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Abstract. A point-matched time domain finite element method (TDFE) applied to the analysis
of electrical transients in transmission line networks is presented. In this method, the telegraph
equation is solved numerically at discrete time steps. Absorbing boundary conditions are used to

simulate an infinite line. Examples of voltage waveforms on lossless single-phase line with simple
line termination and interfaces are shown.

1. Introduction.

During the past two decades electrical transients in arbitrary single- or multi-phase networks

were solved by a nodal admittance matrix approach [1-3]. Before Dommel's method [4]

became widely used, there have been attempts to employ the altemative lattice method [5] for

travelling wave phenomena which required the knowledge of reflection coefficients. In recent

years, an s-domain approach [6] has also been introduced in transient studies.

The response of transmission line networks can be found by accounting for all interactions

between forward and backward travelling waves as a result of discontinuities or disturbances.

In an extensive network the number of forward and backward waves caused by a single
incident wave increases quickly as the wave goes through multiple reflections and refractions.

With methods such as the lattice diagram a complicated bookkeeping scheme is required in

order to obtain a solution [7]. Dommel's method transforms the network branches into their

general impedance equivalents ill. The evolution of the waveforms on the lines can be

computed by solving a system of linear nodal equations in discrete time steps. However, some

power transmission line problems cannot be adequately modelled by the equivalent circuit

approach. For instance, transmission line corona problems [8], the effect of lightning strikes on

high voltage lines [9] and the effects of non-uniform lines [10] require a distributed

transmission line model.

This paper describes the point-matched time domain finite element method [I1-13]. Given

the success of this method in transient scattering applications, the present work is a logical
extension to low frequency or transient power transmission line problems. In this approach, the
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propagation of disturbance on transmission lines is simulated numerically by solving a one-

dimensional boundary value problem at each time step.

2. Governing equations.

In a single-phase network, the current and voltage waves on a lossless transmission line are

govemed by

~~
=

L'
~~ (I)

ax at

-°~ =C'~~ (2)
ax at

where L' and C' are the inductance and capacitance per unit length, respectively [14]. The

general solution, by d'Alembert, is the combination of arbitrary waves which travel in both the

forward and backward directions :

I (x, t )
=

fi (x yt + f~(x + yt (3)

v (x, t
=

Zi (x, t ) (4)

where Z
= ~/~' is the characteristic impedance and y =

~/~
is the speed of propagation.

C' L C'

3. Method of analysis.

3,I POINT-MATCHED FINITE ELEMENT METHOD. The point-matched finite element method

requires the line to be discretized into a finite number of regions called elements. Each element

has several points called interpolation nodes. This allows v and I to be written in the form

~

v(x, t)
=

z ~Pi (x) vi(t) (5)

N

I(x, t)
=

z $i~(x) I~(t) (6)

J

where M and N are the number of nodes of the I and v finite element segments, respectively,
and ~P~ and

#i~ are basis functions which interpolate the voltage and current within each

element using the values at the interpolation nodes. Substitution of (5) and (6) into (I) and (2)
yields

~ ~ ~ ~

p z ~P,(x) vi(t)
=

L'p z ~ij(x)ij(t) (7)

~ ~ ~ ~

z ~i
~

(x )
1~

(t )
=

c ' z a (x ) v~ (t ) (8)
axjwi atiwi

The only unknowns in the above equations are the nodal values of the voltage V~(t) and the

current ((t) because ~P~(x) and
#i~

(x) are known functions of position, I-e. the unknowns are

V~(t), I
=

1, 2,
,

M (9)

((t), j =1,2,. ,N. (10)



N° 11 FINITE ELEMENT TRANSMISSION LINE ANALYSIS 2141

This method is called the point-matched finite element method because ~P~(x) and

#ij(x) are defined to be

~P~(x)
=

I at x = x~

=
0 at the other nodes, and (I I )

#ij(x)
=

I at x = x~

=
0 at the other nodes (12)

such that (7) and (8) are enforced at each nodal point. As a result, (7) and (8) can be reduced to

alp i M a~P~
= ~

£ V~(t), j
=

1, 2,
,

N (13)
~~ ~

i =1

~~

0V~ N 0#ij
=

£ -((t), I
=

1, 2,
,

M (14)
~~ ~'J=1 ~~

where ~P~ =
~P~(xj) and

#i~ =
#i~(x~).

The nodes are placed in such a way that each voltage element contains an interpolation node

for the current and each current element contains an interpolation node for the voltage.
Moreover, only the interpolation functions associated with the surrounding nodes will

contribute to the summation in (13) and (14). Hence, for first-order finite elements with just

two interpolation nodes, (13) and (14) become

I
=

£
~

V~(t), j
=

1, 2,
,

N (15)
°~

'a~1
~~

i
=

~,
( ~I~(t),

I =1, 2,
,

M (16)
~~ ~

a=1

~~

where V~ represents the values of the voltage nodes surrounding the current node

Ij and I~ represents tile values at the current nodes surrounding the voltage node

V~.

3.2 LEAP-FROG SCHEME IN TIME DOMAIN. In the leap-frog scheme, the time derivatives in

(15) and (16) are represented by the forward Euler differencing

n+~ n-~
3i) ij ~-ij ~

$~
At

~~~~

~~l
~'~t ~ ~'~ ~t ~'~

~~ ~~

~~l
where I) is the current at x~ at time n At and V~ ~ is the voltage at x~ at time

(n+ lI2) At.

Notice from (17) and (18) that the current time derivative is computed at one-half time step
before the voltage time derivative. By substituting (17) and (18) into (15) and (16),
respectively, the following explicit formulas for V~ and I~ are obtained :

j
~ ~~p

I~~~
=

I~ ~
~~ £ fiV~(t), j =1, 2,.

,

N (19)
~'a=1 ~~

VI +~
=

VI $ (
~(~I~(t), I

=

1, 2,
,

M. (20)

~

x
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Given the initial conditions at t =0, (19) and (20) can be used altemately to update
( and V~ at n =

1, 2,

3.3 INTERPOLATION FUNCTIONS. ~P~(x) and ji~(x) are both chosen to be first-order

interpolation polynomials. They have the form given by [15] :

x~ x~ x~ xi
U~

=

Ui + U~ (21)
x~ xi x~ xi

where

x~ is the coordinate of a point between nodes I and 2

Xi is the coordinate of node I

X~ is the coordinate of node 2

U~ is the interpolated value at a position between nodes I and 2

~~

l

Ui corresponds to the value ( ~ shown in (19) and Vi + shown in (20)

n+)
U~ corresponds to the value (

~ i
shown in (19) and V)]i shown in (20).

By differentiating (21) with respect to x~ one obtains :

dU~ U~ Ui
~ ~

x~ xi
~~~~

where x~ xi is the element length, Ax. Substituting (22) into (19) and (20), the following
equations are obtained

f~ ~2 f~ 2
l~t

(~rn ~rn (~~)
J J /~' fi~ i + I i

I I

~rn + I ~rn
l~t f~ ~

2 f~ ~
2 (~ ~)

i i ~, ~ j+1 j

4. Numerical consideration.

The solution to the leap-frog scheme approximation is stable if ill]

u At/h w1 (25)

where u is the wave propagation speed, h is the length of each element and At is the duration of

each time step. This implies that the wave must not propagate more than one subdivision in

space during one time step.

5. Numerical results.

The technique was tested for the cases of different simple line terminations. The excitation was

chosen to be I e~~' For simplicity, L' and C' are I H/m and I F/m, respectively.

5, I SHORT CIRCUIT TERMINATION. For a grounded line, the voltage at the end of the line is

zero. In travelling wave analysis, this implies that a voltage wave of equal amplitude but

opposite sign is generated due to the grounding of the cable as shown in figure I. The

excitation in this case is I e~ To implement a grounded line, the voltage node at the end of

the line is set to zero.
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~
# DA

o
>

o-1

0 10 20

distance (m)

Fig, I. Voltage distribution along a grounded line at 1= 25 s. (-) Analytical. (O) TDFE.

5.2 OPEN clRcuiT TERMINATION. The current at the end of an open circuit is always zero.

The negative-current reflected wave accompanies a positive-voltage reflected wave which will

double the amplitude of the voltage waveform as shown in figure 2. The excitation in this case

is I -e~~~ Moreover, the current node at the end of the line is set to zero for all

t ~
0.

2.0

«~ l-O

?
>

0 0 20
distance (m)

Fig. 2. Voltage distribution on an open ckcuit line at t
=

25 s. (-) Analytical. (O) TDFE.

5.3 LINE TERMINATED BY A CAPACITOR. Before the capacitor is charged up, the termination

is similar to a short circuit. When the capacitor is fully charged, it will act as an open circuit.

Hence the voltage transient will experience a gradual change from zero volts to a voltage which
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is double the source input, as shown in figure 3. The excitation in this case is I e~~ The

voltage/current relationship between the terminals of a capacitor is given by :

"

~ S ~~~~

Using forward Euler differencing, (26) is discretized and becomes

~~
i (n + tj + V (n At )

=

V (n + I ) At] (27)

The current at the voltage node is approximated by the nodal current at one-half

Ax in front of the voltage node.

2

~-#
o
>
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cS

o
>

0

0 lo 20

distance (m)

Fig. 3. Voltage along a line terminated by a capacitor at t
=

30 s. (-) Analytical. (O) TDFE.

5.4 LINE TERMINATED BY AN INDUCTOR. An inductor acts like an open line when a current

wave front is first impressed on it. Then gradually the current will reach a steady state and the

inductor responds as if it were a short termination. The voltage transient in this case will reach

a maximum and then decay to zero as shown in figure 4. The input source in this case is

I e~ ~' The voltage/current relationship between the therminals of a capacitor is given by :

V
=

L
~

(28)

Using forward Euler differencing, (28) is discretized and becomes

~~V(nAt)+I[(n- Atj =I[(n+ Atj. (29)
L 2 2

The voltage at the current node is approximated by the nodal voltage at one-half
Ax in front of the current node.
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Fig. 4. Voltage along a line terminated by an inductor at t
=

25 s. (-) Analytical. (+) TDFE.

5.5 LINE TERMINATED BY A RESISTOR AND A CAPACITOR PARALLEL. Using Kirchoff's

voltage and current laws, the current/voltage relationship of the parallel configuration is

expressed as :

i~
=

C
~~

(30a)

V
=

i~ R (30b)

i~ + i~
=

I (30c)

where

i~ is the current through the capacitor,

i~ is the current through the resistor,
V is the voltage across the resistor and capacitor, and

I is the current from the line.

Using the classical integration formulas and combining (30a), (30b) and (30c), the

discretized form of system (30) is given by :

V[(n + I)At]
=

~~ £
i~

-~ (31)
C

~i

where n is the number of time steps, ii and V~ are the current and voltage at time step j,
respectively. The analytical and TDFE results are plotted in figure 5. The source in this case

is I e~~' R is 2 Q and C is 2 F.

5.6 LINE TERMINATED BY AN INDUCTOR AND A CAPACITOR IN PARALLEL. The cur-

rent/voltage relationship of the parallel configuration is expressed as :

i~
=

C
$

(32a)

di~
V

=
L j (32b)

i~ + i~ =

I (32c)
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-
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Fig. 5. -Voltage along a line terminated by a capacitor and resistor in parallel at t
=

70 s. (-)
Analytical. (+) Numerical.

where

i~ is the current through the capacitor

i~ is the current through the inductor

L is the inductance

C is the capacitance
I is the current from the line, and

V is the voltage across the termination.

(32a) is discretized by forward Euler differencing and (32b) is discretized by the classical
formulas for integration. Combining with (32c), we obtain

Vl(n+ I)Atj
=

v(nAt)+ $I((n+))
Atj

()~~ jj Vj (33)

~~~

where V~ is the voltage at time step j and n is the number at time steps. The analytical and
TDFE results are plotted in figure 6. The source in this case is I e~ ~ L is 2H and C is 2F.

2

©
if
fi
>

o

o i o 20

Distance (m)

Fig. 6. Voltage along a line terminated by a capacitor and an inductor in parallel at t
=

30 s. (-)
Analytical. (+) TDFE.
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5.7 MISMATCHED IMPEDANCES. When two lines with different surge impedances are joined
together, reflection and refraction occurs. The model of this kind of transition point in TDFE

requires the intersection or boundary located at one of the voltage or current nodes. It is

important to note that C' and L' cannot change at the same location, or the value used in the

computation will be ambiguous.
In figure 7, a 30 m line is connected to a 40 m line with different C'. The L' for both lines is

set to unity. C' for the first line is I F/m and for the second line is 2 F/m. The reflection and

refraction coefficients for this case are 0,172 and 0.828, respectively. The speed of

propagation for the first line is I m/s and for the second line it is 0.707 m/s. The source in this

case is I e~~~

Line (30 m) Line 2 (40 m)

Source w

.o

o-o

0 lo 20 30 40 50 60 70

distance (m)

Fig. 7. Voltage along a line with mismatched impedance at t
=

50 s.

From figure 7 the transmitted wave has an amplitude of 0.83. The distance of the transmitted

wave travelled in 20 s is 14 m. Therefore, tile speed of propagation is 0.7 m/s. The percentage
difference between the TDFE solution and the analytical solution is 0.2 percent for the

amplitude and I percent for the speed of propagation.
The reason for choosing a small b for the source in this case is due to the unstable numerical

solution created by a steep wavefront. This effect is demonstrated in the following figures.
Three sources with different rise times, as shown in figure 8, are used. The TDFE solution for

b
=

10 is shown in figures 9a, 9b, and 9c. The solution for b
=

5 is shown in figures 10a and

10b. The solution for b
=

I is shown in figures I la and I16.

5.8 BRANCHING. -Branching is a common feature in a transmission system network. In

TDFE computation, branching is modelled by a system of equations. To illustrate the

procedure, a junction joining three lines is considered. Its configuration is shown in figure 12.
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Fig. 8.

1,o
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>
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(a)

9 lo 11 12 13 14

distance (m)
(b)

Fig. 9. -a) TDFE solution for b =10 at t
=

50 s, b) Reflected voltage waveform for b
=

lo, c)
Transmitted voltage waveform for b

=

10.
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30
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Fig.
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ofl 0.5
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o
>

30 32 34 36 38 40 42 44

distance (m)

la)

0.0

9 lo 11 12 13 14

distance (m)

(b)

Fig, lo. a) Transmitted voltage wave for b
=

5, b) Reflected voltage waveform for b
=

5.



2150 JOURNAL DE PHYSIQUE III N° I1

30 32 34 36 38 40 42 44

distance (m)

(a)

.o
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16)

Fig, ii. a) Transmitted waveform for b
=

1, b) Reflected wave for b
=

1.

2

Branch
~ currem node

o votage node

Branch 3

Fig. 12. Single-phase transmission line network.
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Let the junction be a voltage node. A system of differential equations is obtained

~~i
~

i

IJ ~
"

Ij ~
$ ~

(VII
+ i

VII )j (34a)

~~~ ~~2 (~ (~'~2
+1 ~'~2)j (34b)

Ill
=

I13 (l ~ (vi
~ + i vi~11 (34cj

where Ij1, (
~,

Ij
~ are the currents and V~ i, V~ ~, V~ ~ are the voltages on lines one, two and

three, respectively. For simplicity, L' is chosen to be the same for all three lines. Using the

continuity equations for both current and voltages, it follows that

~ ~

i i

IJI ~ +Ij2 ~ +I)~~
=

° (35a)

v13
=

v12
=

vji
+ i =

v (35b)

Substituting (35a), (35b) into (34a), (34b), (34c), the following system is obtained

Ji
=

ri + oi
",

v (36ai

J2
=

r2 + °2 +
$

v (36b)

J~
=

r~ o~ +
~~, v (36ci

Ji + J2 + J3
=

0 (36d)

where

~

l I I

~l
"

l~1 ~

,

~2
~

l~~ ~

,

~3
"

i~~ ~

'

At
~n

At
n

At
n°i=w

11,
°2=~v12+1, °3=$V13+1,

n-~ n-~ n-~
i~l

"

ii ~

'
1~2 ~

ii
2

~

,

1~3 ~

ii
3

~

Since ri, r~, r~, o
j,

o~, and 0~ are known quantities, the system in equations (36a) through
(36d) has only four unknowns, namely Ji, J~, J~ and V. This formulation can easily be

extended to a junction joining multiple branches.

Although the numbering of the nodes is arbitrary, it is important to keep track of the
reference branch ending node at the junction. For example, in the above illustration, branch

one is chosen to be the reference branch and hence Vii
~ i

instead of V~ i,
is the common

voltage at the junction.
A source of I exp (- bt ), b is 5.0, is applied to branch one. The voltage along bunch one

at t
=

7 s is shown in figure 13a. The overshoot, shown in figure 13b, is tile numerical error

due to a fast rise time of the source. Figure13c shows the reduction of the numerical error

when b is 1.0. Figure14 shows the voltage along the other two branches. Analytically the
transmitted and reflected wave should have an amplitude of 0.66 V.
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i
>
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(c)

Fig, 13. a) Voltage along branch one at t
=

7 s, b) Numerical error due to high source rise time.

c) Reduction of numerical error due to the reduction of the slope of the input source.
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0 2 3 4 5

distance (m)

Fig, 14. Voltage distribution along branch two and three at t
=

7 s.

6. Conclusion.

Preliminary results indicate that the TDFE method works well for single-phase transmission

line transient analysis. Work is in progress to extend the method to problems which include

losses, coupled and multiphase lines, nonlinear line terminations and frequency dependent

parameters.
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