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Abstract. The motion of a freely suspended capsule (liquid drop surrounded by a deformable

membrane) forced to squeeze through an axisymmetric constriction smaller than its initial

dimensions is studied by means of a numerical model based on boundary integrals. The flow is

driven by a constant pressure difference. The suspending liquid and intemal capsule viscosities are

equal. It is found that the maximum energy loss is due to entrance effects rather than to the flow in

the pore itself. The role of the membrane rigidity can be predicted.

1. Introduction.

In filtration or duct flow experiments conducted on particulate suspensions, the absence of an

appropriate model makes it difficult to relate quantitatively and unambiguously the measured

pressure drop to the intrinsic properties of the suspended particles. When the particles are

deformable, as in two phase flow through porous media or in blood microcirculation, the

problem is even more complicated since the bulk flow properties of the suspension depend on

the deformation of the particles. Such a situation is considered here where a capsule (a generic

name for liquid drops surrounded by a deformable membrane) is flowing through a pore.

The difficulties encountered in designing such a model result from an interplay of

complicated mechanical effects : viscous forces due to the motion of both the intemal and

extemal fluids and elastic forces exerted by the membrane under large deformations. The

objective of this paper is to show that a numerical modelling using an integral formulation of

the flow of a capsule through a constriction is possible, and then, to illustrate how such a

model may help in understanding the mechanics of this type of flow and in interpreting
filtration experiments conducted on dilute suspensions of red blood cells (RBCS).

2. Problem statement.

2,I DEFINITION OF THE MODEL. Although transient in nature, the very low Reynolds
number filtration flows may be considered as quasi-steady at any moment and are therefore

described by the Stokes equations. Rather than solving these equations in their differential
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form, an integral formulation is used. The model matches the experimental conditions shown

by Drochon et al. [I] to improve the discriminating power of filtration experiments, I.e., the

Newtonian and incompressible intemal fluid of the capsule and suspending liquid have the

same viscosity ~c. The capsule membrane (M) is infinitely thin, has no bending resistance and

has a neo-hookean constitutive law characterized by a surface shear elastic modulus

E~.
A fully axisymmetric configuration, where an ellipsoidal capsule is freely suspended in a

hyperbolic constriction having the same revolution axis, is chosen. Such a channel corresponds

to a short pore. The total pressure drop across the pore is kept constant (as in many filtration

devices), and thus the flow rate Q (t ) varies with time as the capsule flows along. At each time

step, the unperturbed velocity field v~P(x, t ), that would exist if no capsule were present is a

function of Q(t) and of the pore geometry, given by Happel & Brenner [2].

The internal domain of the capsule is bounded by M. The external domain, denoted

fl~, is bounded by M, by the solid wall of the constriction B and by the entrance and exit

sections, respectively Ej and E~. In the following, (B U Ej U E~) is denoted by dfl~. The

radius of the constriction throat is denoted r~ and the angle of the hyperbola asymptote with the

revolution axis is arcsin ((o).
Non-dimensional quantities are used throughout, using r~ for lengths, E~ for elastic tensions,

V~P, the initial mean velocity at the throat of the constriction in the absence of a capsule, for

velocities and ~CV~P/r~ for viscous stresses.

The boundary conditions associated with the Stokes equations describing the flows in the

intemal and extemal domain of the capsule are as follows :

No-slip condition on the solid boundaries of the constriction :

v(x, t)
=

0 for x on B (I)

The entrance and exit sections, El and E~, are chosen sufficiently far away from the capsule,
for the flow field to have regained its unperturbed value :

v(x, t
=

v~P(x, t) and p(x, t )
=

Const, for x on Ej or E~. (2)

The dynamic equilibrium of the membrane (3 and the continuity of the velocity between the

liquids and the membrane material points (4) are imposed :

e
(«~~~(x ) «'~~(x )) n (x )

=
F~ (x for x on M (3)

v~~~(x)
=

v'~~(x)
=

dx/dt for x on M (4)

where m~~' and m'~~ are the stress tensors and v~~~ and v~'the velocities of points situated in the

extemal and intemal domains, respectively. The load vector F~ exerted by the fluids on the

membrane is determined in terms of the membrane deformation by means of the classical

theory of thin elastic shells undergoing large deformations. This is possible as long as the

characteristic law of the membrane is known. The integration of the continuity condition (4)
allows to compute the membrane deformation once the velocity fields have been determined.

An important parameter of the model, the capillary number e, appears in (3) through the

non-dimensionalization process. It measures the ratio between the viscous forces which tend to

deform the membrane and the elastic forces which tend to restore its initial shape :

e =
~CV~P/E~,

The higher e the smaller E~ and therefore, the more deformable the capsule.
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2.2 INTEGRAL FORMULATION. The integral equation expressing the velocity of any point on

M, B, Ei and E~ as a function of the forces exerted by these boundaries on the intemal and

extemal fluids is obtained following the same steps as Martinez & Udell [3] for the related

problem of the motion of a liquid droplet through a cylindrical tube. The fact that the intemal

and extemal liquids have the same viscosity results in a significant simplification of the

equations due to the vanishing contribution of the double layer potentials on the membrane.

Further simplifications of the equation arise when the non-perturbed velocity of the flow in the

domain bounded by B, Ei and E~ is subtracted off. In particular, using boundary conditions (I
and (2), and following a simple asymptotic analysis, it is possible to show that the double layer
potentials on B, Ej and E~ resulting from the subtraction of v~P vanish. After these

simplifications, the velocity of a point x taken in fl~ or on dfl~ is given by :

@=~~)~~-£j J(x-Y).~'~j~~ds(Y)+£ J(x-Y).AF(y)ds(y) (5)

where
« =

I when x is on M and
« =

2 when x is on dfl~. Use has been made of boundary
condition (3), since the jump in viscous stresses across M has been replaced by

F~le. The kemels J correspond to single layer potentials and are known functions of

(x y given in [4]. The perturbation of the force exerted by the boundaries of fl~ on the fluid,

due to the presence of the capsule in the constriction, is AF. When applied to Ei or

E~, AF is simply the pressure perturbation AP
i n or AP

~ n, respectively. In the axisymmetric

case considered here, equation (5) can be integrated once over the angle of revolution and then

rewritten in a meridian plane (O, x, r of a cylindrical reference frame centered on the axis of

revolution [O, x[ of the constriction.

2.3 NUMERICAL SOLUTION. The capsule is injected in the flow at time t
=

0, all the

membrane points have initially the unperturbed fluid velocity and F~ is zero. At any time t, the

position of the membrane points is obtained by integration of (4) with an Eulerian explicit
scheme. The membrane state of deformation being known, it is easy to determine the load

vector F~. Equation (5) is then used to express the velocity on B, Ei, E2 and M and solve the

system defined by boundary conditions (1), (2), (3), and (4). This yields a new velocity of

membrane points from which their new position may be determined.

A collocation method is used: the discretization of each of the boundaries B, El,

E~ and M into n~, n~ and n~ points, respectively, allows the boundary integrals to be evaluated

numerically by means of a Simpson's rule for unequally spaced points. A system of

2
* n~ + 2 linear scalar equations obtained by writing (I) and (2) at each collocation point on B

and at only one location in Ej and E~ is then solved. This system of Nystrom equations
resulting from the repeated three-point Simpson's integration scheme applied to the integrals of

the single layer potentials can be represented as follows :

A F(i>
=

s(1>

where F(t) is a vector containing 2
* nB + 2 unknowns (the radial and axial coordinates of

AF at each collocation point of B plus AP
i

and AP ~), where S(t ) is a vector consisting of the

integrals on M of the load vector F~, and where A is a dense matrix which is a function of the

fixed geometry of the problem and is therefore inverted only once. In the case of a constant

pressure drop situation, the additional pressure drop AP~M
=

Vi AP~ needed to force the

capsule through the constriction is then used to adjust the flow rate and compute the

corresponding velocity v~P that will be used in (5) for integration at time t + At. The whole

process is then repeated.
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The kemels J in equation (5) are singular, although logarithmically convergent, whenever

the current point along one of the boundaries approaches the point at which the velocity is

computed. These singular cases are treated using the classical method which consists in

subtracting the asymptotic expression of the kemel in the numerical integrals of the singular

terms and then, in adding its analytical sum. Consequently, the initially singular integral is

split into a sum of non-singular expressions.
Extensive numerical testing of the model has been conducted in order to validate the

numerical methods used. This validation is based upon the perturbation of the different

parameters involved, such as the density of points on the boundaries, the position of

Ei and E~, the initial position of the capsule and the value of the time step. As a by product, this

study resulted in the determination of optimum densities of points on the boundaries. This

search for optimality is based on a balance between the need for numerical precision and the

necessity to limit c,p,u, time consumption. A parameter was considered optimum as soon as

any further change in its value produced a difference of less than 5 fb in the results obtained.

The most sensitive numerical parameter is the number of points on B. As shown by Delves &

Mohamed [5], Nystrom type solution schemes for Fredholm equations of the first kind, such as

(5) when Ali is to be determined, may become divergent when the discretization of the

boundaries is made finer. However, as pointed out by Pozrikidis [6], the rust kind Fredholm

equations arising from Stokes flows have shown to be particularly stable through this type of

procedure. Our findings conftrm that statement. Typical values of the numerical parameters

are, in the particular case of a spherical capsule with radius R/r~
=

1.2 and e =
0.5 : initial

position of the capsule x~(t
=

0)
=

6, position of Et x~~ =
30, position of E~.

xE~ "
+ 30, nB

"

207, nE"125, nM "

45, At
=

5 x
10~~ Details of the numerical scheme and

of the different validation tests performed may be found in [7].

3. Results and discussion.

The results presented in figure I and figure 2 are obtained for a spherical capsule of radius 1.2

flowing in a hyperbolic constriction with to
=

0.7 under a constant pressure difference

between the entrance and exit sections. This configuration was chosen to match the conditions

Q/(r ~V "~)

£*

~ e=i

o

o

-7 -3 -3 -1 3

Fig. I. Evolution of the non-dimensional flow rate as a function of the capsule position, for different

values of
e.
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Fig. 2. Evolution of the non-dimensional maximum flow rate penurbation as a function of e.

of RBC filtration experiments (1.2 is the ratio between the radius of a sphere having the same

volume as a RBC and the radius of a filter pore).
Figure I shows the evolution of the non-dimensional flow rate as a function of the position of

the capsule center of mass Xg, for different values of
e. As a result of the choice of scales, the

initial non-dimensional value of the flow rate is
w. As the capsule passes through the

constriction, the flow rate decreases to reach a minimum value at a position Xg which depends

on e. The smaller e, the less deformable the capsule and the greater the decrease in flow rate,

I,e., the more the capsule plugs the constriction. The minimum value of flow rate is reached

upstream of the throat and is nearer the throat for smaller values of
e.

Indeed, it takes longer for

less deformable capsules to reach a deformed shape which minimizes the flow perturbation.
The maximum energy expenditure therefore occurs during entrance phenomena. The flow rate

then slowly increases again until it reaches the initial, non perturbed value for a position of

Xg somewhere between I and 2, depending on the value of e. Then, the flow rate becomes

larger than the non-perturbed value with a perturbation which increases as e decreases. This

shows that, owing to its elastic properties, the capsule recoils, sucking some fluid dowstream

of the throat. It also shows that the higher E~, the more efficient the aspiration of fluid through
the constriction. This interpretation is confirmed by the negative values of F~ (force exerted by
the fluids on the membrane) which are observed for capsules situated just downstream of the

throat. Finally, the flow rate regains its initial value.

Figure 2 Shows the evolution of the non-dimensional value of the maximum flow rate

reduction (AQ~') as a function of e. A regression conducted for this set of points leads to :

AQm/(( vnP)
=

o.5 e- °.6'

This correlation can be used to interprete the filtration experiments of Drochon et al. [I]

which are conducted on dilute suspensions of RBCS. Normal and diamide treated RBCS are

suspended in a dextran solution with a viscosity of order 8 mPas so that the viscosity ratio

between this extemal medium and the intemal haemoglobin solution is roughly equal to unity.

The effect of the diamide treatment is to rigidify the cell membrane, the elastic modulus of

which is roughly doubled (as measured with a micropipette). The suspensions are passed
through a filter with pores of 4. 7 ~m diameter and I I ~Lm length. Under a given pressure head,
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through a single pore, the flow rate reduction AQ between the buffer and the suspension is

measured :

AQ
=

Q ~buffer) Q (suspension).

The ratio between the values of AQ obtained experimentally for normal and for diamide

treated cells is found to be :

~i~$~~) ~~~ ~ ~~~

The model predicts that this ratio should be equal to (2 )~ °.~~, i,e., 0.66. The agreement is of

course satisfactory and indicates that the membrane rigidification is properly taken into

account by the model. However, the absolute values of E~ predicted by the model are much

larger than the physiological values. This is probably due to the Mooney-Rivlin law used for

the membrane. Indeed, a constitutive law taking into account the membrane incompressibility
would be more appropriate. It follows that, presently, only relative variations of E~ can be

predicted.

4. Conclusion.

This study gives an insight into the investigating possibilities offered by the model of a capsule
flowing through a constriction. Owing to the consistency of the results obtained in this first set

of numerical experiments, further tests should be conducted in order to investigate the

influence of parameters such as the size ratio between the capsule and the constriction throat or

the shape of the capsule. Different types of constriction should also be studied, starting with

various shapes of hyperbolic constrictions, and noting that any channel shape can actually be

treated with the model as long as the non-perturbed velocity of the flow can be computed. This

work will undoubtedly help to determine and understand RBC mechanical properties and their

rheological behavior when they flow through filter pores or narrow capillaries of the body.
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