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Rdsumd.- Dans cet article nous explorons la possibilitd d'appliquer la mdthode des moments

pour ddterminer la distribution du champ dlectromagndtique dans des objets tridimensionnels

didlectriques, non-hndaire~, limitds et de formes arbitraires. La mdthode des moments a dtd

commundment employde pour les problbmes de diffusion lindaire. Nous commen~ons par une

formulation basde sur l'dquation intdgrale et nous ddrivons un systdme non-lindaire d'dquations

algdbriques qui nous permet d'obtenir une solution approximative pour les composantes

harmoniques du vecteur du champ dlectrique. Les rdsultats prdliminaires de quelques simulations

numdriques sont prdsentds.

Abstract. In this paper, we explore the possibility of applying the moment method to determine

the electromagnetic field distributions inside three-dimensional bounded nonlinear dielectric

objects of arbitrary shapes. The moment method has usually been employed to solve linear

scattering problems. We start with an integral equation formulation, and derive a nonlinear system

of algebraic equations that allows us to obtain an approximate solution for the harmonic vector

components of the electric field. Preliminary results of ~ome numerical simulations are reported.

1. Introduction.

This paper deals with the issue of nonlinear electromagnetics. In the past, many aspects of the

problem were addressed, from both the theoretical and practical points of view. Among the

various topics that may be included in the term nonlinear electromagnetics (for which the

reader can refer to classical books), the propagation of electromagnetic waves through
nonlinear materials has been extensively investigated [1-6]. However, the associated

phenomena have almost always been considered with reference to media of unbounded extent.

In this paper, we address the problem arising from assuming bounded dielectric objects, I.e. a

nonlinear direct scattering problem. In particular, we try to utilize a numerical technique that is

widely used (and discussed) to determine scattering solutions in the case of linear dielectric

bodies, I.e., the method of moments [7]. When applied to the scattering by linear dielectrics,
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this method allows one to reduce the integral equation(s) related to the formulation considered

(for example, the electric field integral equation (EFIE)) to a linear system of algebraic
equations that gives an approximate solution in the form of a series expansion for the unknown

quantities in terms of suitable basis functions. In the past, for linear objects, this procedure was

deeply discussed, mainly regarding the choice of the basis and weighting functions [8-15]. In

the present paper, we consider dielectric scatterers whose dielectric permittivities depend on

the internal electric fields. To simplify the addressed problem, the frequency dependence of

the dielectric permittivity is neglected. Starting from an integral equation formulation (whose

theoretical basis was first introduced in [16], with particular emphasis on slabs in rectangular
waveguides ), we derive a formal solution to the direct scattering problem, expressed as a series

solution in which the nonlinear effect is taken into account by means of equivalent sources. As

a result, we obtain a set of coupled integral equations, written in terms of the dyadic Green

function for free space. The application of the moment method to these equations yields a

nonlinear system of algebraic equations to be solved for the complex harmonic amplitudes of

the electric field vector. Preliminary numerical examples are discussed; they show the

capability of the method for predicting, although in the case of simple scatterers, the harmonic

production. The static field vector generated by the mixing of harmonic terms, due to the

nonlinearity, is also considered. The computational load inherent in the complex three-

dimensional full-vector nonlinear problem and in the moment method application is addressed

in the section dealing with numerical simulations.

2. Mathematical formulation.

Let us assume a time-periodic incident electric field vector, E~(r, t), illuminating a bounded

nonlinear dielectric object. The object occupies a three-dimensional space region n, and 2

denotes the closed surface containing n. The object is assumed to be nonmagnetic

(H (r)
= Ho, r ~ D, where Ho, stands for the magnetic permeability of vacuum and r indicates

the position vector), lossless, isotropic and inhomogeneous, the inhomogeneity being due to

the nonlinear nature of the dielectric permittivity, e(r), r ~ n. In particular, we assume

e(r, t)
=

e~[e) + el'(E(r, t))], r ~ n, where so is the dielectric constant of vacuum, and

e) and el'(E(r, t)) are the linear and nonlinear parts of the relative dielectric permittivity,
respectively. el'(E(r, t)) is assumed to depend on the total internal electric field, and, as an

isotropic medium is assumed, it depends only on the field amplitude. Moreover, the

propagation medium is assumed to be homogeneous and characterized by so and Ho (free
space). Under these assumptions, at each point r ~ n, the following Maxwell equations hold :

V x E(r, ti
= Ho DH(r, ti (li

V x H(r, t)
= so D [e) + el'(E(r, t))] E(r, t)) (2)

where D indicates a time derivative (D
=

&/&t ). For r ) n, we have :

V x E(r, t)
= Ho DH(r, t (31

V x H(r, t)
= so DE (r, t). (4)

The electromagnetic field fulfils Sommerfeld's radiation conditions [17], which impose that

the field should represent an outward propagating wave. By applying the equivalence principle
and denoting by E~(r, t and H~ (r, t the contributions to the electromagnetic field vectors due

to the presence of the scatterer (I,e., E~(r, t)
=

E(r, t) E~(r, t) and H~(r, t)
=

H(r, t )
H;(r, t ), where E~(r, t ) and H~(r, t indicate the e.m. field that exists everywhere without the
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scatterer), we obtain the equations

V x E~(r, t)
= Ho DH~(r, t (5)

V x H~(r, t)
= so DE~(r, t) + K(r, t) (6)

where K(r,t) stands for an equivalent current density distribution given by
K (r, t

= so D (e) I ) E (r, t ) + el'(E (r, t )) E(r, t )), which corresponds to the well-

known volume equivalent current density for direct scattering by linear dielectrics if

el'(r)
=

0. From the above equations, we can derive the wave equation :

V x V x E~(r, t + Fo p~
D~ E~(r, t)

= p ~
DK(r, t ). (7)

We expand E~ (r, t ) in Fourier series with a fundamental frequency
w

and a generic n-th term

indicated by f~(r)exponw it ). Substitution into (7) yields, for each harmonic component
[16]

V x V x f~(r) pi f~(r)
=

pj(ej I jf~(r i + e~(r)j +
pjw~(ri (8)

where e~(r) is the n-th harmonic term of the known periodic incident electric field vector,
pj(=n~w)

so Ho, and w~(r) is the n-th term of the series expansion of the product

el'(E(r, t))E(r,t). The mathematical form of the dependence of w~(rl on fj,(r) and

e~(r) can be detailed once the function el'(E(r,t)) is made explicit. The operator

el'(x) is assumed to be such as to provide a periodic function fulfilling the condition for the

Fourier expansion. Under the following radiation conditions (for each n-th term, n # 0) [17]

jr [f~(r) + e~(r II
~

#
~

(#~ real constant ) (9)

lim [r[ [nwi Hor x h~(r)+ p~[f,~(r)+ e~(r)]](
=

0 (10)
(r( -w

where h~ (r stands for the magnetic field vector corresponding to [f~ (r) + e~ (r ii, the following
integral relation can be written [18]

f,~(r)
=

pj(sj i )jf~(si + e~(sir r~jr/si ds pj w~(s) r~(r/s) ds (i i)

n n

where the terms that multiply r~(r/s) may be viewed as equivalent current densities.

r~(r/s) denotes the dyadic Green function for free space [19]

r~(r/s)
=

(4
gr

)- i y +
pj2 vv) ii r s

' exp(- jp~ jr s j11 (12)

and I is the unit dyadic. For n =

0 (static component), the following relations involving the

polarization vector, Po(r), can be written [20] :

P0(r)
=

E0(~i l )if0(r) + e0(rii + SO W0(ri

f0(~)
"

(4 "E01~ Y(~/SiiE0(~i l )if0(S) + e0(S)i + So W0(S)i rl dS +
('3)

(4 9TE01~
IT

(r/S v [PO ( El i jf0(S) + e0(S)j + F0'~0(S )j dS (14)

fl

where the terms V [~o(e( I )[fo(s) + eo(s)] + so wo(s)] and [so (e) I )[fo(s) + eo(s)] +

so wo(s)I.n can be viewed as charge densities. In relation (14), y(r/s) is given by
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y(r/s)
=

jr -s[~~ jr -s). Equations (11) and (14) constitute a set (infinite) of integral
equations for the harmonic vector components. The nonlinear effect is given by the vectors

wj, (r ), which depend on the mixing of the unknown vector components fo (r ). If we assume the

infinite series to be truncated at the N term, the functional relation w~(r)= L(f~(r),

ni =
I,

.,

N can be made explicit.
The system of integral equations given by relation (I I), written for n =

I,
...,

N, and by
relation (14), for n =

0, can be discretized by the riloment method [7]. This is accomplished by
expanding into basis functions all the Cartesian components of the unknown vectors

f~~(r) and w~(r). As a result, we obtain a set of unknown coefficients f(~ and M.(~,

p = .<, y, z, and h indicates the corresponding h-th basis function (h
=

I,
,

H ). In this paper,

we assume, for simplicity, subsectional piecewise constant basis functions. Such functions

were the subject of extensive investigations in the case of linear scattering [8, 11, 15]. In

particular, the effectiveness of using them was judged questionable [9], especially for the

block-model numerical prediction of the specific absorption rate in human bodies. Others

believed that a suitable choice of the discretization procedure, according to appropriate
criteria, might enable to obtain accurate solutions by using reduced computer resources [10].

Anyway, the approach developed in the present paper allows the use of other more

sophisticated basis functions. An analogous discussion could hold true for the testing
functions, which, in this paper, are Dirac delta functions.

Under the above assumptions, equations (14) and (I II result in the following system of

algebraic equations

H

ill>
~

(4 ")~ z z ((El ' iYtk + ~0k'qi +
"'tk)

X

t=I q=,,> =

X (~~k ~ / ~pq link ~ / ~
~ (~~k + ~ / ~

pq
~J>k + ~ / ~ ~°~/ ( l 5)

H H

I I Y~/k lilt + ~,ik ~j + I I #~/k "'$k
~ ~,ik P (l~)

I q , '>. ;
I q ,, ' =

where R~j
= rj~ rj (r~ being the position vector of the s-th subdomain of RI, Ai( denotes the

area of the portion of the extemal surface of the s-th subdomain that is orthogonal to the j axis

(whose unit vector is denoted by j), A( is the edge of the s-th subdomain parallel to j, and

&~ l, if p = q, else
&~~ =

0. The coefficients y()(j and #((j in expression (16) are given by

~~ ~~~°° ~°~~' ~~~~ ~ (rh/s)ds (I +1/3(e) I )) &j~ (j7)
~ ~

ii,
~~~ PQ '

#~/k
" j~W0 ~0 ~~ j~ ~npq(~h~~) ~~ ~~~ ~Pq ~hk ~~~~

,

where n~ denotes the s-th subdomain. The system of equations (15) and (16) turns out to be

nonlinear if the relation w,~ jr
=

(f~ (r), ni =
I,

...,

N ),
n =

I,
...,

N, is taken into account.

The scattering coefficients y((~ and wit, are calculated by applying the Van Bladel theory for

the principal value (« P V
»

related to the singularity of the Green function [2 Ii. By following

the procedure considered in [22], they can be approximated as :

Y~(k " j (4
"

) ~hk ~ ~n(~~ hilt [k~ ~hk ~ j~,i ~hk l ~pq

~ht ~ (~hk P )(~hk ~ ) [~~ ~hk ~
j ~ ~n ~hk ~ ~~P (~ j ~n ~hk ~ ' ~ ~~
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yllk
"

((2/3)(~l ' )l~ikn Ps + ' ) ~XP(~Jkn Ps) ii ii + (1/3)(El i )j)

x
&~~~

exp (- jk,~ R~j ) h
=

k (20)

#((~m j(4 aT)~~ [R~~[~~k~ An~([k([R~,[~ jk~[Rhk( -1] &~~

Rhk l~ (Rlik p)(Rhk'q)lk] Rhk1~ ~j 3 kn Rhk1 3 j) eXp (- jk,i Rj,, ) /l # k (21)

#((~
m

(2/3 jk,, p~ + I exp (- jk~ p~ 2
&~~ exp (- jk,, R~j h

=

k (22)

where An~ is the volume of the s-th subdomain and p~ =

[(3/4) aT~'An~]"~.
The solution of the above nonlinear system is obtained by Wolfe's method [23], which is a

generalization of the secant method for a single function of one variable. This allowed us to

obtain the preliminary results that are reported in the following section, and that seem to

demonstrate the validity of extending the moment method to the computation of the electric

field inside an arbitrarily shaped nonlinear dielectric object. Of course, due to the problem
complexity, we have in general to solve a nonlinear system with a large number of unknowns,

for which more suitable solution subroutines should be devised. For the authors, this represent
the goal of future work.

3. Numerical eXamples.

In order to implement the mathematical model presented in the previous section, the nonlinear

relationship between el'(x and E (r, t must first be specified. In this paper, we assume a Kerr-

like nonlinearity, and limit the power series to the second order. As a consequence,
el'(E(r, t ))

=

7JE~(r, t ), where E(r, t stands for the'amplitude of the vector E(r, t ). In this

case, we can write

el'(E(r, t))
=

~j q~(r) exponw t) (23)

where q,~(r) is given by

qn (r)
=

jj jj
£Y jj jf~ (r + e~

(r )j jj (r) + e~
(r)j (24)

where a)j
=

I, if + j
= n a)j

=

0, otherwise. At this point, the nth nonlinear vector

component w,~(r) is given by

Wn(r)
=

jj jj £Yj q, (r)jf~ (r) + e~
(r11 (25)

Simple scattering objects were used for initial tests. A parallelepiped, whose dimensions are

specified in figure I, was coiisidered for the first example (A~
=

2 aTkj~ stands for the

wavelength of the fundamental frequency vi). We assumed e)
=

2.0. The linear part of the

relative dielectric permittivity was assumed to be homogeneous, even though, after minor

modifications, the method could also be used for inhomogeneous distributions. Figure I gives

the values of the amplitudes of the various harmonic vector components generated by the

nonlinearity, for different values of the index 7J. The static field in
=

0 was also considered.

The scatterer was illuminated by an incident electric field represented by two uniform unit

plane waves with propagation constants ki and k~, with k~
=

2 ki (the approach can be applied

only if the ratio k~/2 k~ is an integer). The incident waves propagate in the z direction with the

electric field polarized in the y direction. The values presented in figure I were calculated at



92 JOURNAL DE PHYSIQUE III N°

y

,

P

x

10° [
~ ~~j~~

Do-1

] 10"3

~

io-4

10'S

~.~l ~l

O.001

~o.6

O
~

O
2 3 4 S

6

Fig. I. Nonlinear dielectric parallelepiped IA 1/2 B 1/2 C
=

A ,/30) and coefficients f(t

versus the nonlinear parameter ~, for Fj 2.0, N 6 X 40.

point P. In this case, we assumed N
=

6, M
=

4, for a number of complex unknowns equal to

78 for 78 equations. The Wolfe subroutine was started by generating random solutions for the

unknown coefficients of the harmonic vector components. Such solutions were given by
independent sequences (for the real and imaginary parts) of stochastic variables uniformly
distributed between I and I. This choice was made in accordance with the values of the

amplitude of the incident electric field vector. Of course, in the case of weak nonlinearities, if

one uses as starting solutions those obtained by applying the moment method to solve the

problem related related to the linear part of the dielectric permittivity, one can expect a faster

convergence. We assumed that the solution would be reached when the values obtained at a

given step, and substituted into the resulting non-linear system, give rise to a residual that, in

norm, was less than a fixed threshold (in all the simulations reported, this threshold was

assumed to be equal to 10~~). If, after a fixed number, X, of iterations, the desired accuracy

had not been achieved, for example, because a local minimum had been reached, the algorithm

was made to restart, considering other initial solutions. It should be noted that this procedure
has been used only for the simple cases considered in this work however, when one faces a

multiple solution problem, only physical constraints may lead to the right solution. For more
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complex cases, the authors are currently studying the application of algorithms for global
optimization (e.g., simulated annealing), which, if correctly implemented, seem able to reach

global minima.

Figure 2 shows the plots of the numbers of trials and iterations vs. different values of 7J. In

this case, we assumed e)
=

2.0 and X
=

40. The same figure also gives the numbers of trials

and iterations vs. different values of the linear part of the dielectric permittivity, for

7J =

0.I and X
=

40. One can see that, as the values of e) increase, the solution of the

nonlinear system becomes easier. This is perhaps to be ascribed to the fact that nonlinear

phenomena are blinded when the linear part of the dielectric permittivity becomes large.
Figure 3 gives the values of the coefficients f(j (, n

=

0, N, N
=

6, computed at point P

40

m
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~~
~~~~~~~~

m

~f ,,
, , ',

-
16 ~' '"15 ',1 fl~

_ , ',
,1(

8 /"~ Tfl&($
~ "".,~-, ,' ,',,J

_,I= -' '.

e( 2~0 4~0 6,0 8,0 lo, o

q ' 0,0 0,00ol 0,01 0.I

Fig. 2. Numbers of trials and iterations versus the ~ values, for e) 2.0, N 6, X
=

40, and versus

the El values, for ~ =

0.I, N 6, X
=

40.
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under the same conditions as previously specified, for different values of the linear part of the

dielectric permittivity and for ~ =

0.I. The effect of the truncation of the series for the

harmonic vector components is displayed in figure 4, with reference to the scatterer shown in

the upper right portion of the figure. The figure gives the numbers of trials and iterations, for

X
=

25. Finally, as an example, figure 5 gives the norm of the residual error (obtained at each

iteration when substituting the obtained solution into the resulting nonlinear system) versus the

number of iterations (for X
=

40).

25

Number of trials

~° Number of iterations

A

,
'15

t
B

',

,
/

J

5 ,,'

0

""'""~

2 3 4 5 6 7 8

Higher order harmonic
,

Fig. 4. Numbers of trials and iterations for different values of N (hi ghesi-order harmonic component).
In this case : ~ 0.01, El 2.0, N 5, X 25 (A 2 B 2 C A j/lsl.

io3

~~2

~~1
8

~j
ioli

lo~~

~i _~
ii

~°~-3

10~~

0

Number of Iterations

Fig. 5. Residual errors (in norm) >,ersus number of iterations.
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From a computational point of view, it should be noted that the classic moment method for

dielectrics requires a computer time proportional to (3 H )~ and a storage memory proportional

to (3 H )~. The extension of this method to a nonlinear case, as proposed in this paper, requires
that, for each trial, a matrix inversion (which is by far the heaviest part of the computation) be

performed. So, for each trial, the computer time is proportional to (3 NH + 3 H + 1)~ (the final

unit increment is due to the Wolfe procedure). The computer time required for each iteration is

very short, like the time required by the matrix formation (random numbers). Moreover, as the

number of unknowns increases, the time required to compute the equation coefficients

becomes significant (independently of the numbers of trials and iterations). This time is similar

to that taken by the computation of the Green matrix elements for the moment method solution

of linear direct scattering.
Other simulations were performed. Figure 6 provides the values of the coefficients

f(~ ), n =

0,
.,

N, N
=

4, for the scatterer schematically represented in the upper left portion

of the figure. The figure gives the values of such coefficients at points P, Q, and R, for

~ =

0.01, e)
=

2.0, and X
=

40. The incident electric field is the same as in the example
presented in figure I, but, in this case, the amplitude of the plane wave

)ej), with the

propagation constant k~, was assumed to range between 1.0 (V/m) and 0.4 (V/m). Finally, we

would like to point out that the proposed method is able to compute the approximate
distribution of the scattered electric field vector even outside a nonlinear dielectric object. In

particular, for r f fl, the harmonic vector components of the scattered electric field vector can

y

I I I I I ~

~
,

', 4 e d ~ O e

" II II Il II 11
II

it I ~" q I

~ m ~ m

10° H--- ~

l3Q

x ~~

~~
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& ii I Q d d
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~ id d

1e3
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Fig. 6. Nonlinear scatterer (A 1/2 B C
=

D E A j/30) and coefficients f],~ for different

values of e~ ]. In this case ~ =

0.01, F) 2.0, N
=

4, X
=

25.
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be computed by numerically calculating the following integrals

pj(e) I )[f~ (s + e~(s)] r~(r/s) ds
lflj

w~(s r~.(r/s ds
=

f~(r n =

I,
,

N
n

n

(26)

(4 STFO)~ Y(r/S)180( Pi l )ifo(S) + eo(S)i + Eo Wo(S)i n dS

(4 nr eo)~ y (r/s V ieo(ej I )ifo(s) + eo(s)j + eo wo (s)j ds
=

fo(r) n =

0 (27)
n

for which integrand functions are approximately known. As an example of this computation,
figure 7 gives the values of the time-dependent total electric field ~ component) calculated at

000 points along the propagation axis (forward scattering), for 0
~ z ~

A
j.

In this case, we

considered the scatterer in figure I, for ~ =

0.I, ej
=

2.0, X
=

40, N
=

6, H
=

4,

)e,
=

)e~)
=

1.0 (V/m), a~ =
(I -1)/5 vi.

o-i

o
d

,1

~

II a~
~

x 1

0.0

6

I a3
S «4
vi

-0.1
0 0.2 0A 0.6 0.8 I

zo~ + Kim

Fig. 7.-Extemal scattered electric field (y-component) along the propagation axis (z-axis), for

~ =
0.I, El

=

2.0, N
=

6, X
=

40, a, =
(I -1)/5 v,.

4. Conclusions.

The classic moment method, extensively used to solve the direct scattering problem for linear

dielectric objects, has been applied in this paper to determine the harmonic components of the

electric field vectors inside three-dimensional bounded scatterers whose dielectric permittivi-

ties depended on the internal electric fields. This has been accomplished by starting from a

formal solution of the nonlinear scattering problem, using an integral-equation formalism in

which the nonlinear effect is taken into account on the basis of the distributions of equivalent

current densities. The application of the moment method has reduced the problem to the

solution of a nonlinear system of algebraic equations. In the case of simple scatterers, the

proposed method has proved able to predict the generation of the harmonic terms. Future work

will be aimed at considering more realistic scattering objects. To this end, more efficient

subroutines for finding adequate solutions of nonlinear systems with a large number of

unknowns will have to be devised. Although results are still preliminary, they are interesting
and seem to indicate the possibility of successfully applying the moment method to nonlinear
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objects of arbitrary shapes, for which nonnumerical solutions cannot be adopted. Therefore, it

will be important to establish the best operating conditions in terms of numbers and kinds of

testing and weighting functions. This in order to study more efficient versions of the moment

method from a computational point of view.
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