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Abstract. This paper presents a specific data processing algorithm for particle size analysis and

a subsequent study under regarding its performances and limitations accidental input data errors

and the limit of resolution of the algorithm.

Introduction.

The precision of panicle size distribution analysis by light scattering depends on two main

features : the measurement precision in the observation plane of the light scattered by a given
particle distribution, and the computation algorithm and its susceptibility to accidental input
data error. The physical phenomenon is described by the theory of Fraunhofer diffraction on

a circular aperture. This paper presents a method for data processing in light scattering
experiments and their response to accidental errors.

1. Theoretical background of particle size analysis.

1.I PHYSICAL ASPECTS. The intensity of the light scattered by a
spherical particle of

diameter a measured along an axis which makes an angle 0 with the incident direction is

Jj "~ sin 0 ~

la, °)
-

C T~1~
/j~~

~

ii)

A
o

where Ao is the wavelength of the incident monochromatic light', Jj ix is a Bessel function of

order I, and C is a constant (C
>

0). The energy diffracted by the spherical particle in the

ring of radii
r~~~

and r~~~ in the observation plane is given by :

~l~, ~int' ~ext)
~

C~~lJilXmt) + J)lXmt) J/lXext) J)lXext)1 12)
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with

xmt,
ext =

)j sin
arctg ~j~~~ 13)

f being the focal length of the lens (the detecting cell is placed in the focal plane) and

Jo(x) is the Bessel function of order 0.

Considering a volumetric particle size distRbution via), (2) becomes

~mw v(~)
~~~lnt' ~CXt~ ~

l
~~~, ~lnt' ~CXt~

~~ ~~~

drum
~

with

£ l~, ~int, ~ext)
~

JilXint ) + J)lXint ) J(lXext ) J)lXext) 15)

and d~~~, d~~~ the maximum and minimum diameters respectively of the considered

distribution, (e~(ri~~, r~~~)) j
=

@ stand for the real measured values which permit the

determination of via), and m is the number of detecting cells.

The data processing raises two theoretical problems :

I) The influence of measurement errors on the values (e~(r~~~, r~~~)).
2) Solving an ill conditioned linear system with m equations. Both aspects will be further

analysed and discussed.

1.2 MATHEMATICAL ASPECTS. From the mathematical point of view (4) is a first rank

Fredholm equation

dmw~l~int' ~ext)
~

Kl~' ant' ~ext) Vl~) d~ 16)

drum

~l~~ tint, rext)
=

cj
~l~~ Lnt, rext)

a

j~~~

K la, q~~, r~~~ is the kemel of the integral equation, via ) the unknown volumetric distribution

(which will be determined) and e(ri~~, r~~~) discrete experimentally measured data. Consider-

ing the detection system as being formed of m detecting cells, e(rj~~, r~~~) is a vector in the

following notation

e
"

(~j)j m " (~j (rint~, rext~))~ ~
(7)

The distribution u(a) is approximated within its definition range (d~~~, d~~) with a sum of

n Gauss-type functions. The assumption of non-gaussian type functions used in the solving of

this particular problem will be discussed further. The analytical form for the Gauss-type
functions which appear in the expansion of u (a) is the log-normal one and is given in (9). This

is one of the most frequent forms used in particle size distribution problems [2]. We will

approximate

n

U(a)
=

£
Ck

gk(a) (8)

k =1

with

(~a In at)

g~ la)
= e

~
; k

=

0 (9)
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c~ is the weight contribution of g~(a) in the approximation of the volumetric distribution,

d~ the median value for the log-normal distribution g~ la), and « is the distribution's

dispersion. Equation (6) becomes :

~~°~~>' '~~>~ l[~"Kla, rut, rex~)
j

c~ g~ja) da

mm
~ ,

~ (dmax
~

i
Ck ~(~, (nt, ~ext) gk la) da

k t drum

n

=

£ c~ K~j, j
=

I, m (10)

k=1

11 0) is a linear system with m equations and n unknowns. We can write it in the vectorial form

as

e =

Kc ill)

where

e
= (e~ (r~~~

,
r~~~ ) ii I a)

> J=i,m

c
=

(c~)~_~ (llb)

K
=

(K~y)k=G, (llc)
j=W

The problem is reduced to determining the weights (c~) which permits according to (8) the

approximation of the volumic distribution via ). The inequality m m n is obvious, the system
being otherwise undetermined. We are constrained to consider at the most n = m unknowns

(granulometRc classes). In this case we have to solve a linear ill-conditioned system. Thus we

have to apply a regulaRsation method [3, 4] each with its own advantages and disadvantages.
We have experimented the Tikhonov regularisation method which minimizes the functional

m m
2

m

M(j
=

£ £ K~~ c~ e~ + a
£ cl (12)=1~k=>

k=1

a
being the regularisation parameter. Applying this method on two different solving methods

for ill), namely using eigenvalues and a functional we found maxima shiftings and the

existence of local quasiperiodical parasitic maxima. Furthermore, the algorithm revealed an

exaggerated sensitivity to accidental input data fluctuations (less than 5 fb).

These results led us to an altemative for solving ill), namely treating it as an

overdetermined system (m m n). The normal equations were obtained by the least-squares
solution method of an overdetermined system, which in tum, was solved by Gauss

elimination [5].

After solving ill ), the solution vector (c~)~ ~
will be obtained. Let us assume the real

case for determining the distribution via), where~ only some granulometric classes have an

effective contribution, the rest having null contRbution. Thus, in the real case (c~ m
0)

~ ~
Any (c,)

~
0 have no physical meaning. Because the solutions are not exactly determinid,

their computed values will show deviations, both positive and negative, from the real values.

Hence, we expect the presence of negative computed weights (c~) ~0. We suggest
overcoming this impediment as follows. We search for the minimum c value, which will be

denoted as (c~~~). If c~i~ m 0, the solutions have physical meaning and we can determine
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via) from (8). If c~~~~0 we impose c~i~ =

0 based on the following motivation. The

minimum (negative) computed value ((c~i~) ) is necessarily «associated with
»

the real

minimum value (null) because the hierarchy of the coefficients is not altered by their

computation I,e. by solving ill). This process, which will be an iterative one, alters only the

values of the coefficients. Noting that (c~~~)
=

0 multiplies the components (K~,~~~) this

equates to their annulment. We are now at the point of solving an over-determined system
with m equations and n I unknowns. This process will be iterated until all the solutions are

null or positive (c~m0)k=q. Being careful to store the ranks of the imposed null

p<n
coefficients we will reconstruct c thus obtaining the weights which rebuild the volumic

distRbution u la ).

A very important problem is that of choosing the mean diameters for each class

(a~)~ ~
and « (for (9)).

Previo~ls studies [6] have shown that instability attenuation is improved by choosing a

geometrically increasing length for the granulometric classes. The ratio of the geometrical
progression is

d~~~ I/n

~
~ f Ii 3)

mm

The mean diameter d~ was chosen as the mid length interval for the k-th class in a logarithmic
scale :

In (d~i~ R ~ ) + ln (d~~~ R ~

ln a~
= ~

(14)

The
«

value determines the
« coverage »

of the log-normal distributions. High
« values imply

a greater degree of superposition, leading to a lower scale sensitivity. Low « values imply a

smaller degree of superposition and a consequent greater fluctuation in (c~) values. The

minimum value can be determined by imposing a single maximum for the function obtained as

the sum of two consecutive g~ la) functions

(x-Ina,)~ (x-Infi~~j)~

f(x)
=

e
~

+ e
~

x =
In a

f'lx)
=

o jis)
f"(X)

#

0.

This leads to

mm

~lnR.
(16)

The maximum « value is that where gk la)
=

1/2 on the maxima of the neighbouring log-
normal functions (g~

j, g~
~ j

)

~ fi~~~ ~~~~

~~
2

'fi~
~~~~
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Fig. I. The evolution of three particular solutions (cjo, c,,, c,~) during the iterative solving process for

a simulated distribution given by (9), with a=68.3 ~Lm and «
=0.2372 la) -c,o b)-cjj, c)

C>4).
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We chose

Further chosen (or imposed data) were : m
=

16 (the detecting system is formed of 16 cells),

d~~~
=

2 ~m, d~~~
=

360 ~m, Ao
=

0.6328 ~m, f
=

200 mm and n =

14.

2. Results and discussion.

Working in the previously mentioned conditions we developed a routine which tested the

following simulated situations :

A. Recurrent solution evaluation for equation ill ).

B. Monomodal curve analysis with no input data errors.

C. Monomodal curve analysis with ± lo fb and ± 20 fb input data errors.

D. Bimodal curve analysis, having the same amplitude.
E. Bimodal curve analysis, of different amplitudes, with ± lo fb and ±20fb input data

errors.

2.I RECURRENT SOLUTION EVALUATION FOR EQUATION Ill). Studying the evolution of

the n solutions of II I) when recurrently imposing (c~~~)
=

0, we observed their convergence
towards stable values. Figure I shows the evolution of three particular solutions ((cjo),
(cjj), (cj~) during the iterative solving process for a simulated distribution given by (9),

with a
=

68.3 ~m and « =

0.2372. The three particular solutions become stable after four

iterations. Nevertheless the recurrent solving is carried on until all (c~ m 0)~
~

which is a

stronger requirement than the stability conditions.

f
° real d>amefer

lx / compute d d(ame ier

o ioo 2oo 3w d

Parf>cie s>ze diameter fym/

Fig. 2. Simulated and computed maxima values for monomodal curves with no input data errors.
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2.2 MONOMODAL CURVE ANALYSIS WITH NO INPUT DATA ERRORS. We studied the range

a E [2.5, 360] ~m. The relative deviations of maxima for the simulated and computed values

are ~
5 fb for a E (2.5, 160) ~m and

~
lo fb for a E (160, 220) ~m. The routine does not

discem further variations of maxima in the range (300, 360) ~m, displaying a constant value

a =

300 ~Lm. Figure 2 shows the decrease in precision for several monomode curves. This

study offers the opportunity to adopt an appropriate correction for the final solution in order

to permit an accurate evaluation of maxima in the range (160, 220) ~m.

2.3 MONOMODAL CURVE ANALYSIS WITH ± IO f6 AND ± 20 f6 INPUT DATA ERRORS. Since

the input data in the real measuring process may be altered and error affected, this

phenomenon was simulated in the numerical input data with maximum ± lo fb and maximum

± 20 fb input data alteration, respectively. We noticed a greater susceptibility to a error

1-real curve

_---- computed curve

So al f0~m

52 3°°Ym °

I ii 60 pm

~2 3°°Ym
b

~

c

~

j
° I -M°Pm

~? ~~°°/~~
c

~

' i
I

I

o 1ja 2jo 300 d

a~ a ~

Parl>cie size d(ameler / pm

Fig. 3. Bimodal curves having the maxima at : a) ii
=

lo ~Lm, b) a,
=

60 ~Lm, c)11
=

140 ~Lm and

a2
"

300 ~Lm in all three cases. Simulated ( ) and computed (---------) profile comparison.
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affected data in the low particle range. Thus, at maximum ± 20 fb input data errors, with

distributions centred at low values la
~

30 ~m), parasitic maxima may arise and a consequent
modification of the class distribution. Yet for maximum ± lo fb input data errors, both the

maxima positioning and particle size class distribution are preserved on the whole range.
Special care should be devoted to detection precision in the low particle range, which means

an appropriate sensitivity in the peripheral collecting areas.

2.4 BIMODAL cuRvE ANALYSIS HAVING THE SAME AMPLITUDE. A case often met in

practice is that of bimodal distributions. We have analysed such a simulated distribution by
fixing the maximum of one curve (a~

=

300 ~m the limiting sensitivity value discussed in

2.2), and shifting the maximum jai ) of the second curve over the range up to 160 ~m. We

studied the range [2.5, 360] ~m. The routine discems the separated curves only for

ii w160 ~m. This should not be a surprising fact. Two maxima can be separated only if a

local minimum exists between them. Due to the geometric increase in class width,

a >
160 ~m and a =

300 ~m are situated in two consecutive classes and the superposition of

their corresponding distributions no longer generates a local minimum.

Figure 3 shows the deviation of computed curves from simulated ones for three curve pairs
having their corresponding maxima at : a) aj =

lo ~m ; b) ai
=

60 ~m ; c) ai =

140 ~m and

aj =

300 ~m in all cases. When altering the input data by at most ± lo fb and ±20fb

respectively a good maxima stability and procentual class distribution is revealed, mainly for

± lo iii.

2,5 BIMODAL CURVE ANALYSIS, OF DIFFERENT AMPLITUDES, WITH ± IO iii AND ±20iii

INPUT DATA ERRORS. We considered the superposition of two monodisperse distributions
(Cj and C~) having different weights, namely : jai

=

89 fb, a~ =

11 fb), (bj
=

83 fb,
b~

=

17 fb), (dj
=

77 fb, d~
=

23 fb) in the following cases :

a) aj C
j

+ a~ C~
b) a~Cj+ajc~
C) bl ~l + b2 ~2
~) b2~l+bl~2
e) dj C

j + d~ C~
o d~cj +djc~.

Each case was submitted to a maximum input data alterations of ± lo fb and ±20fb

respectively. We worked with the following pairs :

1) Cj.aj=16.8~m, C~.a~=290~m

II) C
j

ii
=

27. 8 ~Lm, C~. a~
=

68.3 ~Lm

III) C
j

ii
=

102 ~Lm, C~. a~
=

290 ~Lm.

The simulation showed that for a single curve contribution less than 11 fb in a bimodal

distribution a) and b) the routine does not discem the two different maxima. Otherwise c)-o

they are well separated and positioned, even at ± lo fb input data errors. The input errors of

maximum ± 20 fb modify only the hystogram's profile, not the maxima positions, within the

limits discussed at 2.2.

The most important conclusion is the lack of effectiveness in the system's capability of data

collecting and processing for mass contributions
~

lo fb in a given bidisperse distribution. The

situation is relaxed in polymodal distributions.
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Conclusions.

The routine succeeds in correctly positioning simulated mono- and bimodal (with different

weights) curve maxima even at input data errors of ± lo fb. Consequently, the experimental
determinations should be conducted with care in order not to exceed the security limit. At

input errors of ± 20 fb, although the maxima position is still reliable, we may observe a more

dramatic percentage modification in class distribution, especially in the lower range

la
~

30 ~Lm).

The routine reveals monomodal curve contributions beginning at 10-lsfb in a more

complex profile.
Presently, the routine is being upgraded and extended with an initial input data processing

(smoothing) routine in order to minimize the influence of accidental errors. Another

altemative routine will be aimed at solving (I I) by using in (8) other distribution profiles le. g.

Rosin-Rammler) instead of the log-normal one and/or a different degree of coverage (another

«), with distinctions among classes.
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