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Rdsumd.-Une machine spdcialis6e pour la rdsolution de systkmes l1n6aires du type
IA lx)

=

(b ) par la m6thode de ddcomposition LU est ddcrite. Cette machine utilise des circuits

sp£cifiques VLSI connect6s suivant une structure mail16e du type systolique. Ce principe
d'architecture paralldle perrnet un gain de temps de calcul imponant et rend ainsi plus exploitables

les mdthodes num6riques qui n6cessitent ce type de rdsolution.

Abstract. A specialized machine for the resolution of linear systems of [A lx )
=

(b ) type by
the LU decomposition method is presented. That machine uses specific VLSI ckcuits connected in

a mesh structure of a systolic kind. That parallel structure principle allows a significant saving of

computation time, so make the numerical methods that require this kind of resolution more

efficient.

Introduction.

Numerical methods used in electromagnetic structure studies require large computer resources

(computation time, memory capacity and control). The finite element method is a case in

point, since in many cases it requires the resolution of a large linear system [A lx)
=

16)

where [Al is a known band square matrix of order n with band width w =
p + q I called

stiffness matrix, (x) an unknown vector with n components and 16 ) the forcing vector. As an

example, the study of an electromagnetic structure that propagates a quasi T.E.M. mode like

the microstrip line often leads to n =

2 000 and p = q =

200.

Even if current computer power, and a better knowledge of the finite element convergence

properties have significantly decreased the analysis time, it still remains excessive.

A way to solve this problem is to use a specialized machine, specific VLSI circuits based,

which makes use of optimized parallel structures.

In this paper, we present the structure and the results of such a machine for the resolution of

the linear system [A](x)
=

(b) described above.
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1. Resolution methods for the linear system [Al lx)
=

16).

All the methods for obtaining the solution of the linear system [A (x)
=

16 ) can be classified

as indirect or direct.

The indirect methods or iterative methods are based on the idea of gradually improving the

approximate solution begining with an initial vector x~°I The main feature of these methods is

the convergence speed that depends on intitialization.

The direct methods are generally based on the principle of a triangular decomposition of the

matrix [A ]. The major drawback of such methods is propagation (and therefore accumulation)
of rounding errors that do not always ensure numerical stability.

However, direct method algorithms underscore more significant possibilities of using
optimized parallel structures for a specialized machine implementation.

Regarding the finite element method, wich is distinguished by a positive definite symmetric
matrix [A] so with a «

weighty
»

diagonal [II, using a direct method without pivoting is

suitable.

Thus, we choose the LU decomposition direct method, where we decompose the matrix

[A] into a two matrix product, [Ll lower triangular and [Ul upper triangular.

iAi
=

iLiiui
=

(£) (fi)

Given [L and [Ul, we can derive (z) from (b ) by a forward substitution process to solve

[Ll(z) =16) then derive lx) from lz) by a back substitution process to solve

[U (x)
=

(z)
This direct method of decomposition allows the use of the frontal method [2, 3]. We can

perform together the assembling of the stiffness matrix and the LU decomposition that speeds

up the finite element method computation time and significantly reduces the memory

requirements.
Therefore, for the resolution of rite finite element method linear system, we can make use of

two degrees of parallelism :

the first one with the assembling of [A and the linear system resolution as we have just

seen ;

the second one with the resolution of the linear system, using an optimized parallel

structure, presented here, which is able to compute quickly the solution of that system.

2. Parallel structure for the resolution of the linear system [A](x)
=

(b).

2. I IMPLEMENTATION oF PARALLELISM IN THE LU DECOMPOSITION. The value of the useful

coefficients of triangular matrices [L] and [U] can be computed according to the following

recurrences :

equations computation domain

a)~ = a,~ I w I w n, I q + I w j w I + q I with I w j w n (I. I)

u~~ = a(~ k
w j w k + q I with I w k « n

,

j « n (1.2)

f,~
=

a(/u~~ k + I w I w k + p I with I w k « n I
,

I w n (1.3)

a(+~=a)~+f~~(-u~~) k+I«I«k+p-I, k+I«jwk+q-I

with lwkwn- I, iwn, jwn (1.4)

a(+~ =a( k+p- I«I wn, I-q+ I«jwi +q- I

with lwkwn-I, lwjwn. (1.5)
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For every equation, we specify the computation domain, I,e, the set of values that can have

indices I, j, k of the data of the equation.
The value of the coefficients u~j and f,~ is determinated from equation (1.4) where

a(+ is computed with a set of accumulations.

For this equation, defined by its computation domain D
=

((I, j, k), IS km n I,
k + I w I w k + p I with I w n, k + I w j « k + q I with j w

n), for every coordinate

triple (I, j, k), we get a computation point, where we have to compute the function

a~~~ =
a,~ + f~~ *

(- uj~).
Then we observe that several computation points make use of the same coefficients

f;~. The same is true for coefficients u~y.
Two possibilities are then conceivable :

I) either, for every computation point, to call the requisite coefficients f;~ and u~y, therefore

reading the same data as many times as there are computation points using that data,
it) or to make coefficients f,~ and

u~~
circulate from one computation point to another.

For example, f,~ will be used by every coefficient a(+~ where j ranges from k + I to

k + q I, and the coefficient f,~ of computation point (I, j, k + I is provided by computation
point (I, j I, k + I).

We formally express solution it by the following system of recurrent equations :

equations computation domain

input equation :

A(I,j,k)=a,~ lwi wn, I-p+lsjsi +q~l ~~~h I<J <~ ~~'~~

k
=

max (I p, j q if max (I p, j q ~
0

k
=

0 if max (I p, j q ) « 0

computation equations :

A(I, j,k) =A(I, j, k- I)/U(I, j,k) I wkwn-I, j =k, k+ I wiwk+p-I

with j w n (2.2)

A(I, j, k) =A(I, j, k- I) I wkwn, I =k, kwjwk+q-I

with j w n
(2.3)

U(I, j, k)
=

U(I I, j,k) lwkwn- I, kwjwk+q- I,

k+ lwi wk+p- I

with j w n
,

I w n
(2.4)

U(I, j,k)=A(k, j,k) I wkwn, I =k, kwjwk+q-I
with j w n (2.5)

L(I, j,k) =L(I, j I, k) I wkwn- I, k+ I wi«k+p- I, k+ lwjwk+q-I
with j w n

,

I w n (2.6)

L(I, j,k)=A(I,k,k) lwkwn-I, j =k, k+ lwiwk+q-I

with I w n (2.7)

A(I, j, k)
=

A (I, j, k I ) + L(I, j, k)
*

(- U(I, j, k)) I w k w n I
,

k+lwiwk+p-I, k+lwjwk+q-I witlt iwn, jwn (2.8)

output equations :

f,~=A(I,k, k)
,

I wkwn-I, k+ I wi wk+p-I with I wn (2.9)

u~~ =

A (k, j, k ) I w k w n
,

k « j w k + q I with j w n (2. lo)
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Then we can consider the use of a parallel structure as an array of elementary cells where the

pipeline feature of data (circulation of the data from one computation point to one another) is

operated.
Equations (2. I to (2.10), said to be uniform, properly express the evolution of rite data and

the computations of such a structure since coefficients f,~ and
u~~

formulated like that circulate

in the array while coefficients A (I, j, k) accumulate their value through that same array.
A systematic method, called the dependence mapping method introduced by Quinton [4],

allows, from the system of uniform equations, to characterize arrays which are solutions of the

given problem where cells communicate in a synchronous pipeline mode. This kind of array is

called a systolic array [5].

2.2 TWO DIMENSIONAL SYSTOLIC ARRAY FOR LU DECOMPOSITION. A systolic solution for

LU decomposition is shown in figure1.

o

o

Fig. I. Two dimensional systolic array for LU decomposition ~p
= q =

4 ).

The square elementary cells compute an inner product (multiply and add) to obtain

coefficients A(I, j, k) as explained in figure 2a. The cell denoted by a circle performs the

division to obtain coefficient f,~.

~ ~

Cout=Cin+A*B
~~

~~~ ~~~ ~~

Cin
~ ~~~~

~) b)

Fig. 2. a) The inner product processor. b) The division processor.

This systolic array needs a computation time of (3 n T where T is the period of the clock

that synchronises data through the systolic machine. This computation time can be compared

with time needed to compute the (2 n p q operations (memory access + computation) for a
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sequential algorithm (use of a Von Neuman computer). Therefore we get a significant increase

in computation speed.
Another attractive feature of this array is that its size is independent of the order n of the

matrix [A ], since it requires ~p. q) elementary processors.

However, the number of computing cells is high, as is the input-output (I/O) number,

(2 ~p + q I )), which gives rise to a problem of connection since the finite element method

requires data to be coded in a scientific representation of at least 32 binary digits.

Therefore, we have to establish a different systolic array which has on the one hand a

reasonable number of cells and, on the other hand, not too many inputs-outputs. Furthermore,

this structure should still have a rapid computation time.

2.3 ONE DIMENSIONAL sYsToLIc ARRAY FOR LU DECOMPOSITION. To overcome the

problem of the sizeable number of cells and inputs-ouputs of the bidimensional array, due to

the 3 indices I, j and k taken simultaneously, the idea is to search for a structure, still of a

Systolic kind, that makes computations, at a given time, with data indexed by two indices, the

third then being intentionally fixed. In this case, the systolic solution is a one dimensional

array, or so-called linear array.

a)

Cdl0

2

~ demulfiplexer
/~j

shiftregisters

b)

Fig. 3. One dimensional array for LU decomposition ~p
= q =

4).
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For our purpose, we have chosen to fix the index I. A conceivable solution associated with

this principle is shown in figure 3 where the written coefficients, according to equations (I, I)

to (1.5), correspond to the data into the array at a precise instant. Figures 3a and 3b illustrate

two successive snapshots of the array operation.

This systolic array is composed of q elementary cells. The (q I ) rectangular cells are

composed of :

one processor, denoted by a square, which computes the inner product according to

equations (1.4) and (2.8) and according to figure 4

one first shift register of length (q 2) which memorizes the results a( from the

processor, I-e- coefficients A(I, j, k) for a given j ;

one second shift register of length (q I which sends the data f;~ (i.e. L(I, j, k)) to the

processor ;

one demultiplexer that switches data a( either toward the input a~~ of the processor or

toward the parallel-serial shift register and the input u of the processor in order to memorize the

coefficient
u~~

(I.e. U(I, j, k)) in this processor.

The array is also composed of a cell represented by a dotted line which includes :

one processor, denoted by a circle, which computes the division according to equations
(1.3) and (2.2) and according to figure 4 ;

one demultiplexer that switches data a( either toward the input a~~ of the processor or

toward the parallel-serial shift register and the input u of the processor in order to memorize the

coefficient u~~ (I.e. U(I, k, k)) in this processor.
Finally, a parallel-serial shift register of length q allows rite serial output of coefficients

u,~.

u a~

an ut

~ °°°~

~ ~ ~
tm t=ti+T

~_~ tm+T
aow=m+I,(-u) aowmwu

Fig. 4. Processor operations.

Coefficients of the matrix [A] are distributed to the array input (cell 3 of Fig. 3) in

accordance with a column stream, which means that we provide each clock cycle

~11, th~~l ~21, ~31,
...,

~12, ~22, ~32..
Coefficients a(

move into the array from the left to the right in accordance with the column

stream appearance imposed by the input data stream,

Coefficients f,~ move into the array in accordance with a column stream in the direction

opposite to that of coefficients a$~.

This solution has an efficiency of 1/2, which means that a cell is active only one clock cycle
every two clock cycles. A hardware modification of the elementary cell regarding the

synchronous flow of the inner data with multiplexing allows us to obtain an efficiency of I

while dividing the number of processors by two.

The computation time needed for the LU decomposition is, for this structure, (2. n. p T ).
Therefore we retain a significant computation speed-up as compared with a sequential
computer.
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Furthermore, as was our purpose, the input-output number is reduced to a minimum since

only one input and two outputs (one for coefficients f,~, one for coefficients u~j) are sufficient.

The linear solution presented above therefore constitutes a good speed-size compromise.
While being reasonable as regards the size, it allows the computation time of the LU

decomposition to be significantly reduced.

2.4 PARALLEL STRUCTURE FOR THE RESOLUTION OF THE LINEAR SYSTEM IA j (X)
=

(b ),
When rite coeficients of the two lower and upper triangular matrices resulting from the LU

decomposition of the matrix [Al are computed, we solve the two triangular systems,
[L](z)

=

16) to derive (z) and [U](x)
=

(z) to derive (x).
The vector (g) of a triangular system [C (g)

=

(h) of order n and band width p can be

computed by the following recurrences :

equations computation domain

g)
=

0 w I w p (3.I)

g) ~P
=

0 p ~
i w n (3.2)

g)=g)"~ +c;~*g~ I wi «n, -p+ I«kwi -I with lwk (3.3)

g;
=

(h, g( )lc,,
~

i
~ n (3.4)

As previously, the application of the dependence mapping method provides a one dimensional

systolic solution.

We can use a single systolic array to solve the two triangular systems [L] (z)
=

(b) and

[U] (x)
=

(z), then we need an array composed of [max ~p, q)121 elementary cells. Of

these elementary cells, the last one in the array computes the division g~~~= (hi~-

gj~)lc~~ according to equation (3.4) of the recurrent equation system above. The other cells

compute the inner product as required by equation (3.3).

Therefore, the resolution of the linear system [A I (xi
=

(b) requires the implementation of

two unidimensional systolic arrays one array for the LU decomposition of the matrix

[A] and one array for the resolution of the two triangular systems [Ll(z)
=

(b) and

juj jxj
=

jzj Three computation phases are then necessary for the resolution of the linear

system :

the first phase is for the LU decomposition,

the second phase is for the resolution of the lower triangular system [Ll (z)
=

16) to

derive (z),

Table 1

Conventional computer Systolic structures based

of the Von Neuman kind computation unit

Computation [q121 + [max ~p, q)121

cell number

I/O data 2 2

number

Computation 2 n~p q + p + q 2 n ~p + I )

cycle number
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the third and last computation phase is for the resolution of the upper triangular system

[U] lx)
=

(z) to derive lx).

Actually, it is feasible to compute at the same time both the LU decomposition of matrice

[A and the triangular system [L (z )
=

(b ), thus increasing the speed of the resolution of the

linear system [A](x)
=

(b).
The features of the whole systolic structure for the resolution of a linear system

[A (x)
=

(b), defined by n, p and q are given in table I, with rite features of a conventional

computer of Von Neuman kind as a comparison.

Conclusion.

A behavioral model of the whole systolic structure has been written and simulations have been

made. These simulations have enabled operation of rite systolic machine and the features

presented in table I to be validated.

Therefore, we can now start to tackle the C-A-D- (computer aided design) phase for the

design of the systolic machine. This work, now in process, concems the design of two

elementary cells, one for the inner product and one for rite division, discussed above.

Once those cells have been implemented, the systolic machine, regarded as a computation
unit for the resolution of linear systems of [A (x)

=

(b) kind, can be connected to a «
host

computer » to relieve it of that particulary demanding task as far as computation time and

memory capacity are concemed, when investigating electromagnetic structures, or others,

using the finite element method.
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