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R4sumk.-Nous utilisons un espace des interactions dot£ d'une dimension fractionnaire pour
calculer simplement l'dnergie de liaison des excitons confin£s dans [es puits quantiques,
superrdseaux et fils quantiques. Une formulation trks simple donne cette £nergie en fonction de la

dimensionalitd non-entibre de l'environnement physique de la paire £lectron-trou. Le problkme
revient alors h ddterminer cette dimensionalitd a, dont nous montrons qu une expression peut dtre

ddduite des caractdristiques de la microstructure.
a

varie contin0ment de 3 (mat£riau massifJ h 2

pour un puits quantique ou un superrdseau, et de 3 h pour un fit quantique, selon le confinement

du mouvement des porteurs. Les comparaisons avec d'autres calculs th£oriques et donndes

expdrimentales sont toujours tr~s convenables, et cette thdorie ddcrit d'une fagon cohdrente les

limites tridimensionnelles du puits quantique (L~
-

0 et L~
-

cc) et toute la gamme des p£riodes
du superr£seau. Un tel modble, qui ne vise pas h concurrencer [es calculs variationnels trbs pr£cis
mais souvent complexes, pr£sente, de par sa souplesse, un grand intdrdt pour les spectroscopistes.

Abstract. An interaction space with a fractionnal dimension is used to calculate in a simple way

the binding energies of excitons confined in quantum wells, superlattices and quantum well wires.

A very simple formulation provides this energy iersus the non-integer dimensionality of the

physical environment of the electron-hole pair. The problem then comes to determining the

dimensionality a. We show that the latter can be expressed from the characteristics of the

microstructure.
a

continuously varies from 3 (bulk material) to 2 for quantum wells and

superlattices, and from 3 to for quantum well wires. Quite a fair agreement is obtained with other

theoretical calculations and experimental data, and this model coherently describes both three-

dimensional limiting cases for quantum wells (L~
-

0 and L~
-

ccl and the whole range of periods-
of the superlattice. Such a simple model presents a great interest for spectroscopists though it does

not aim to compete with accurate but often tedious variational calculations.

1. Introduction.

Optical properties of quantum wells (QW'S), superlattices (SL'S) or quantum-well wires

(QWW'S) generally involve quantum-confined excitons,- on which a great deal of interest was

laid, during the past few years. More particularly, many theoretical works dealt with the
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calculation of excitonic binding energies and oscillator strengths in such systems, using

variational approaches of increasing accuracy and complexity [1, 16]. Depending on the

authors, different shapes were chosen for the trial wave functions, and the energy-minimis-

ation procedures were either purely numerical [1-13, 15, 16] or analytical [14], in some

favourable but limited cases. As a simplification, Leavitt and Little [17] and Campi and

Villavecchia [18] recently proposed useful scaling laws which are best-fittings to the results of

variational calculations. In this paper, we present a completely different approach of excitons

in systems with reduced dimensionality. This approach is similar to the ones previously

developed in the case of strongly anisotropic media [19-23j, such as lamellar or chainlike

semiconductors. Our model is based on the fact that, e-g- in a QW, the relative motion of

bound electron-hole pairs is neither purely tridimensional (3D) nor bidimensional (2D), but

rather «-dimensional (2
1 ~x

13 [23-26]. This motion can thus be considered as isotropic in

an ~XD space rather than anisotropic in a 3D space. Although the mathematical treatment of this

situation is quite tedious, it leads to a very convenient formulation of the exciton

wavefunctions, oscillator strengths and energy levels [19, 23]. The latter can be expressed

Eo
~>'

" 3 2
~~~

[n +
"

2

where Eu is the 3D effective Rydberg. Setting
~x =

3, 2 or allows to obtain the well-known

results for the integer-dimensional cases. Of course, the present formalism is only relevant

when an anisotropic medium surrounds the exciton, and not when a perturbating potential
breaks its internal structure, as could occur in type II systems, where electrons and holes are

confined in two different materials. Following this formalism, the value of the binding energy

of excitons can be easily extracted from the direct measurement of the splitting between s and

2s levels [25]. We shall show below that an accurate description of confined excitons is

obtained by using a model of the
«

compression
»

undergone by the unit vector along the

quantization axis of the QW or SL, or by the two unit vectors in the plane perpendicular to the

axis of a linear QWW.

2. Quantum wells.

In quantum wells, the projection of the relative motion of the bound electron-hole pair along
the growth axis is spatially reduced, if compared to the isotropic 3D case. From the

consideration of the respective extentions of the electron-hole pair in a QW and in a 3D

exciton, we can infer an expression for the anisotropy parameter ~x.
Details on the way to

obtain a proper variation law have been given elsewhere [25]. A valuable one is the following :

~x =

3 e
~~~~ ~~' (2)

where ao is the effective 3D Bohr radius and L$
=

L~ + 2/k~ the
«

effective width
»

of the

quantum well, I-e- the real width L~ plus the spreading of the carriers into the barriers at both

sides of the well. By a simple envelope function calculation of the electron and hole confined

states in the quantum well, we can estimate this spreading as twice the quantity
kp

=

kj~' + kj~', t~~ and k~~ being the
« wave vectors »

characteristic of the vanishing of

electrons and holes respectively in the barriers. Of course, this simple description is not

accurate enough to account for some extreme situations, such as the so-called marginally-
confined excitons, where one type of carriers is confined within a very shallow potential well.

In such a case, a more microscopic insight into the electron-hole relative motion is necessary to

describe its real spatial extension. Figure shows the good agreement obtained between this
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Fig. I. Dimen~ionless exciton binding energy i,eisu.~ the dimensionless well width, for an infinitely
deep quantum well. The dashed curve ) was taken from Bauard et al. [I ], while the solid curve (2) was

obtained by using equations (I) and (2).

model and that of Bastard [I], for infinitely deep quantum wells. For finite QW'S, we obtain

the convergence towards a unique 3D value for light- and heavy-hole exciton binding energies

on both limits of infinitely wide and vanishingly narrow quantum wells. The accuracy can even

be improved by inclusion of additional ingredients [25] (band nonparabolicities, dielectric

constant mismatch between host materials.. ). In any case, our results compare very

favourably to the ones of other calculations and to experimental findings, as shown in figures 2

and 3~

3. Superlattices.

A superlattice can be considered as an effective semiconductor with a strongly anisotropic

Brillouin zone, which one has the opportunity to vary at will, since the width of this zone along

the growth axis is inversely proportional to the period. When the width of the Brillouin zone is

large, comparing with liar, the Coulombic potential is slowly varying relatively to the period

of the superlattice. This corresponds to the criterion for validity of the Wannier approximation.
On the other hand, when the wells are decoupled, this criterion is no longer fulfilled, and

another type of treatment is necessary. In such- a «
Wannier-like

»
regime, the dimensionality

~x

can be expressed

a =3- (1-P) (3)

where p is a mass-anisotropy parameter defined as p
=

po=/p=. po= and p~ are the on-axis

reduced effective masses in the 3D crystal and in the superlattice, respectively. The latter is

obtained by calculating the curvatures of the electron and hole first minibands at the zone

center. ~x
varies from 3 for periods near- zero. (p

-
I ), to 2 when the period (or simply the

barrier) becomes larger, I-e- when p= becomes infinite (p
-

0 ). This means that the~dispersPon
relations of the superlattice run from a 3D to a 2D situation. From equation l'l), ihe binding

energy should consequently vary from one time to four times the effective 3D,Rydberg. Of

course, this latter value is not reasonable, since equation (3). only traces the 1ilter-Well
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Fig. 2. -Binding energies of the first light-hole (el-lhl) and first heavy-hole (el-hhl) excitons in a

GaAs-Ga~ _,Al,As quantum well (.r
=

0.37 ), 1,eisus the well width. Dashed curves were obtained by
Priester et al. [4], while solid curves result from equations ( ) and (2), using exactly the same hypotheses

and numerical parameters. Note that the relative energy position of el-lhl and el-hhl are the same in both

models. Moreover, the maximum values and the corresponding well widths are also the same.
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Fig. 3. -Comparison of calculated and measured energy differences E~,-Ej, for GaAs-Gaj _,Al,As
quantum wells. The calculation was performed with,r 0.35 and many physical ingredients were

included (conduction band nonparabolicity, effective-mass and dielectric constant mismatch). The basic

parameters are the same as in reference [16]. Heavy-hole excitons are represented by full figures and

solid curve, while open figures and dashed curve were u~ed for light-hole excitons.
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coupling, which is only partly responsible for the anisotropy of the Coulombic interaction. In

other words, when the quantum wells become decoupled, we are far away from
«

Wannier-

like
»

conditions. In fact, for large periods or wide barriers, the bound electron-hole pair is now

contained, as a whole, within a given well, I-e- within one elementary cell of the SL. In such a

«
Frenkel-like

»
regime, a formulation of ~x closer to the one of equation (2) should be more

appropriate. In a realistic description, both inter-well and intra-well effects should be mixed, as

in the following expression :

a =

3 (1 p ) e~ ~°~ ~~' (4)

Figure 4 shows the Rydberg energies obtained by using equation (4) and equation (I ), for the

case of symmetrical GaAs-Gaj _,Al~As superlattices,
i,eisus the period. These results are

compared to the ones of variational calculations and to available experimental data. The

overall agreement of the latter with our calculation is very good. For wide periods, where the

intra-well effect is dominant (« Frenkel-like
»

excitons), our result nicely fits the one of

Dignam and Sipe [13]. Both models also correctly describe the threshold of appearance of the

inter-well coupling (around 15 nm of period) and the corresponding onset, but the variational

one gives a vanishing binding energy for very small periods. Conversely, the variational-

analytical model of Pereira and Galbraith [14] provides good values only for periods smaller

than lo nm, where the Wannier approximation stands. The variational treatment proposed by
Chomette et al. [9], using a rather simple trial function, exhibits the boundary between the two

extreme regimes both in-plane and on-axis extension parameters present a discontinuity at

this point. Our heuristic approach allows us to avoid such a snag and gives good effective

Rydbergs over the whole range of periods.
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Fig. 4. Exciton binding energies in symmetrical GaAs-Gajj7Alj,,As superlattices, ieisu.~ the period.

Dashed lines show the two extreme situations as calculated by Dignam et al. [13] and Pereira et al. [14].

while a solid line displays the result of using equations II ) and (4). We used here the parameters of

reference [13]. Rectangles represent experimental data obtained by Chomette et al. [9] i'ia temperature-

dependent photoluminescence excitation spectroscopy.
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4. Quantum well wires.

In linear QWW'S, electrons and holes are confined along a given plane, while a single
direction of free propagation is left,

~x
should thus vary continuously from 3 to I. By simple

analogy with equation (2), we can propose the following expressions for the dimensionality of

the motion of the bound electron-hole pair

~x =

3 e~ ~~~~ "~' e~ ~~~~ "" (5a)

a =

3 2, e~ ~'~~~" (5b)

Equation (5a) stands for a rectangular QWW of lateral effective widths L~* and L,*, while

equation (5b) describes the case of a cylindrical QWW of effective diameter D*. The

definition for effective sizes is the same as above. For instance, in a finite-potential
(Vo) cylindrical QWW with radius po, the envelope function for a carrier is given by [32]

J~ and K~ are the essel function
and modified

Bessel function
(Hankel function). m is a

rotation
quantum number, k~ and k~ are the magnitudes of the

in-plane
wave vectors inside and

outside the wire, respectively and
k= is the quantum umber for the

D *
=

2 po + 2/k~. (7)

Figure 5 shows a comparison between binding energies calculated i,emus the QWW radius.

The solid curve was obtained by using equations (5b) and (7), while the dashed curve was

taken from reference [10]. A very good agreement is found between both results.
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Fig. 5. Heavy-hole exciton binding energy (in units of the 3D Rydberg) in GaAs-Gao ~Al~, jAs quantum
well wires, >,ersu.~ the wire radius (in units of the 3D Bohr radius).'The dashed line shows the result

obtained by Brown and Spector [10], by a variational calculation, while-the solid -curve corre[ponds to

equations II ), (sbj and (7).
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5. Conclusion.

We have presented a heuristic description of the properties of excitons confined in QW'S, SL'S
and QWW'S, based on a frictional-dimensional interaction space. Simplicity and flexibility are

the principal qualities of this method. A very good agreement is obtained with the results of
variational theories and with experimental findings. A better accuracy can even be obtained

from microscopic considerations of realistic spatial extensions of the electron-hole relative
motions in the quantum-confined system and the three-dimensional exciton. This is the

purpose of a forthcoming paper.
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