d [87]. The multilayer result (36) is

due to the screening currents induced in the other layers by a 2D vortex in a single layer. The

direction of those currents is opposite to those occurring in the same layer [85]. For 2D vortices

in different layers at a distance
z =

nd, one has the approximate forms [79, 85]

~
~~~

~~~ ~
8

~~~

/~
~~ ~b ~

~~
~~ ~~ ~ ~ ~~~

~~~~
10/ d~ R

F~ ~(R, z )
=

(z « R « ~~)
~ ~Mo ~~b ~ab

Contrarily to (36), this interaction is attractive, expressing the fact that 2D vortices prefer to

align along the ?-direction. Compared to the in-layer interaction, it is weaker by a factor

d/A~~ « I, but each vortex interacts up to a distance z i
A

~~
along the z-direction. The purely

electromagnetic interactions between 2D vortices are thus weak and long-range, contrarily to

the short-range electronic (Josephson) interactions. This allows in principle to calculate the

total energy of any configuration of vortices and antivortices (Fig. 7). It is essential to notice

that, due to the symmetry of the field distribution created by each vortex, such a configuration
creates a field always parallel to the c-axis.

vortex

cn

mtivortex
_ _

Cn - - -

Fig. 7. Example of a configuration of 2D vortices and antivortices (total induction is zero).

The London equations are easily solved for a field along the c-axis, and yield at equilibrium

an Abrikosov lattice of 2D vortices [39, 85], in the layers, aligned along the z-direction.

Curvature of the field lines is negligible since d « A
~~,

but may not be negligible in multilayers
where d can be larger than 100 h. The basic difference with a 3D superconductor is that

continuous vortex lines leave place to fractioned lines of 2D vortices [67]. The origin of their

alignment is the dipolar (magnetic) coupling between 2D vortices. The expressions for

H~j,
~

and the intermediate field magnetization are similar to those of the 3D case (Sect. I), as

well as for the critical field H~~,
~.

However, thermal fluctuations play here a crucial role (see
Sect. 2.4).

In the case of a tilted field, the field component parallel to the layers cannot be screened in

absence of Josephson currents, therefore it penetrates freely. The tilting of the field can be

accomodated by a simple gauge transformation, and as a result the normal component

H~ alone generates an Abrikosov lattice of 2D vortex lines normal to the layers [39] (Fig. 8).

No tilting of the vortex lattice occurs, and all the equilibrium quantities (critical fields,
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fi

Fig. 8. Abnkosov lattice of 2D vortices, generated by the normal field component, while the parallel

one penetrates freely. (Arrows represent the direction of field lines.)

magnetization) are function of the component H~, as would come from the 3D model by setting
rto infinity (Eqs. (10, 13)). Many quantities (reversible and irreversible magnetization, vortex

lattice decoration, resistivity, critical currents) reasonably obey in Bi ; 2212 samples such a

scaling law [52]. For a field making the angle with the c-axis, the measured values are those

obtained from a normal field of strength H cos H. However, deviations always occur close to

the layer direction, and reflect the weak electronic interlayer coupling [53, 88]. This shows

that the 2D model, though quantitatively valid in a wide range of parameters, is not physically

correct and the effect of the Josephson coupling must be included. In practice, the Josephson
coupling dominates the magnetic coupling beyond a distance r of order A, from a vortex core.

If two 2D vortices in adjacent layers are shifted from each other by a distance R, a «
string

»
of

Josephson vortex will form if R
~

A, [38, 39, 67, 79, 143] (Fig. 9).

n+I

n

n

~section of a ~ 2D vortexJosephson
nucleus

__

~
IIj

Fig. 9. Structure of a kink : two portions of Josephson nuclei are linked by a 2D vortex. Note the

difference in the sections, f~~ <
Aj. Some field lines are indicated,

2.3 THE VORTEX LATTICE EFFECTIVE 3D DESCRIPTION AND BEYOND. The tilted vortex

lattice in the LD model has been studied for the quasi-2D regime (T
<

T* in references [38,

39, 85]. Reference [38] contains more detailed analytical calculations, using an approximate
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linearization of the Josephson current, sin (~
~

~
~ i 1

(~
~

~
~ ~ i

), but keeping the

finite-difference equations characteristic of the LD model. Flux lines are generated by tilted

stacks of 2D vortices, aligned along a direction making an angle
~o

with the c-axis. In large
enough fields, these vortex lines are nearly oriented along the field direction, as in the London

case. What differs is the complex core structure of those lines, where three regions must be

distinguished as a function of the distance r from a given vortex core center [38. 39] (Fig.10).
At short length scales r w f~~(T), one finds the true 2D cores. At larger scales f~~(T)

<

r w
I (~o ), one has a nonlinear

«
nucleus

»
where interlayer currents are not small with respect

to the critical Josephson current J~
=

~Po/2 ~mo
Al d, The structure of this nucleus has been

studied in detail by Carton [89] and Clem et a/, [92, 146] in the case of parallel fields. This

nucleus replaces in some way the GL core. Then, at scales I(~o)<rwi~, where

a~ is the vortex distance in a layer, the LD equations can be linearized to anisotropic 3D

London equations. This is the effective 3D region where the layer structure is not relevant. The

length I(~o ) limiting the quasi-2D and 3D regions is given by

I
~o )

m
min (d tan ~o, A

,
(38)

where d tan ~o is the mutual displacement of adjacent 2D vortices of a same vortex line. One

can thus distinguish different angular regimes,

y B(a)

l~

~i') ~'
B

~

l

Fig, 10. Vortex lattice in tilted field a) tan o
~

r, the regions between 2D vortices of the~ame line

are the nuclei b) tan
~

r, Hj
<

Ho (see text), Josephson cores connect 2D vortices. The region
between and far from 2D cores and nuclei is adequately descnbed by 3D London equations, It disappears

when Hj
=

Ho-
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I) tan ~o w f~~(T)/d the mutual displacement of adjacent 2D vortices is weak and the

London model is applicable everywhere. It is modified to account for 2D cores by a « core

conltant
»

slightly different from the 3D one. For Y :123 or Bi : 2212 compounds at low

temperatures, the corresponding angular region ranges from
~o =

0 to ~o =

45°. It is smaller in

artificial multilayers with larger d. The 3D London region between vortex cores exists

provided H= « H~~,
=.

ii) f~~(T)/d w tan ~o <
r 2D vortex cores are displaced by more than their width, but not

enough to leave place to strings of Josephson cores joining them. The expression of the vortex

lattice free energy in this case is given in references [38. 39]. A simplified expression reads

82 ~p~ B ~Po ~Po B~
~~~~

2 MO
~

8 ~mo Aj~
~~~ ~~

~d~ tan~
~o E(~o ) B

~
4 ~mo Aj~

~

d tan ~o
~ ~~~ (39a)~ ~~

tab

It is similar to the 3D one, with the short range contribution modified to take into account the

2D character. The 3D London region between vortex «nuclei» exists provided

Bz « ~Po/2 ~
(d tan q7 )~.

iii) r w tan ~o in this case Josephson pieces of vortices fully develop, joining 2D vortices,

the cores of vortex lines taking a «
staircase» form (Figs. 9-10b). The limiting length

I(~o is equal to A,, which means that from the point of view of 3D London picture, valid

outside the nonlinear
«

nucleus », the steps appear as kinks of length A, and height d. If

tan ~o
fir, the vortex lattice free energy then takes approximately the form

~
B(

~

~PoBjj
~~

jBo
~ ~ ~

~PoB~
~

2 jLo 4 ~jLo A
~~

A
~

Bjj
~

4 ~jLo Aj~

x

Ln ~~~ ~~~~' ~'~
+

~~j
(39b)

tab

The second term represents the interaction energy of the Josephson pieces of vortices, with the

upper cutoff field Bo
=

~Po/2 ~dr~ corresponding to all interlayer spacings being occupied by

Josephson vortex nuclei. The constant «, stands for the nonlinear nucleus contribution [92].

The third term corresponds to 2D vortices. One can remark that the angular condition to have

Josephson pieces of vortices, and therefore to observe deviations from the 3D scaling law, is

more easily fulfilled in experiments if r is not too large. Of course, a too small r is

incompatible with the Lawrence-Doniach model since the Josephson coupling implies a

substantial anisotropy.
More detailed expressions of the free energy can be found in reference [38]. At fields much

smaller than the abovementioned limits, the effective London model is correct and vortex lines

at equilibrium must be tilted, contrarily to the assumption of the 2D model [52] which assumes

an Abrikosov lattice of vortices normal to the layers. One must underline than the tilting is

uniquely due to weak electronic interlayer coupling, and this has important consequences,

First, the interlayer coherence of the vortex lattice can be blurred by disorder, pinning or

thermal fluctuations. Secondly, even if coherence of a tilted lattice is maintained, experiments

may be unable to distinguish between a true 3D lattice and the 2D model. At equilibrium, one

must sample the range tan ~o ~
r, and in this case the pinning and electrodynamic response of

2D and Josephson vortices show to be different from those of a 3D anisotropic superconduc-

tor [88, 101]. Also, the loose interlayer coupling was demonstrated by a recent experiment by
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Safar et al,, showing out a decoupling of vortex motion on the two faces of Bi:2212

crystal [145], This and other experiments demonstrate that at high enough temperatures the

electrodynamic response is that of decoupled 2D vortex lattices (see Sect, 2.6), The lame

property holds for pinning properties which are much closer to 2D than 3D behaviour (see the

article by Manuel, same issue).

The case of parallel fields has been studied in more details [19, 89-93, 146]. If

H « Ho
=

Bo/mo, one obtains a distorted Abrikosov lattice of vortices with Josephson-like

cores (Fig. I la). The GL core of section f~~, f~ is replaced by the larger nucleus of section

rd~, In small fields, interesting commensurability effects between the layer spacing and the

vortex distance a~ may appear, and would manifest in jumps in the magnetization [95].

If H
~

Ho, the distance between vortices along the layers still decreases while their distance

along the z-direction remains equal to d [93, 89]. In the LD model, there is no upper limit to

such a stacking of Josephson vortices : their nuclei are squeezed, but the theoretical critical

field H~~
i

is infinite [94] (Fig. I16). The tilted vortex lattice has been studied at H~~ by

Minenko and Kulik [139], In practice H~~ is limited by the paramagnetic effect [12], or by

finite superconducting layer width [98], If T*<TWT~ the angular dependence of

H~~ is given by equation [10] (3D behaviour), and if T
<

T* the dependence is similar to that of

thin films [157] and given by

where H~~
i

is an effective critical field [12]. The crossover manifests itself in a rounding at

=

0, leaving place to a cusp below the crossover, and the two behaviours have been

observed in cuprates [158-159]. Similar behaviour has been seen on the irreversibility line in

Bi:2212 [160], with a crossover temperature lower than 80K, thus different from

~*

(a)
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An very peculiar situation arises when the field is tilted and such as Hjj ~
Ho. Then the

interaction of 2D vortices in different layers favours stacking of kinks along the z-direction. In

this case, a different vortex configuration is preferable it involves a «combined
» or

«
decomposed

»
lattice, made of two interpenetrating lattices of 2D vortices normal to the

layers and a Josephson vortex lattice [38, 39, 142]. Indeed, within the London approximation,
those two sublattices have no interaction energy, and the free energy difference between the

tilted lattice and the combined one, coming from the interlayer interaction, varies like

I/r. For H
=

Ho, 2D vortices occurring as kinks in tilted vortex lines happen to be naturally

ordered in an isotropic sublattice, and for H
~

Ho the combined lattice is favoured by the strong
interaction of 2D vortices [38]. If the anisotropy is extreme (A,

~
A

~~
), case which might be

realized in some bismuth and thallium-based compounds, as well as in multilayers, the

combined lattice must form in a wide range of angles and fields. Its signature could be detected

in torque experiments [38],

This question deserves further analysis, in relation with possible instabilities of the distorted

hexagonal lattice,
«

frustrated
»

by the effect of field orientation close to the layers and strong

anisotropy. More generally it would be interesting to make the link with the instabilities

predicted in the London regime (Sect. I), Experimentally, torque experiments could be a probe
of such exotic vortex lattices but an extreme sensitivity is needed. The ideal probes are volume

ones as neutron diffraction, which have recently given first results [132]. The difficulties are

the weak field modulation (of order H~i/Io, and the difficulty to find a regime where vortices

are nearly free from pinning but weakly fluctuating, so as to obtain a measurable structure

factor. Other probes as ~LSR and NMR also encounter basic difficulties.

In the regime T*
<

T
< T~ the properties of the vortex lattice are close to those of a 3D

anisotropic one. However some differences exist and essentially come from a complex core

structure. Let us simply consider the case of a vortex line parallel to the layers. The stable

configuration corresponds to the center being between layers (Fig. 12a). The total size of the

core is (f~ iii ), with f~
~

d and iii
~

A,. Within this region, the order parameter amplitude

is weakened in the layers. A detailed variational calculation [21] shows that there also exists a

nonlinear nucleus of size (d. A,) (like in the quasi-2D case) where Josephson currents are of

the order of j~. Outside this region, the phase differences between layers are small. Therefore

the effective core in this quasi-3D regime has a complex structure, characteristic of a layered

system. One can also consider the unstable configuration (Fig. 12b) where the vortex center

sits on a layer, It is easy to see (and confirmed by calculations) that the nonlinear nucleus is

larger, being spread on two interlayer spacings. As a consequence, the difference in core

energy at between the two configurations is of order

«1~
~ ~

=

~ (l ~
(41)

ii IT) p T~

of the total vortex line free energy [21], This result can be generalized to the vortex lattice

provided H «H~~. It contrasts with the exponential dependence found by expansions near

H~~ or perturbative analysis [137, 148].

2.4 THE LOCK-IN TRANSITION AND INTRINSIC PINNING BY THE LAYERS. In a true 3D

anisotropic superconductor, with coherence lengths much larger than the atomic scale, vortices

cannot align along a crystal direction unless the field also points along this direction. This is no

more true in a layered structure, where vortices can «
lock-in

» onto the layer direction for a

field tilted from the layers [20, 21]. The origin of the effect is the reduced free energy for

vortex cores running along the layers. Two cases must be considered, depending on

T
~

T* or T
<

T* (T* is the crossover temperature defined in Sect. 2.1),
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~
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Fig. 12. Structure of the core of a vortex parallel to the layers, showing the reduced order parameter

(bold line) and the nonlinear nucleus (dark regionl. a) stable configuration ; b) unstable configuration.

Let us first consider the case TM T*. When the transverse field component H~ is small, as

shown by equation (39b), the interaction between 2D vortices vanishes the free energy varies

like cos ~o
instead of cos~

~o
in the 3D case (Eq. (12)) [38, 96-97]. As a consequence, 2D

vortices vanish as soon as H~
=

Hi, with

Thus, in the quasi-2D regime, the lock-in transition occurs at the frontier of the Meissner state

for normal flux (Fig. 13). The lock-in angle is of order H~i ~/H. Moreover, it is very sensitive to

demagnetizing fields which greatly enhance the component H~ in platelet samples or thin films

with thickness s and length L if the applied field H~ makes an angle H~ with the c-axis, one has

cos H~ii (s/L)cos Hi, making the lock-in transition difficult to observe even in low

fields [20, 99], Moreover, the observation of a sharp normal flux penetration (by torque

magnetometry for instance) suffers from the same difficulties as the determination of

H~i. The nucleation of kinks may be affected by the presence of defects and their interaction

lead to a kind of critical state superimposed to the parallel flux lattice. To avoid those

difficulties one must work in the reversible regime. Besides, at temperatures too close to

T~, thermal fluctuations may strongly modify the picture (see Sect. 2.6). An anomaly in the

torque has been indeed detected by Farrell et al, [81] in Y : 123 below 80 K and attributed to

lock-in by Bulaevskii [96]. However, this regime needs more discussion since it is outside the

range of the true quasi-2D model (see Sect. 2.1).



N° 2 VORTEX LINES IN LAYERED SUPERCONDUCTORS 193

tilted vortices

H,
~~~~~~~~~ ~°'~~~~~

locked-in

~ill ~ll

Fig, 13. -Phase diagram showing the Meissner and the lock-in regions, that of staircase vortices

(tan ~g ~
r) and that of the tilted vortex lattice (tan

~g <
r).

The model initially proposed for the lock-in transition [20] assumes that the core energy of a

vortex parallel to the layers is periodically modulated along the ?-direction, and uses for the

London part of the free energy the expression from the 3D approach. This model is expected to

be correct when the modulation ai of the core constant (to be included in the vortex free

energyj is weak, I.e. in the regime T*
<

T
< T~. The variational estimate of the temperature

dependence of aj (Eq. (41)j contrasts with the exponential behaviour found in the similar

problem of Peierls-Nabarro barriers for dislocations in crystals. The linear law comes from the

nonlinear nucleus contribution (Josephson currents) and implies that a sizeable core energy
modulation remains even close to T~.

For a vortex lattice slightly tilted from the layer direction, the calculation proceeds through
balancing the tilt energy involved by kink formation and the core energy gained by forming

vortex segments parallel to the layers (Fig, 10b). The problem can be solved exactly for a sine

core modulation and leads to Sine-Gordon kinks which disappear at a lock-in angle

Hi. Here the kink length L~ is consistently calculated. It varies like («1)~~~ and turns out to be of

the order of f~~(T) [21]. This result is due to the fact that, because of nonlocal elasticity, the

«
hard

»
tilt modulus C44

~ ~
rBH~j

=

is dominated by the
«

single
» vortex contribution [61].

The lock-in angle is defined by H~
=

Hi, with

4lo 12 «1(Ln r + «

Hi
=

(42b)
~ MO Ajb ~

It is possible to match the quasi-2D result (42a) to the quasi-3D result (42b) by noticing that

f~A (T* is of order of A,, the kink length for T « T*, so that (42a) and (42b) can be matched at

T* provided a phenomenological core barrier constant is defined at low temperatures.

Therefore the modulated core energy treatment of the lock-in transition is roughly correct in the

whole temperature range. Let us mention the more detailed analysis of the transition by
Koshelev, in particular the possibility of kink wall formation [100].

In low fields and if demagnetizing effects are weak, the lock-in angle can be smaller than the

angle marking the maximum of the London torque. In this case, the latter disappear and the

torque maximum must be attributed to lock-in, giving only a lower bound to r. This points out

the difficulty of observing the scaling (17) for large r's.

The lock-in manifests itself in a torque anomaly : when vortices suddenly lock onto the layer
direction, their angle with the field increases and the torque is larger than the London torque

JOURN~L DE PHYSIQUE U< T 4 N. 2 FEBRUARi'I994 9
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(Fig, 14). The position of the lock-in torque maximum Hi depends on the field, contrarily to the

London maximum H~ it goes towards the layer direction as the field increases. Such effects

have been observed recently in Tl : 2212 [101], but thermal fluctuations may modify the

picture, as in measurements on Bi : 2212 [102].

o ,o 80

Fig. 14. Typical torque curve dotted line London case bold line lock-in correction thin line 2D

torque.

The energy E~ of the kinks is an important parameter since it controls their thermal

activation. An estimate for Y:123 leads to E~i1.5 x10~(1-T/T~) if TM T* and

E~
1

8 x
10~ (1 T/T~ )~~~ if T

~
T*, leading to a kink energy of a few hundred Kelvins around

~*

An important feature of layered materials is the possibility of intrinsic pinning of parallel

volrtices when a current is applied parallel to the layers, since in this case the Lorentz force

opposes a strong core pinning force [140] (Fig. lsa). The intrinsic pinning energy can be as

large as one tenth of the total vortex energy, and all vortices are pinned along their full length,

which represents an extreme case of strong pinning (apart from slight distortions due to

incommensurability effects). One can estimate the low temperature critical current associated

to intrinsic pinning in low fields by assuming that, at equilibrium, fitting the cores between

layers induces a negligible strain of the lattice (commensurate case). In that case the same

Lorentz force is exerted on each vortex, on its full length. However, it is not likely that vortex

lines pass rigidly from one interlayer spacing to another, since they would encounter an

unstable configuration. Motion of vortices in the z-direction rather proceeds through nucleation

F~

J j i
j

r
F~

(a) (b)

Fig. 15. Lorentz force on a Josephson vortex : a) current in the layers, intrinsic pinning barrier (hard

motion) ; b) current across the layers, very weak barrier (easy motion).
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of pairs of kinks (Fig. 16). Such pairs might form coherently in many layers, so as to minimize

the compressional energy (the tilt energy is mainly local and depends very slightly on such

coherence). Indeed, such kinks locally look like 2D volrtices, thus experience a force parallel to

volrtex lines, and once nucleated they move parallel to the layers. The nucleation energy is of

order 2E~, and the pinning force per unit length is f~ =E~/dL~. Neglecting thermal

activation, the critical current density is J~ =E~/dL~4l~. Taking the expressions for

E~ and L~ for T
<

T* and T
~

T*, one finds

4l~
J~

=
~

Ln r (T « T*
4 ~m~ A~~ Aj

~
(43)

J~
=

°

~
2 jai (T

~
T* ).

4 ~m~ A~~ Aj

B

JO FL~ ~L

Fig. 16. Nucleation of a kink and antikink (pair of 2D vortex and antivortex if T
<

T*) on a Josephson
line, and the Lorentz force in case of parallel current.

One verifies that J~ is always smaller than J~1 4lo/4 wm~ A j~ f~~, the depairing current in the

layers. However values J~
=

10~ A. cm~ ~
are theoretically possible. Assuming A jb to be linear

in T, the above evaluation yields J~
i

(I T/T~ if T « T* and J~
i

(I T/T~ )~ if

T~T*. These low-temperature estimates must be corrected to take into account thermal

activation of pairs of kinks and antikinks, impolrtant in practice.
At temperatures such as kB T « EK, high intrinsic critical currents can be maintained within

the lock-in region, thus tolerating a misorientation of the field less than 90 Hi with respect to

the layers. However, thermal activation or kinks, or nucleation of kinks at defects can

substantially lower these ideal values. Moreover, defects like twin boundaries or oxygen

vacancies may help nucleation of kinks [140] but oppose barriers to their motion. In that case

the critical currents may be limited by intrinsic or extrinsic barriers depending on which one is

larger.
On the other hand, glide of volrtices parallel to the layers is easy at low temperature where, in

absence of true vortex core, the friction due to extrinsic defects is very weak (Fig. lsb). Thus

critical currents flowing across the layers are very small. Contrarily to the above intrinsic

critical currents, those currents must increase with temperature, since the larger core

overlapping the layers increases the extrinsic pinning. Due to easy entrance of volrtex cores

between layers, the irreversibility measured by magnetization for fields parallel to the layers is

weak and cannot reflect the intrinsic pinning, apart from special sample geometries [22]. On

the other hand, direct measurements of J~ yield values in agreement with the above estimates

[14 II, but in thin films where size effects may modify the picture. Also, the lock-in transition

has been detected by transport measurements as a sharp drop in the dissipation, at a
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temperature close to T~ in Y : 123 [103]. The remaining small dissipation is probably due to

thermal activation of kinks in this case (see below).

The problem of dissipation in the parallel geometry, due to motion of Josephson-like
vortices, has been considered by various groups. Clem and Coffey calculated the viscous drag

coefficient for motion parallel to the layers, as well as the vortex inertial mass, and found

results analogous to those of the anisotropic GL theory, where the size (f~~ f~ ) of the vortex

core must be replaced by (A,.d) [146]. This is essential in order to know whether

underdamped fluxon motion is possible in layered high-T~ superconductors (such effects would

be an unambiguous proof of the presence of planar Josephson junctions between Cu02 layers).
On the other hand, in a series of papers, Ivlev, Kopnin et al. studied dissipation due to

vortex motion across the layers (intrinsic pinning), by thermal activation of vortex kinks. In

parallel fields and close to H~~ [148], for T*
<

T
< T~, the barrier for depinning varies as

U~ I/J at low currents, yielding nonlinear resistivity and the critical current goes like

exp (- (f~/d)~ ). The contribution of kinks in a slightly tilted field was treated in reference [149]

(H w H~~, T*
w T

< T~ ), showing that the effect of intrinsic pinning vanishes at small tilting.
At lower fields and parallel fields, activation of individual kinks or bundles leads to a barrier

U
~

H~ J~ ~
at small currents [150]. In tilted fields, the 3D scaling (see Sect. 1.4) is obeyed,

and is replaced by the Bcos scaling in the quasi-2D case [lsl-152], with about no

dependence on the current direction in the layers [15?], as found in experiments [153]. To end

this brief enumeration, let us mention the calculation of quantum creep, due to quantum
tunneling of a vortex core across a defect. This phenomenon offers a new example of a

macroscopic quantum effect. It is possible below a field and current-dependent crossover

temperature, due to the very small core (or nucleus) dimension. The phenomenon was

theoretically studied for intrinsic pinning by the layers [154] as well as extrinsic pinning [155],

and some observations have been made in Y ;123 [170].

More experiments are required to study intrinsic pinning and decide whether it may be

important for applications. Let us stress again that the lock-in effect is not restricted to the

quasi-2D regime T
<

T*, but that, due to the peculiar core structure even above T* (Fig, 12), it

has been observed close to T~ in YBa~CU~O~[103]. More recently, lock-in and strong
anisotropy were observed in (BEDT-TTF)~Cu(SCN)~ [171, 172].

2.5 THERMAL FLUCTUATIONS IS THERE A KOSTERLITz-THOULESS TRANSITION ? The 2D

character of vortices in the low-temperature regime of Josephson-coupled layered superconduc-

tors soon raised to the possibility of a Kosterlitz-Thouless-Berezinskii transition [104-109], as

in 2D superfluids and thin amorphous superconducting films. This transition originates from

the unbinding of thermally excited vortex-antivortex pairs (Fig. 17a) and corresponds to the

real transition temperature, as measured by transport experiments. From the experimental
point of view in cuprates superconductors, evidences have been obtained in massive samples

or thin films [110-11.4] as well as in artificial Y : 123/Pr : 123 multilayers [lls]. They show

below T~~ the nonlinear characteristics V
~

I~~~' where a (T) exhibits an universal jump from 3

to I at T~~, due to current-induced unbinding of pairs (the universal jump is not confirmed in

all experiments). On the other hand, an exponential temfierature variation of the resistivity

appears above T~~ [156].

Theoretically, two objections have been raised against such a behaviour : first, in the case of

vanishing Josephson coupling f,, the problem is not strictly bidimensional, owing to the 3D

electromagnetic interactions of vortices (see Sect. 2.2). Secondly, the Josephson coupling

suppresses the logarithmic interactions of 2D vortices. Let us con~ider these two problems

successively.
If f,

=

0, a vortex and antivortex interact logarithmically in the same layer [83]. If one

neglects the (small) interlayer interaction, one obtains the Kosterlitz-Thouless temperature
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~ ~
~

i c+~ c~~ ~a>
~

~ ~

J

(b>

Fig. 17. -Thermal excitations of a weakly coupled layered superconductor a) pair of 2D vortex-

antivortex ; b) fluxon loop between two layers (the bold loop indicated the fluxon nucleus). Circulating

currents are indicated.

TKT
~

V0(TKT)/4, thUS

~p 2 ~
TKT

=

°

~

(44)
~

~ MO ~ab(TKT)

This already gives for Bi : 2212 (T~~ T~~) of order a few degrees. However, the screening

effect of the bath of thermally activated vortex-antivortex pairs in other layers must be

evaluated. This was done recently by a renormalization group analysis by Horovitz [116], and

by Scheidl and Hackenbroich [l17], who showed for a low density of excited pairs that a

modified KT transition takes place at T[~, with T)~
<

T~~
< T~~. Hence the tridimensional

screening of the logarithmic interaction is slightly stronger than in the usual 2D case.

One should remark that the simple result (44), together with the usual scaling relations [104-

- cn -

-

- + -

- cn -

-
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109], holds only in the case of a small vortex density. This density is controlled by the core

energy, itself of order (~P( d/4 wm~ Aj~)
a.

If, as seems to be the case in Y : 123/Pr : 123

multilayers with a few unit cells per Y : 123 layer, T~~ is much smaller than T~~, then the low

density approximation becomes questionable. An altemative to the usual KT scenario could be

the melting of a « vortex crystal », as proposed by Gabay and KapituInik [173].
Another approach of the problem consists in examining the stability against thermal

fluctuations of a single vortex line, made of 2D vortices aligned along the z-axis. This problem

was considered in references [118-121], and it comes out that the line
« evaporates »

due to

very short wavelength distortions, for which the elastic coefficient is much reduced compared

to a 3D superconductor. The temperature of evaporation T~~ was calculated [118], and tums

out to be exactly equal to T~~ in a simple layered system. Indeed, displacing one 2D vortex is

equivalent to adding to a straight vortex line a vortex-antivortex pair in a layer n, the antivortex

cancelling the vortex in the same layer (Fig. 17) [83, 86]. As shown in reference [117], at large
distances the added pair has zero interaction with the vortex line, so it unbinds at the same

temperature T~~ as in absence of the line.

The problem d the Josephson interaction is more difficult. Actually, when the vortex-

antivortex separation R exceeds the Josephson length A,, a pair of Josephson vortices develop
between them and the logarithmic interaction (36) (with opposite sign) is replaced by a linear

one [79, 80, 122] (Fig. 19). Thus, for very large anisotropy (r w I ), the KT scaling remains

valid at length scales shorter than A,. This upper limit can be raised by thermal fluctuations

partially washing out the phase (Josephson) coupling [80]. It results that KT transition is

possible in quasi-2D superconductors as Bi : 2212 or multilayers (A, w f~~ ). Its observation in

Y :123 which is weakly anisotropic is questionable but a smeared KT transition is still

possible [130]. However the situation is more complicated, since another kind of thermal

excitation exists, made of elementar§ Josephson vortex loops, or «
fluxons

»
situated between

two adjacent layers (Fig.17b). Such an excitation was considered by Friedel [122], Kor-

shunov [123] and Horovitz [116]. Considered alone, it leads to a transition temperature

T~ above which the Josephson coupling is renormalized to zero. Following Korshunov and

Horovitz, one has T~~<T~, so that TK~ would be irrelevant and the transition at

T~ has a 3D nature, with TK~ < T~ < T~. Below T~, f, is finite and one has no free 2D vortices,

while, above T~, f, is renormalized to zero and one has a gas of free 2D vortices. Only in the

case of exponentially small Josephson coupling T~ becomes close to T~T and the transition is of

Kosterlitz-Thouless type [116]. However, as explained previously, the concept of (bound) 2D

vortices retains an approximate validity at lenght scales smaller than the renormalized

A, (going to infinity at T~).

R>q
~

- ~n

- vortex wm mtivortex

Josephson nucleus

Fig. 19. Vortex and antivortex in the same layer, connected by two pieces of Josephson vortices of

opposite polarity.
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From the point of view of vortex evaporation at low inductions, in the case of finite

Josephson coupling, one also obtains a transition at T~~~T~T. Bulaevskii etal. have

calculated the magnetization, taking into account thermal fluctuations, and fitted experimental
data on Bi : 2212 samples [121]. Fischer [130] has also discussed the effect of an extemal field

on the KT transition.

The problem of the actual T~ in layered structures is of peculiar interest owing to the very
wide range of couplings realized in multilayers, for instance altemating Y : 123 (of thickness

do) and the semiconducting Pr :123 (of thickness d- d~) [8], or Bi12212 and the low-

T~ Bi : 2201 [10]. In the first case, substantial decrease of T~ was found as the thickness of the

PrBCO layer was increased [124]. The probable explanation is a Kosterlitz-type tran-

sition [116, 125, 156], but other reasons as hole filling by charge transfer [126] have been

proposed. A proximity effect, proposed in reference [144], seems unlikely due to the small

transverse coherence length compared to the interlayer spacing [11 5]. One striking result is the

saturation of T~ to a nonzero value when the superconducting layer separation (d-d~)
becomes very large (more than 100 h in Y : 123/Pr : 123) [127]. It is even believed that one

unit cell of YBCO is superconducting [128], with a transition temperature T~
=

T~T, I-e- the

saturation temperature would correspond to the real KT scenario [116]. In the general case, for

a SIS structure, one expects Ln ~f,
i

(d d~). In this case the theory of reference [116] is in

agreement with experiments. One must however take into account the finite (and often small)

number of layers in real multilayers, the total thickness being smaller than A~~. This may

strongly affect the results conceming the role of 3D screening in the KT transition.

2.6 ELASTIC PROPERTIES AND THE MELTING TRANSITION. Let us first recall the results for

truly 2D melting, valid for sufficiently thin films [129]. Melting is then characterized by a

vanishing shear coefficient C~~, due to unbinding of dislocation pairs, at a temperature
determined (in intermediate fields) by kB T(~

=
C~~ a~/4

~ where a~ is the lattice spacing, thus

~~ ~~
4

~/
8

~L~~~(~#)
~~~~

This temperature can be much smaller than the zero-field T~T. Above T(~, the positional order

is lost but the orientational order is preserved, one has then an hexatic phase, destroyed at

TH where an isotropic 2D vortex liquid is recovered.

The generalization to an infinite stack of layers (zero Josephson coupling) where the field is

normal to the layers follows the same line as the zero-field KT transition, by replacing 2D

vortex-antivortex pairs by dislocation pairs [79]. They interact logarithmically, and their

interaction is much weaker if they sit in different layers. The effect of 3D vortex interaction has

not yet been included, but one expects a quasi-2D melting temperature T$~~ close to

T(~.
In case of finite Josephson coupling the situation is more complicated. Elastic coefficients

may be calculated within the 3D anisotropic theory with large r values. However such a

continuum picture must fail for short wavelength distortions, especially along the z-axis. This

is obvious from expression (27) where in the limit r-co, A~-co, C44=0 unless

k~
=

0. For small l~ one can indeed modify the calculation of the elastic coefficients by
keeping the finite-difference nature of the interlayer couplings (see Eqs. (32, 33), but replacing
sin (~~ ~

~ ~ i
) by (~~ ~

~ ~ i
). Following Bulaevskii et al. [38] and Glazman,

Koshelev [131], this approximation preserves the discrete nature of the system and allows a

linear theory of the quasi-2D vortex lattice deformations.

Let us first consider the case
Hflc. The tilt coefficient is especially affected, for large values
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of k~. One has instead of (27)

~~~~~~
-

l
i + ~i~

l

+ <~ ~i~
+

~
lil~i~

II
Ln +

~l
~

Ln
~l

(46)

where I,
=

2 sin (k, d/2)/d, the second term represents the single vortex contribution, due

to Josephson coupling and the last term is due to magnetic couplings (R~ and R~ involve

complicated cutoffs) [131]. The replacement of k~ by i~ softens the tilt modulus for short scale

distortions along z, and the last term dominates for all k~ if r
~

A~~/d. I-e- for extreme

anisotropies (A,
~

A ~~). This formulation allows in principle to obtain the elastic coefficients

for any l~ but its validity may be questioned for local 2D vortex displacements, shorter than

A,, for which the dominant interactions are magnetic and are poorly described by a linear

theory. This problem deserves a more detailed analysis and is relevant for melting or depinning
in Bi : 2212 or multilayers. A more detailed analysis can be found in reference [130]. For

instance, the single line tilt modulus (H
=

H~j) is found to be equal to C(4[r~~
+ (d/A~~)~]

where C (4 is the isotropic tilt modulus. Thus it is dominated by the dipolar interactions (second

term in the bracket) when A,
~ A~~ (extreme anisotropies).

The results of the linear analysis can be summarized as follows [131] two distinct regimes

appear, determined by the crossover field

~Po A,
B~~ ~

2
~

Ln (47)
A tab

characterized by a vortex spacing of the order of A,.If B «B~~, the transverse elasticity is

dominated by long scales and the concept of flux lines remains valid, which means that

crossing of lines by exchange of 2D vortices is exceptional (Fig. 20a, b). The interlayer

coupling is strong, the melting transition is dominated by 3D fluctuations, as in the 3D London

description, and corresponds to vanishing of shear stiffness C~~, while the interlayer coupling,

thus the tilt coefficient C44, remains finite. T~(B) is given by equation (31) to logarithmic

accuracy. A second transition follows, corresponding to vanishing of C44, or in other terms of

interlayer coupling. This is the «evaporation» of vortex lines [121], at a temperature

T~~ w
T~(B~~/B )'~~

On the opposite, if B
~ B~~, one never reaches the 3D melting, since mutual crossing and

exchange dominate [67]. The concept of vortex line looses its meaning and one has 2D vortex

lattices in each layer, weakly coupled to each other. The transition temperature is due to 2D

fluctuations and is close to that of a single layer (Eq. (45)), with C44 and C~~ vanishing
simultaneously at T~. One passes from a 3D lattice at low temperatures to independent 2D

hexatic vortex lattices in each layer [131] (Fig. 20a-c j. Such a vortex state has been observed in

decoration experiments in Bi 2212 where B~~ is less than 0. lT [133]. One must remark that

even below T~, fluctuations quickly destroy long-range superconducting order along the field

direction.

The two limiting situations just described can be understood by defining above

T~ a «
coherence length

» L~ for a given vortex line, as the average distance on which a line of

2D vortices remains distinct from neighbouring ones, before exchanging 2D vortices with

them. Given the coefficients C44 and C~~, it can be written L~
~

ao(C44/C~~)~~~ The crossover

field B~~ can be interpreted as follows if B « B~~, L~ w d and vortex lines are well-defined. On

the other hand, if B ~B~~, L~ <
d and 2D vortices become uncorrelated in different layers.

For a field parallel to the layers, the situation involves a strong anisotropy at low

temperatures where out-of-plane vortex fluctuations are frozen by the core barrier. In the
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l~

T<TM

al

b) c)

Fig. 20. Melting of the vortex lattice in a quasi-2D superconductor. a) T
<

T~, well-defined lines of

2D vortices are ordered in a 3D lattice b) T~~ ~
T

~
T~ (case B

< B~~), liquid of 2D vortex lines c)

T
~

T~ (case B
~

B~~j, uncorrelated and melted lattices of 2D vortices in each layer.

remaining one-dimensional fluctuation problem, melting of the parallel vortex lattice might

lead at T~ to a two-dimensional superconducting phase with no coherence between layers, first

proposed by Efetov in large enough fields [82]. Mikheev and Kolomeisky [134] pointed out

that the Lindemann criterium cannot be used, and Korshunov [135], Korshunov and Larkin

[136], showed that melting is impossible. They find that the transition is of 3D nature, with

T~~
< T~ <

T~. On the other hand, Horovitz included excitation of 2D vortices. He found the

possibility of 2D phase transition in low enough fields, corresponding to an intervortex

separation f
m 8 d across the layers. Let us quote reference [138], where a smectic vortex state

is proposed, with zero interlayer shear modulus. Therefore, the phase diagram in parallel fields

is complicated, but experiments in progress on multilayers may settle the problem on the

experimental point of view.
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Conclusion.

This review tries to cover the main intrinsic properties of vortices in layered structures. It

focuses principally on the statics of vortices, the dynamics being fundamentally a function of

pinning by various defects. However, the role of intrinsic pinning by the layers was mentioned,

with the corresponding critical currents. Due to the limited length of the paper, many important

properties have not been discussed.

For instance, the nucleation of vortices at a surface (Bean-Livingston barriers [17, 162]) is

deeply influenced by the quasi-2D nature of vortices. For fields parallel to the layers it may

directly probe the Josephson core and the crossover at T* [163]. In normal fields, thermal

nucleation of 2D vortices provides an easy entrance of vortex lines [164]. Some experiments

show evidence for surface barriers in cuprates superconductors [165, 166].

More generally, boundary effects or sample shape can be strong perturbations and must be

taken into account in interpreting experiments, in order to probe true bulk properties of the

vortex lattice.

The dynamics of vortices in an ac field have been considered for instance by Brandt [167],

Coffey and Clem [168], Artemenko and Wonneberger [169]. The nonlocality of vortex

interactions, the anisotropy or quasi-2D character are here also essential features of the

response.
Little has been said about inertial effects of vortices in junctions, more exactly underdamped

motion of vortices in planar junctions separating superconducting layers [12, 146]. More

theoretical work, and also experiments in extremely good crystals or films are required to

explore this field, especially all the effects coming from the presence of a natural lattice of

extended junctions in these systems (see Ref. [171]).

Fluctuation effects, quite important in high-T~ superconductors, would deserve a full

separate discussion. While the case of an anisotropic 3D system can be treated with the help of

the scaling transformation (Sect.1.4), quasi-2D fluctuations and the crossover from

3D(Tm T~) to 2D(Tw T~) fluctuations needs a more elaborate analysis.
The LD model, exploited in section 2, oversimplifies the real layered structure. The

description of actual interlayer coupling and proximity effects has received some attention, but

needs more microscopic insight and can also lead to unexpected macroscopic effects. Also, a

microscopic description of the interlayer Josephson effect is useful to improve the

phenomenological models.

To summarize the main features of vortices in layered superconductors, one may say that

there is no universal definition of a 3D or 2D behaviour. In fact, provided the interlayer

coupling is weak enough, so that the parameter p is less than one, many dimensional

crossovers can be met, depending on the various physical properties concemed in experiments.

To each property one can associate a length scale Lj along the c-direction, and, due to

anisotropy, a length L$~
=

rLj along the layer direction. The behaviour will be quasi-3D (resp.

quasi-2D) if Lj
~

d or Lj~
~

A, (resp. Lj
<

d, or Lj~
<

A,). Let us give some examples.

The first land smallest) characteristic length is the GL coherence length, f~~
=

rf~. It gives
rise to the crossover temperature T*, which concems the critical field H~~, the core structure

(staircase vortices, lock-in, surface barrier for nucleation of a vortex parallel to the layers ), and

also the fluctuations above the H~~ line. It may also concern some pinning mechanisms when

the range of pinning potential is small and in case of strong pinning. The best example is

intrinsic pinning but some strong pinning centers may lead to a similar analysis. Note that even

in Y :123 which is mostly 3D, quasi-2D effects as the lock-in transition exist. The core

structure in the quasi-3D region T*
<

T
<

T~ still reflects the layered structure.

A second characteristic length is the London length A~~. If A~~ <
A,, the case of extreme
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anisotropy, nearly all relevant lengths in the layers will be smaller than A, and the

corresponding system properties are basically 2D. However, at very low temperatures, the

magnetic couplings correlate the volrtex structure in different layers and a celrtain 3D character

should be present, though difficult to probe experimentally. In tilted fields, the tilted

Abrikosov lattice would be replaced by a «
combined

»
lattice made of interpenetrating volrtex

lattices along the c- and layer directions. The thermodynamics of such extremely weakly
coupled layered structures are dominated by volrtex and fluxon fluctuations.

In the Abrikosov lattice of 2D volrtices, volrtex lines can still be defined below the melting
transition T~. Above T~, this is possible only on a correlation length L~, and if

L~ ~
d. The dimensional crossover in this case corresponds roughly to ao i

Aj.
The generalization of this rich phenomenology to quasi-one dimensional structures is an

impolrtant problem. Moreover, experiments on lower-T~ materials may better isolate the

contributions of anisotropy and short coherence length from those of high T~, leading to strong

fluctuations. From the experimental point of view, only volume probes of the volrtex state

could unambiguously and directly provide evidences for the unusual structure of the vortex

« matter »
in layered materials.
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