
HAL Id: jpa-00248977
https://hal.science/jpa-00248977v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An h-formulation for the computation of magnetostatic
fields. Implementation by combining a finite element

method and a boundary element method
B. Bandelier, F. Rioux-Damidau, Christian Daveau

To cite this version:
B. Bandelier, F. Rioux-Damidau, Christian Daveau. An h-formulation for the computation of mag-
netostatic fields. Implementation by combining a finite element method and a boundary element
method. Journal de Physique III, 1993, 3 (5), pp.995-1004. �10.1051/jp3:1993177�. �jpa-00248977�

https://hal.science/jpa-00248977v1
https://hal.archives-ouvertes.fr


J. Phys. III France 3 (1993) 995-1004 MAY 19931 PAGE 995

Oassification

Physics Abstracts

41.90 02.60

An h-formulation for the computation of magnetostatic fields.
Implementation by combining a finite element method and a
boundary element method.

B. Bandelier (~,~), C. Daveau (~) and F. llioux-Damidau (~)

(~ Institut d'Electronique Fondarnentale, Universit4s Paris VI et XI, URA CNRS 022, Bit 220,
91405 Orsay, France

(~) Laboratoire de Modkles de Physique Math£matique~ Universit£ Frangois Rabelais, Parc

Gra~ldmont~ 37200 Tours, Fra~lce

(llecHved 27 November 1993, revised 1 February1993, accepted 8 February 1993)

Abstract. A new formulation of magnetostatics is given: it uses the magnetic field h as

variable and a penalty technique. For its discretization, a finite element method inside the

magnetic materials is combined with a boundary integral method which describes the exterior

domain. Numerical tests are presented. The value to be chosen for the penalty parameter and

a
criterion of validity of the computation are given.

1. Introduction.

When modelling eddy currents problems, the condition div b
=

0 is generally satisfied
as a

consequence of Faraday's law: curl
e =

-0b/0t. It has not to be explicitly written.

The situation is different with magnetostatic problems. The two relations curl h
=

j and

div b
=

0 with b
=

~([h() h are to be satisfied together and this question is usually solved by
introducing scalar

or vector potentials [1-3]. The advantage of a formulation working directly
with the magnetic field is to avoid the loss of precision due to differentiation. Such a formulation

was proposed by Kikuchi for the cases where the permeability ~ was constant and where

boundary conditions were known [4]. An analog mixed method using the magnetic induction

and the scalar potential as unknown was established by Stenberg and Trouv4. It uses also

boundary conditions [5]. On the other hand, Bossavit studied the possibility of applying to

magnetostatics the h-formulation of magnetodynamics in IR~ by making the frequency tend to

2ero (6j.
We present here a variational formulation using h as variable and suited to nonlinear ma-

terials. It is obtained from
a m&ed problem

on which a penalty is applied. Moreover, we

do not prescribe arbitrary boundary conditions on the boundary of the chosen computation
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Fig-I- The system.

domain, but we
describe the problem of the infinite exterior domain by

an
integral method.

For the numerical computationj the field is discretized with nodal variables inside the magnetic
materials and with edge variables on the boundary.

2. Variational formulation.

We consider a finite domain Q with magnetic materials, r is its boundary and Q~ is its com-

plement in llt~. Q is simply connected.

The permeability ~(~, y~ z) depends only on the point (~~ y, z) and not on (h(. The nonlin-

earity of the materials can be taken into account with iterations. The current density j(~, yj z)
does not depend on the time; its bounded support lies in Q~ (j

=
0 in Q) and its value is

known. This current creates a source field h~ in the whole space when Q is absent, such that

curl h~
=

j and div h~
=

0. The total magnetic field h verifies curl h
=

j or
curl(h h~)

=
0

in Jlt~.

The following functional spaces are introduced:

Ho(div°, Q)
=

(h e (L~(Q))~, div h
=

0j h n =
0 on

r)

H(CUr'ifll~)
=

lh E lL~(fll~)l~i Curl h E lL~lM~)l~l

H(curl°j Jlt~)
=

(h E (L~(Jlt~))~j curl h
=

0)

Ho
"

(h E H(curl~Jlt~)j curl h
=

0 in Q~)

H;
=

(h E H(curl, M~), curl h
=

j in Q~)

The space Ho is
an

Hilbert space for the scalar product:

(h, h')
=

/
h-h' +

/
curl h-curl h'

Ha n

2,I FORMULATION IN
H(curl°,Jlt~). Let us now

introduce the reaction magnetic field
I

=
h h~. With these notations, the equations of the magnetostatic problem

are:

divl~(I + h~)1 =
0 in %t~ (i)

curl I
=

0 'in llt~ (2)
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where h~ is given (or obtained from j by Biot and Savart's law).
If I is looked for in the space H(curl°,IR~), it is a strong solution of (2). We can write a

weak form of (1):

din(pi) ~a'= din(ph~) ~a' V~a' E W~(IR~) (3)~3 ~3

where W~(IR~) is the closure of C?(llt~) with -norm ((grad~a(( La.

After integration by parts in (3), it follows:

lpi
grad ~J' =

/
ph~ grad ~J' V~J' e W~(IR~)

n3 n3

So, taking into account that H(curl°, IR~) =
grad W~(IR~), I is solution of the following prob-

lem:

Problem I: given h~ E (L~(IR~))~, find I
E H(curl°, IR~) such that:

lpi
h'

=

/
ph~ h' Vh' E H(curl°, IR~)

m3 «3

Conversely, if I is solution of problem 1, it can be shown easily that it satisfies equations (1)
and (2).

Existence and uniqueness of the solution of problem can be classically proved. We have

obviously, as p > po: /
~

P~'~ > mill(P)((~((jT(rot°,n3)
n

The coerciveness condition is thus satisfied. Lax-Milgram's theorem can be applied [7], since

h~ E (L~(IR~))~ and the mapping

h'-
/

ph~ h'

n3

is linear and continuous.

Another way to show that is to remark that the solution I of problem is the only element

of H(curl°, IR~) which minimizes the quadratic coenergy functional

J(h')
=

/
p(h~ + h')~

R3

This solution exists in H(curl°, llt~) which is a closed subspace of (L~(IR~))~ [8].

2.2 MIXED FORMULATION. However, we want to keep the magnetic field alone as unknown,
and it is not easy to build curl-free vector fields without introducing any scalar potential. To

avoid this,
we

shall write
a

weak form of (2). From (1), we deduce that there exists
a vector

potential
a E (W~(IR~))~ such that:

p(h + h~)
=

curl
a

(4)

where
a

is unique if the gauge diva
=

0 is chosen. Multiplying (4) by a test function h' E Ho

integrating over IR~, and then integrating by parts, it becomes:

lpi
h'-

/
a

curl h'
=

/
ph~ h' Vh' E Ho (5)

na n n3
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(2) can
also be transformed into:

fcurl I a'
=

0 Va' e Ho(div°,Q) (6)
n

Thus, we obtain the new following problem:

Problem 2: given j or h~ E (L~(lll~))~, find (I,a) E Ho x Ho(din°,Q), solution of (5)
and (6).

Problem 2 is a classical mixed formulation [7].

Conversely, let (I,a) e Ho x Ho(din°,Q) be a solution of problem 2. Q being simply
connected, any vector u

of (L2(Q))~
can

be written as

u = a + grad~J

where
a e Ho(din°,Q). As I e Ho, then

fcurl I .grad~J
=

0

n

So, we can replace (6) by /
curl I u'

=
0 Vu' e (L2(Q))~

n

Therefore if (6) holds, then curl I
=

0 in Q. But I
e Ho- Thus curl I

=
0 in IR~.

The vector potential a, solution of problem 2, is defined only in Q. But it can be extended

to Q~ by setting in Q~ curl a =
po(I + h~) and din a =

0

The second integral of (5) can be taken in IR~ since curl h'
=

0 in Q~. Integrating by parts,

we obtain

pi h' curl a
h'

=

/
ph~ h' Vh' e Ho/n3 /n3

n3

Integrating again by parts and taking h' in H(curl°,IR~), it follows

lpi
h'

=

/
~h~ h' Vh' e H(curl°, lll~)

R3 R3

Thus, I is solution of problem 1.

Problem and problem 2 are then equivalent. The vector potential a, solution of problem 2,
is unique as it is looked for in Ho(din°,Q).

3. Penalty formulation.

In order to solve more easily problem 2 and to reduce the number of unknowns, we shall perturb
it [4, 7]. Let us call

r > 0
a

small parameter and replace (6) by:

fcurlir a'+
r ar

a'
=

0 Va' E Ho(din°, Q) (7)
n

This equation gives ar =
curl ir in Q, which

on
putting back in (5), permits us to write

r
what we shall call:
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Problem 3: for j or h~ E (L2(lll~))~ given, find ir
e Ho such that:

/ pit h'+ /
curl ir curl h'

=

/
ph~ h' Vh' e Ho (8)

R3 T n R3

Existence and uniqueness of problem 3 can be proved by Lax-Milgram's theorem since the

bilinear form

a(h, h')
=

ph h'+ curl h curl h'
R3

Tin

is coercive on Ho> and since the right hand of (8) is a
linear continuous functional.

It can be shown that the solution ir of problem 3 tends to the solution of problem 2 when
r

tends to 0 [7]. In problem 3, the unknown ar appears no more but its value can be determined,
if desired.

One can note the analogy between the formulation (8) and the one implemented in TRIFOU

[9] for magnetodynamics, when the magnetic fields and the currents vary sinusoidally at the

frequency w and when the domain Q has a resistivity p:

iw
/ pi h'+ p

/
curl I curl h'

=

/
ph~ h' Vh' E Ho (9)

n3 n n3

This formulation (9) has been applied to some magnetostatics computations by letting
w

tend

to zero [6]. We observe that pliw of (9) corresponds to I/r of (8). But the parameter r and

the magnetic fields of (8)
are real whereas pliw and h of (9) are complex.

In (8), the quantity 1/rpo has the dimension of the square of a length and we so let us set:

)
=

p2 (lo)

As p = po Pr, equation (8) then rewrites as:

fprir h'+ p2
/

curl ir curl h'
=

/
prh~ h' Vh' E Ho (11)

n3 n n3

and its solution has to be obtained for p large enough, I-e. for p » R where R is a characteristic

dimension of Q.

4. Discretization: FEM and BIM.

The integration in ii)
over Q~

=
lll~ Q can be transformed into a boundary integral if we

put I
=

grad ~J in Q~ which is simply connected, with A~J =
0 [10]. Moreover, we

introduce

the total field hr
=

ir + h~ in Q. We thus obtain:

f~rhr h'+ p2
/

curl hr curl h' +
/ ~~'~

+ h~ n)~J'
=

0 (12)
n n r

fin

Vh' E Ho, h'
=

grad ~J' in Q~

where n is the inward unit vector to F. The unknowns are the total field hr in Q and the

reaction scalar potential ~Jr on F. For the discretization of (11) we
associate

a
finite element
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method (FEM) in Q and
a

boundary integral method on F (BIM) [9].

We implemented this method as in the CELFI code [11]. Q is meshed into tetrahedra and, in

each of these, a linear representation of the magnetic field is taken. Several kinds of variables

are
combined.

In a
tetrahedron without any vertex on F, the field is written as:

4

hr
=

~j hnIn

n=1

where an is the barycentric coordinate associated with the vertex n and hn a
nodal vectorial

variable.

In the tetrahedra which own vertices on
the boundary F, the field is expressed with nodal

variables and edge variables (two per edge)[12]. These edge variables
are

themselves expressed

as
functions of ~Jr when the edges are

located on F.

To evaluate the boundary integral in (12), we compute an
exterior stiffness matrix [13] which

relies 0~J/0n to ~J. We take a quadratic representation of the potential ~Jr in the triangles of

F, which is consistent with the linear representation of hr.

The degrees of freedom
are then: the nodal magnetic fields inside Q, edge variables on

internal edges with one or two vertices on F, scalar potential on the vertices and on the middle

of the edges of F.

With this representation,
we satisfy the continuity of the magnetic field inside

an
homoge-

neous
material and of its tangential component at the interface between two materials.

As we take
a nodal permeability p, the global matrix obtained from Galerkin's method is,

in general, not symmetric.

If the scalar potential, instead of the magnetic field, is chosen as variable inside the material

as it is often done, it is necessary to take
a

quadratic representation of ~Jr in each tetrahedron

to obtain
a

linear approximation of h. The number of variables is then, inside the material,
Nv + Ne (number of vertices + number of edges)

-J
7Nv instead of 3Nv with h as variable.

Moreover each node of interpolation of scalar potential is connected with vertex nodes and

middle of edge nodes. So, to ensure a
linear approximation of the field the matrix of the

system has more elements and the CPU time would be greater than with h variables.

5. Nunlerical test.

In order to test the method, we applied it to a
sphere of constant permeability p = po Pr and

of radius R, embedded into
a constant magnetic field h~. Two meshes were used. The first one,

51, concerned the whole sphere. There were 3fi0 tetraedra in it and 120 triangles on F. The

second one, 52, concerned one eighth of the sphere and had 702 tetraedra and 230 triangles

on F. The computation was done by using symmetry properties and corresponded to a
whole

sphere of 5608 tetrahedra.

As the analytical solution hand of this problem is known, we can calculate the rms error:

j ~nUm ~ana~2dujl
V

n
han~
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Fig.2 The error on the magnetic field for pr =
10.

Fig.3 The error on the magnetic field for pr =
100.
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FigA. The error on the magnetic field for pr =
1000.

The figures 2, 3, 4 give this error, for pr =
10,100,1000, as a

function of the dimensionless

parameter p2 /R2. We see
that:

. as well for 51 than for 52, the error
diverges when p tends to zero. It becomes not too big

when p2/R2
-J pr and it reaches its minimum and remains constant for p2 /R2 > 10 pr.

.
the ratio between the errors for a great p with 51 and 52 does not depend on ~r and is

about 3.5.

Equation (12) shows that the greater p2, the larger the relative weight of the error on curl hr
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Fig-S The error on the magnetic field for two values of the criterion of the conjugate gradient
method.

Fig.6 The value of Div (in arbitrary units) for two values of the convergence criterion
e

of the

conjugate gradient method.
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Fig.7. The value of Cvrl (in arbitrary units- Cvr1is the same for e =

10~~' and e =

10~~~ and

the error on the magnetic field h for e =

10~~~

in the total error. For high values of p2,
one has to pay attention to the precision of the

solutions of the linear system Ax
=

b obtained from Galerkin's method. The solutions are

here computed with
a conjugate gradient method. The iterations are stopped when the ratio

(~~ ~)2 falls belows a given e. We observe that the error on the magnetic field is very
b

~sensitive to the value of e (see Fig. 5). In fact, when we start from a value of p giving a
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minimal error and when p2 is again increased, the error does not always remain constant but

increases again if e is not small enough.
We then calculated

Din
=

I) /
(din ~h)~f'~

n

~~~~
f

~~~~ ~j2jl/2
~

fl

We see (Fig. 6) that Div is generally constant and small. But, for a poor choice of e, the

error on the magnetic field and the quantity Div begin to increase simultaneously when p2 /R~
increases. At the

same time, Curl remains always very small (Fig. 7).
The characteristics of Curl are: it does not depend too much on e, it is important only for

p2/R~ < ~~ like the error on
the field, it continuously decreases with p~/R2.

The divergence, but not the curl, can thus be used to test the validity of the computation.
It has to remain constant when p2 is varied around the choice defined above.

The figures 2, 3, 4 are drawn with e =
10~~~

6. Conclusion.

A formulation of the magnetostatics in terms of h has been established. The use of h variables

instead of ~J variables reduces the number of elements of the matrix of the linear system if

we want to keep the same order of approximation of the field. Therefore, at first sight, it is

interesting.
This formulation includes

a
penalty term. The value to be given to the dimensionless pa-

rameter p2/R2, where R is a typical dimension of the device, has been clarified. It must be at

least 10 times the relative permeability ~r. A good test of the validity of the computation is

the value of the divergence, which must remain constant when the parameter is slightly varied.

These conclusions have to be clarified when ~ depends on h. It will be done in the near future.
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