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Rdsumd.- Ce papier de revue est consacr6 aux courants critiques (J) et aux irr£versibiIit6s

magn£tiques darts [es nouveaux mat6riaux supraconducteurs (HTSC). Nous y comparons [es

densit£s des courants critiques effectives d£duites h partir des techniques exp£rimentales [es plus

courantes (transport, cycle d'hyst£r6sis, susceptibilit£ altemative, ...). L'influence de l'6chelle du

temps de la mesure et de la taille effective de l'dchantillon sur [es divers critbres d£fInissant J est

examin£e en d£tail. La d6pendance de ce courant en fonction des joints de grains (« liens

faibles »), du degrd de texture et des autres ddfauts physiques et chimiques est discutde. Le rble

du champ propre est clarif16. Le courant critique est tr~s d6pendant de l'anisotropie de

l'6chantillon dons pratiquement toutes les conditions exp6rimentales. L'ancrage intrins~que est

d6t£riord par [es d6fauts. Le r&le des effets ddmagn6tisants et de la surface de l'dchantillon sur [es

r6sultats exp6rimentaux est pass6 en revue. Les modbles de l'6tat critique et de
«

flux creep » sont

rappelds en insistant sur [es aspects [es plus sp6cifiques des HTSC. Un modble th60rique est

propos6. Il tient compte de l'aimantation r6versible, des aspects granulaires et reproduit h la fois

[es propri6t6s [es plus typiques des cycles d'hyst£r£sis et de la susceptibilit6 altemative. Plusieurs

forrnules nouvelles g6n6ralisant le modme de Bean en sont d6duites. Elles montrent comment

tenir compte des dimensions des grains (mat6riaux granulaires), du rayon macroscopique, de

l'anisotropie et des effets d6magn6tisants, dans certaines conditions. Plusieurs limites au-dell

desquelles [es concepts classiques de I'£tat critique cessent d'dtre valides sont 6galement
exarn1n6s (1) la limite 61astique oh le champ de mesure est trap faible pour d6p16ger [es vortex, (2)

H
=

H~ de sorte que [es interactions entre vortex sont exponentiellement faibles et (3) H et T

voisins de la ligne d'1rr6versibilit£ oti [es forces de viscosit6 jouent un r&le pr£pond£rant. (4)

H » Hci de sorte que J est impos£ par l'ancrage collectif.

Abstract. This review article is concemed with critical current density (J) and magnetic
irreversibilities in high-T~ superconductors (HTSC). The apparent J derived from different

experimental techniques (transport, hysteresis cycle, ac-susceptibility) are compared. The

influence of time (relaxation effects) as well as the macroscopic size of the sample on the criteria

defining J are discussed. The dependences of the critical current on grain boundaries (« weaks-

links »), texturing and other physical and chemical defects are examined in detail. The role of self

fields is clarified. The critical current is strongly influenced by the anisotropy of the layered

structure practically whatever the experimental conditions. Intrinsic pinning is lowered by

(*) Laboratoire assoc16 au CNRS, URA n° 002.
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defects. Demagnetizing effects and surface pinrtings are reviewed. The usual critical state and flux

creep models are recalled emphasizing the physical aspects most specific to HTSC. A theoretical

model which takes into account the equ13brium magnetization and sample granularity is

developed. It reproduces most of the characteristic features of both the hysteresis cycle and ac~

susceptibility. A number of new formulae are introduced. They generalize the Bean model and

show how to correct for the dimensions of the grains (granular materials), the macroscopic radius

of the sample, anisotropy and demagnetization effects in certain situations. Several limits beyond
which the usual critical state breaks down are discussed : (I) the quasi elastic limit where the

variable field is too weak to depin the vortices, (2) H =Hci so that the interaction between

vortex lines is exponentially weak and (3) T and H close to the
«

irreversibility line
» where the

influence of viscous forces are strong. (4) H » Hci so that J is govemed by collective pinning.
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1. Introduction.

Since the pioneering paper of Bednorz and MUller [I] on the high temperature superconduc-

tors (HTSC) Lai_~Ba~CuO~ and the ensuing discoveries of the now archetypal systems
La~_~Sr~CUO~ (Takagi et al. [2]), YBa~CU~07 (Chu et al. [3]), (Michel et al. [4]) and other

cuprate families [5-12], a huge number of articles have been devoted to investigate the critical

current densities of these materials. From the very beginning of the high T~ story, it was

shown first by Oussena et al. [13] that the intragrain critical current density in La~ _~Sr~CUO~

was as high as
106A/cm2. This result was obtained indirectly by means of magnetic

measurements assuming the Bean model. Since then, magnetic as well as transport critical

current densities up to 5 x10?A/cm~
are currently quoted in the literature, especially in

highly textured epitaxial thin films of YBa2Cu~07 (Chaudhari et al. at 4.2 K, [14]). However,

it tums out that for detailed analysis and interpretations of transport and magnetic
experiments, the relation between the local current density J, entering the critical state force

balance equation [15-17], and the apparent critical current density deduced from experimental
data is generally extremely complex in HTSC. The same remark holds for the derivation of

the pinning barriers associated with these currents. It is indeed known [18, 19] that type II

hard superconductors are characterized by different kinds of supercurrents the manifestation

of which depend both on the experimental conditions (T, H, dimensions of the sample, time

scale of the experiment etc. and the measurement technique employed. For single crystals
and homogeneous materials, these currents can be classified into two different groups related

to the equilibrium magnetization (M~~) and to the irreversible magnetization (M~~)
respectively. Mj~ is in tum connected with pinning forces which act on the vortex lines and give
rise to a local current density J. It is generally this local current density which is tacitly
referred to in the literature as the critical current density. It is important to keep in mind that

this critical current does not include the current associated with M~~. In addition, because of

their ceramic nature HTSC often exhibit both intragranular and intergranular currents. It is

found that the critical current densities of high T~ materials differ from those of conventional

type II superconductors in many important aspects. I find it interesting to enumerate some of

these aspects.
First, apart from their exceptionally high values at low T and low H (in crystallites and in

thin films), the experimental critical current densities generally decrease extremely rapidly
with temperature (T) [20-25], time (t) [26-34], and field (H ) [20, 35-41] (especially near the

irreversibility lines in the last case).
Secondly, the quasi-bidimensionality of HTSC makes their magnetic and transport

properties strongly anisotropic [42-70]. A spectacular and very unusual consequence of the

layered structure is the fact that, for arbitrary orientation of the applied field H with respect to

the crystalline axes, the magnetic vectors H, B and M are no longer colinear. In particular, in

the limit of infinite anisotropy the magnetization is at right angles to the a-b basal planes,
whatever the direction of H except when the angle of the applied field with these planes is

strictly zero (but in such a case M
=

0 as well, for infinite anisotropy). If the anisotropy is

large but finite the angle of M with the c-axis is of the order of the mass anisotropy ratio

m~/m~ where m~~ and m~ are the effective masses of the conduction electrons moving parallel

to the a-b planes and perpendicular to these planes respectively. A serious problem then

arises conceming the interpretation of magnetic data since most of commercial magnet-

ometers used in laboratories measure not the total vector hi but only one of its three

components, generally the longitudinal component M~ (I.e. that parallel to H). We shall see

later that in some experimental conditions (ordinary magnetometers, Foner, SQUID) this

measured component is negligible compared to the «hidden» transverse magnetization
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M~ which is habitually not detected (Note however that on the contrary torque measurements

detect M~ but not M~).
A third unusual feature of HTSC concems their ceramic-like tendency to form granular

compounds leading in experiments to the coexistence of intergrain and intragrain currents

which follow very different H and T behaviours.

In addition, both transport and magnetic data unavoidably include surface equilibrium
currents (J~) circulating around the individual grains within the London penetration depth A.

These currents are related to the London-Abrikosov's equilibrium magnetization M~.
Contrary to the local

«
semi-microscopic

»
critical current density defined by the critical state

equations, these surface currents vary rather slowly with T and H and are independent of

time. Also, as they are restricted to the surface of the specimen their mean value decreases

with the effective radius of the specimen as I/R. For all these reasons, their contribution to the

measured signal can become quite large, especially close to the irreversibility line where J (the
bulk critical current density) becomes vanishingly small. In addition, since their relative

weight grows as I/R, the equilibrium currents can exceed the critical current density J in

granular materials and in thin films (if H is parallel to the film surface in this case) at any
temperature and field. For example, it can be shown from the data of the literature that for

standard YBa2Cu307 the two kinds of currents are generally comparable for a grain radius of

r~ =
I ~m, at T as low as 4.2 K. Then, as the irreversible magnetization drops sharply with T

the equilibrium currents rapidly become predominant at higher temperatures. Of course, real

experiments involve both surface equilibrium currents J~ and bulk critical currents J and the

main question is how to extract out the contribution of interest. This is a very important task

especially when we are interested in determining the pinning barriers which are related to the

bulk current J alone (I.e, not to J) or H~j which depends on the London-Abrikosov's current

exclusively. As a general rule it is easier to correct for equilibrium currents in magnetic
measurements [71, 72] than in transport measurements. The difficulties are the same for the

extraction of the local pinning energies.

Let us ignore for a while the equilibrium currents and consider the local critical current

density J alone. The measured current always represents some spatio-temporal average of the

distribution of J through the specimen. As a consequence the measured current depends on

the experimental technique used, the time scale of the experiment, the shape of the sample,
its magnetotherrnal history, energy losses or heatig and so on. For instance, the time constants

involved in magnetic and transport measurements differ generally by several orders of

magnitude [73] and this can lead to a difference in their apparent current densities because of

the therrnally activated flux creep and the associated time relaxation effects. A second

distinguishing feature between magnetic and transport techniques, particularly important in

the case of high T~, concems the role of anisotropy which manifests quite differently in the

two cases. Also the influence of demagnetizing effects is generally more important in

magnetic than in transport measurements. Finally, magnetic and transport critical current

densities correspond to different averages over the volume of the sample and this also leads to

different results for the two methods even for homogeneous materials. Of course, the

situation is more complicated and the difference between the two measurements techniques

more important in granular materials where, as we shall see, the useful Bean model [71, 72]
breaks down completely.

This review paper is concemed with the critical current density in high T~ materials. Owing
to the above problems our objective is fourfold :

(I) Outline briefly the present status of investigations on the critical current density of

HTSC.

(ii) Investigate in detail and, when possible, elucidate the relationship between the local
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current density J as defined by the critical state [72, 74-76] and the apparent critical current

densities deduced from various physical measurement techniques (transport, hysteresis cycle,
ac-susceptibility, torque etc.) commonly employed to deterrnine such a quantity.

(iii) Review from'an experimental point of view' the results of the literature on J and other

related questions such as the pinning energy, the anisotropy..., having in mind the difficulties

enumerated in the discussion above conceming the interpretation of the experimental data.

(iv) Point out that most of the typical features of magnetic (hysteresis cycle, ac-

susceptibility) as well as transport properties of HTSC can be understood in a unique model

[77] which takes into account simultaneously the intergrain currents connected with the weak-

link network (for sintered granular samples), the intragrain currents and the equilibrium

currents J~ related to the London-Abrikosov's equilibrium magnetization [78-83]. In

particular, this model will allow us to relate the critical current density J to the peak of the

imaginary part, x " (T ), of the a,c. -susceptibility [84-95] as well as to the low-H hysteresis cycle
exhibited by granular superconductors [96-102]. The model can also be applied to more

classical superconductors such as Chevrel phases [103] which exhibit the same kind of low-H

hysteresis loop as HTSC. The same picture describes equally the hysteresis cycles of single
crystals [77, 104] and reproduces some of the most unusual features (low-H peak) of such

cycles.

The subject of primary importance conceming the microscopic origin of the pinning
potentials acting on the vortices and their anomalous temperature and field dependences [20-
25, 30-41] is dealt with only very briefly here. However, we will pay a special attention to the

intrinsic pinning due to the layered structure of HTSC. In particular, we shall show that :

(I) this pinning generally provides a large contribution to the transport critical current,

(2) contrary to ordinary pinning, it is probably deteriored by defects at any concentration and

(3) it is very hard to derive from magnetic measurements.

Conceming intergranular currents, which is the object of sections 7 (experimental) and 9

(theoretical), we shall not discuss in detail the nature of the weak links (SNS, SIS, SSS) nor

their spatial structure. Readers interested in a detailed investigation and in the classification

of weak links are referred to the classical review paper by K. Likharev [105]. A detailed

discussion of the intrinsic role of grain boundaries and other sensitive factors controlling the

critical current density in HTSC can be found in reference [107] by P. Manuel (in French).

Among recent review articles dealing with magnetic and transport properties of HTSC a

paper by A. Malozemoff [108] and another by Tholence et al. [109] present complementary
information on several aspects insufficiently or not at all developed here. A very general

review by E. H. Brandt [110] is very enlightening from both the theoretical and experimental
points of views especially conceming thermally activated depinning and the elastic properties
of the vortex lattice (not studied here). Somewhat similar problems (therrnal fluctuations,

vortex-glass effects, phase transition etc. ) are treated by D. S. Fisher et al. [106]. It is equally
important to mention three interesting papers by Fisanick [lll], by Ekin [l12] and by
Goodrich and Bray [113] which discuss in detail the various factors affecting J and compare

the criterions defining the experimental critical current J (see also A. Gupta et al. [114] for the

dependence of M on the experimental technique). Comparison between magnetic (ac-

technique) and dc-transport critical current densities in NbTi superconductor is carried out by
Hampshire and Larbalestier [lls]. Finally, many important aspects common to all type II

superconductors (whether conventional or new) are treated in the very known review article

of Campbell and Evetts [19] (from which some of the concepts recalled here have been

borrowed).

I.I ORGANIZATION oF THE PAPER. The paper is divided into 18 sections and 2 appen-

dices. It is con.iieved in such a way that each section is as independent as possible of the other
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ones. Therefore, the reader interested in a given subject is not forced to read all the article. In

addition, we tempted to proceed gradually beginning by a brief recall of some general results

and concepts. When possible, we tried to adopt an «
experimental point of view

»
always

insisting on the experimental meaning of calculated forrnulae and on the limit of validity of

common approximations tacitly accepted in the literature. We shall see that some of them are

not valid for HTSC. To facilitate the understanding of the paper and give it a more concrete

content we have made a very extensive use of numerical calculations together with many

illustrative figures.
In section 2 we define and discuss briefly most of the physical parameters (currents, fields,

magnetizations, characteristic lengths) used in this paper. When possible these definitions are

illustrated in various figures Section 3 deals with the usual critical state model and insists on

some of the most common approximations explicitly or implicitly admitted in this picture :

there are features of the hysteresis cycle for which these approximations are not justified,
especially at low H. Section 4 concems flux creep and relaxation effects. Here too, we insist

on the approximations involved in the usual flux creep model and we try to define as clearly as

possible the various energy barriers and the various magnetic terrns intervening in relaxation

experiments. It will be shown in the framework of the flux creep model that the exact spatial
shape of the pinning potential U(r) (experienced by the vortices) plays a fundamental role in

HTSC and in the flux creep approach. Section 5 deals with the various criterions defining the

experimental or apparent critical current densities. Magnetic current (J~~~, defined from the

hysteresis cycle), transport current (J~, defined from V versus I characteristics) and resistivity
criterions and their relation to the experimental conditions, in particular the time scale, are

compared. We shall also show that the notion of critical current density loses its signification
in the so called TAFF limit. In section 6 we consider the influence of the radius of the sample
(assumed to be a very long cylinder to avoid usual demagnetizing effects) on the apparent
critical current density as deterrnined by transport and magnetic measurements, Three

different J versus H models are considered. Here too we shall insist on the differences and the

analogies between magnetic and transport critical currents. It will be seen that the apparent

average critical current (J~~~~~~~~ =

(J(r)) generally depends on the J versus H law and on

the experimental technique used. Section 7 presents experimental results J(H, T) on the

intragranular current of most typical HTSC (single crystals, highly textured thin films and

isolated oriented grains). The influence of physical and chemical pinnings, as well as thermal

treatments on intragranular currents are reviewed. Section 8 deals with experiments on

intergranular current density in polycristalline materials. Textured materials are the object of

section 9 which compares various texturing techniques. It also discuss the physical and

chemical parameters goveming the properties of weak links. In section lo we present a

generalization of the static Bean model, calculate and reproduce the hysteresis cycle of single
crystals and oriented grains dispersed in epoxy resin. The same model calculation is used in

section II for the obtention of the hysteresis cycle of granular dense samples. The results are

compared with experimental data. Complex ac-susceptibility (at high enough excitation field)

is investigated in section12 where x' and x" are calculated numerically using the same

models as for the hysteresis cycle. Different laws for J(H, T are tried and compared in detail.

The relationship between x" and J is clarified for both intra and intergranular current

densities. Frequency effects together with the contribution of flux flow to x" are examined.

The information that can be extracted from x' conceming the fractional volume of

superconducting material are discussed at length. In section 13 we consider the case where the

amplitude of the applied field is so small that the critical state cannot be applied (this

experimental situation is encountered not only in some a-c susceptibility measurements

conditions but more commonly in EPR, NMR and other low variable h measurements). The

implications for the hysteresis cycle, ac-susceptibility and ac-resistivity are outlined. We shall
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show that when the amplitude ho of the altemating field is smaller than some threshold field

h~,i~(T, H, J) the magnetic response of the sample is controlled essentially by the elastic

properties of the vortex line lattice (VLL) and the critical state model is no longer valid. In

addition, it will be shown that the correct treatment of this important point requires a

collective pinning formalism. The elastic penetration depth A~j (see definition in sect. 2) and

the associated magnetizations are derived for various configurations of the applied fields and

the crystalline axes. Anisotropy effects are delt with in section 14 where four different kinds

of anisotropy sources are investigated. We also compare the influence of anisotropy on

transport and magnetic measurements, especially in thin films, insisting on the influence of

the various pinning potentials (both intrinsic and extrinsic). A two-component model for the

interpretation of the cycle for H oriented out of the symmetry directions is developed.
Formulae are established allowing us to correct the experimental data from shape effects and

then relate the anisotropy of magnetization to that of the apparent critical current. In

section 15 we consider briefly demagnetizing effects particularly in the two particular limits of

(I) a very thin film and (2) the case where the field penetration is very small compared to the

dimensions of the specimens. Surface effects are the object of section16 where two distinct

(« intrinsic
»

and
~<

extrinsic ») surface barriers are discussed. Section17 deals briefly with

thermal fluctuations, collective pinning and the irreversibility line. The general conclusion is

the object of section 18.

2. Definition of the critical currents, the characteristic fields and other parameters used in this

paper.

In most parts of this article we shall use usual notations employed for conventional

superconductors. However, it is clear from the above discussion that for the sake of clarity,
and for the detailed investigation of the critical current density, it is helpful to define the

various currents, fields and other physical parameters intervening in transport and magnetic

measurements taking into account the specific features (anisotropy, granularity) of HTSC.

Many of these quantities will be re-examined in more detail later in the corresponding
sections. Other less important parameters will be introduced at the appropriate moments.

Conceming the units we shall often use the Gauss cgs system except for the formulae relating
the apparent critical current density to the hysteresis cycle where J will be expressed in

A/cm2. This introduces the so-called practical units obtained from Gauss ones simply by
replacing c, the velocity of light, by lo (we shall also use SI units in some special cases). This

choice has been imposed to us by the diversity of the notations encountered in the literature

on which this work is based. Correspondence between gaussian cgs and SI units will be

summarized in appendix B.

2.I THE VARIOUS CURRENTS ENCOUNTERED IN HIGH-T~ MATERIALS. Shown in figure I is

a schematic representation of the most important current densities introduced in this paper.

J~ : At the very microscopic level the supercurrent is defined by the Maxwell equation
~ Curl (h ) where h is the local magnetic field defined on the atomic scale. Generally, these

4
gr

microscopic currents are not directly accessible experimentally except in some special and

rather academic conditions as those discussed in appendix A. Here, we shall consider that

J~ is the depairing current. In HTSC, J~ is estimated to be as high as 5x l~f to

10~ A/cm~ at T
=

0 K.

J~: This is the surface current (invoked previously) corresponding to the London-

Abrikosov's equilibrium magnetization. In HTSC, J~ is of order 2 to 5 x
lo? A/cm~ at

T=0K,H wH~i and in the a-b planes. It is divided by the mass anisotropy ratio
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Fig. I.- Schematic representation of the most important current densities exhibited by layered
superconductors. These currents are defined in the text. Their relative contributions to the measured

effective current depend on the measurement technique used (hysteresis cycle, transport, torque,
magnetic susceptibility), the direction of the applied field with respect to the crystalline axes, the

microstructure (granularity), the shape of the specimen and the time scale involved in experiments (the

quoted values are for T « T~).

mjm~~ in the c-direction. Note that we shall keep the same notation, J~, in the presence of a

thermodynamic surface barrier which increases the surface current, see section16.

J The critical state allows us to define a semi-microscopic local critical current density as

J
= c. Curl B (r)/(4 gr) where B(r) is the average of the local field h(r) over a correlation

volume V~ containing a bundle of several vortices (see also [19] p. 231). This current will be

called the local intragranular current (note that for the simplicity of notation we drop the

usual subscript c in the critical current using J rather than J~).
The relationship between these three current densities is discussed in appendix A. Here, we

only note that there are physical arguments which show that for thick enough samples (thicker

than about the London penetration depth) the critical current density J can never exceed a

small fraction of J~, probably J~/K or J~ In (K)/K where K is the Ginzbur-Landau parameter.
K is of the order of 200 in the case of HTSC materials.

J~~,
~

J~,~~, J~~,~~. In the case of single crystals of layered superconductors we are led to

define at least three distinct critical current densities depending on the relative directions of

the c,Jrrent under consideration, the magnetic induction (B) and the crystalline axes. The first

index of J~,~ defines the direction of the current (axis c or a-b planes) whereas the second one

refers to that of the induction B (also assumed along c or a-b). Of course, these three currents

have the same value in isotropic materials but can differ by a factor as high as 104 for

J~~, ~jJ~,
~~

and 500 for J~~, jJ~,
~~

in some HTSC such as Bi-Sr-Ca-Cu-O. This anisotropy is

expected to be the highest at the lowest T and H. Nevertheless, the situation might be quite
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different at high enough temperature near the depinning line. This is because J~~,
~

is expected

to fall off with T and H more rapidly than J~, ~~
[l 16]. This can be justified by two independent

arguments. (I) Therrnal fluctuations of the vortex line lattice are probably more important
(hence more dramatic for J~ when H is parallel to the c-axis than for H lying in the a-b planes.
(2) In conventional superconductors, at high enough field the critical current density drops
with H following a power law of the forrn (I H/H~~)~. Then, the above claim follows from

the anisotropy of H~~ as H~~,
~

~ H~~,
~~

(see below). A more detailed definition of the currents

J~,~ will be given in section 14 dealing with anisotropy effects. It is important to keep in mind

that the critical current J or the associated J;~ are defined according to the state of flux

distribution in the sample during the time of the experiment. Because of flux creep these

currents are lower than the most critical current J~~~ which would exist before vortices begin

to creep over their barriers. In practice this J~~~ is inaccessible experimentally except when T

tends to zero. At this point, we note that throughout this paper we shall neglect any residual

anisotropy in the a-b planes (otherwise we should introduce six, rather than three,

J~,~ currents). This is not always strictly justified, particularly in the case of untwinned

materials or in the presence of modulation structure existing only along the b-axis [l17]
(nevertheless, such a in plane anisotropies are readly negligible in general).
J~ and J~~~. Each of the current densities J~~,~ J~,~~, J~~,~~ or J~ defined above can be

obtained either magnetically (J~~~) or by transport measurements (J~). However, due to our

unability to control completely the geometry of the flux lines, especially those associated with

the self field, all of these four currents are in general simultaneously present in the

experimental data. In addition, the four terrns are often mixed in such a way that their relative

weights depend both on the shape of the specimen and on the experimental technique
employed.

In other words, we generally have :

J~~~~~~~~ =
aJ~~

~
+ pJ~,

~~ + yJ~~,~~ + &J~ where a, p, y and are weighting coefficients

which depend on the experimental conditions.

J~i and J~i,
~.

In the presence of weak links as in sintered granular materials, we can also

define (following Josephson [18]) a «
local

»
intergranular critical current density J~i as well as

an edge or surface like current J~i,
~

typical of the junctions. The latter current has the same

physical meaning as J~, the London-Abrikosov's current in bulk materials. As in this case, it is

related to a «
reversible magnetization

»
and restricted to the Josephson penetration depth

Aj at the periphery of the junction (for more details see [97]). J~i will be called the local

intergranular current. Naturally these currents depend not only on the nature of the junction
(SNS, SIS, S'S'S) but also on the relative orientations of the crystallites bordering it (I,e the

mismuch between the crystalline axes).
J~i,~, and J~i,~~~. Here too, it is useful to distinguish between the intergranular critical

current densities derived either from transport or from magnetic measurements.

Jj is the reversible current of an ideal (defect free) Josephson junction. In analogy with

J~ it is restricted to the Josephson penetration depth Aj.
We shall see that because of the self-fields (I,e, the fields created by the currents flowing in

the sample) there are some situations, especially in the case of sintered materials, where the

measured current (J~i, ~(H), or J~i, ~~~(ll~ ) at a given applied field H is very different from

the actual one (J~i(H)) at the same field. We shall also see that it is generally possible to

define a characteristic radius Ro above which both J~i,
~~

and J~i,
~~~

are different from the local

current J~i and different between them.

J~ is the extemal applied current density (imposed by the power supply). It is used in

resistivity measurements to recall that it is generally different from the critical current density
J.



1054 JOURNAL DE PHYSIQUE III N° 7

Ip. By analogy with the field H~ of full flux penetration, it is the value of the applied
current (in V versus I measurements) at which the current arrives at, or as close as possible, to

the centre of the specimen. Note that this definition, which amounts to assume that the

current penetrates the sample gradually as a function of the applied I, is only valid in the

critical state model.

2.2 THE VARIOUS CHARACTERISTIC FIELDS AND TEMPERATURES ENCOUNTERED IN

LAYERED MATERIALS. Associated with some of the above critical current densities are the

characteristic fields represented in figure 2.

H~i,~ and H~i,~~ are the first critical fields of individual grains and single crystals for H

parallel and perpendicular to the c-axis respectively. It is to be noted that the entry of vortices

can eventually be delayed by the presence of a thermodynamic surface barrier (see section 16

for more explanations) introducing a second entrance field H~
~

H~i.
H~ is the entrance field for a defect free material having a perfect surface (on the atomic

scale in order to avoid local demagnetizing fields see 16.3.I).

H~~,~ and H~~,~~ are the upper critical fields defined as above (some times called

H~ and H~ respectively, in the literature).

H~ is the usual thermodynamic field which is isotropic and approximately equal to

(H~i H~~)~'~

Hi : It is the experimental first penetration field. Because of demagnetizing fields and

imperfections in the vicinity of the surface, which hinder the movement of the vortices, the

effective penetration field can be very different from both H~ and H~i (see 10.6 and Fig. 50).
The experimental situation is extremely confusing at present.

Hj. It is the first critical field of a single Josephson Junction.

Hi : It is the apparent first critical field of the weak link structure as deduced from

magnetic measurements. This filed is defined rather phenomenologically and is generally
significantly higher than the true Hj. This point will be discussed later.

H] is the apparent Josephson decoupling field between adjacent grains. Just as for

Hi defined above, this field is generally badly defined from experiments.
Hj[~. These fields represent the irreversibility lines (in the T-H plane) defined mathemat-

ically by the equation (, ~(H, T
=

0 (I,e. the vanishing of the critical current densities given
in Fig, I). This line is also called the depinning line.

It is to be emphasized that the real meaning of these lines is not clear at the moment,

though it is almost certain that they do not correspond to a therrnodynamic transition in the

vortex lattice. In addition, if they are associated with the usual therrnally activated flux creep

then they should not be well defined and would represent a crossover region from flux creep

to therrnal assisted flux flow and to flux flow regimes. In this case, they should depend on the

size and the preparation of the sample as well as on the experimental conditions including the

technique of measurement employed. Systematic studies of such effects should help clarifying
the present speculations, often unfounded, about the physical nature of these lines. In fact we

believe that in most experimental conditions it is more correct to call it a J (or E) constant line

(E is the electric field). This is because it is defined by some (more or less arbitrary)
experimental condition such as J

=
0 for the magnetic criterion. However we know that there

is always some experimental uncertainty AJ on the value of the measured current, even

though this current is taken to be equal to zero within this uncertainty. As a consequence it is

very obvious from the experimental point of view that the line will depend strongly on the

experimental technique employed and on the sensitivity of the experiment. In particular it has

not much meaning in transport measurements if one uses the usual electric field criterion

E
=

constant. Of course in this case it is a constant E line. For the sake of simplicity we will
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Fig. 2. The lower graph is a schematic representation of the temperature variation (log (H~ T

scales) of the first critical fields H~~
~

and H~~, ~~
(parallel and perpendicular to the c-axis respectively),

the upper critical fields H~~,~ and H~~,~~. The upper graph corresponds to the field H( of the first

penetration of vortices within the weak links. H( stands for the Josephson decoupling field of the same

junctions. The irreversibility lines are defined by H][,~b, H]I
c,

Hl'~b which would correspond to the

critical current density J,~ sketched in figure I. Inset : the solid curve represents the field profile within

the sample (assumed to by cylindrical) and the field 4 wM~ induced by the London-Abrikosov's

currents J~ (this field is restricted to the London's penetration depth A « R). Also defined are the field of

complete penetration H~ and the Bean field H~ (dashed curve) obtained by the interpolation of the

linear region of the field profile.
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use the notation H~ to designate the irreversibility line when the anisotropy effects can be

ignored.
T, represents the temperature of the irreversibility line. It is defined by the implicit

equation J(T~~, H~~)
=

0 (to within the experimental uncertainties just discussed).
Apart from the applied extemal field H we shall also introduce the following fields in the

calculations :

H~~. The therrnodynamic field relating the equilibrium magnetization and the magnetic
induction. From the therrnodynamic point of view H~ is defined by the gradient with respect

to B of f, the Helmoltz free energy per unit volume, by H~
=

4
w

VJ (see [19] p. 214 and

215, see also Fig. 4b for a schematic illustration). Note that we have used here the notation

H~~ to distinguish this field from the other therrnodynamic field H~ (already introduced) the

square of which is proportional to the condensation energy :

M~ dH
=

Hj/8
w.

'

o

H~~~,~. It is the effective field existing at the surface of the specimen (including the

demagnetizing contribution H~ for samples of arbitrary shapes).
H~~~. It is the effective field seen by the vortex lines at the surface of a very long cylindrical

specimen (inset Fig. 2) : because of the field induced by the equilibrium currents circulating at

the surface of the specimen this field is different from the applied field even for a cylindrical
sample with no classical demagnetizing effect.

Bo (or Ho) and To They define some characteristic scaling field and temperature goveming
the variation of J

=

J(B/Bo, T/To) with B and T. In other words. J is assumed to depend on T

and H through the reduced variables B/Bo and T/To (in the simplest situation).
H~. It is equal to the applied field at which the first flux lines just arrive and meet at the

centre of the specimen during the experimental time scale (inset Fig. 2). H~ is a shape
dependent field.

H~,
~~~

is the field of full penetration which would exist in the absence of flux creep (such as

at T
=

0) or before flux creep takes place.
H~ is the usual Bean field defined in the case where the critical current density J is assumed

to be independent of H (as in the original Bean model). It coincides with H~ when

Bo tends to infinity (inset of Fig. 2). Remember that the definition of the fields

H~, H~ and H~,~~~ assumes the validity of the critical state model.

H~~~i and B~~ represent the cooling field and the associated magnetic induction respectively.
Hjj, Hi These fields intervene in the transport measurements of

J~~ and mean that the

applied field is either parallel or perpendicular to the mean direction of the macroscopic

current (more on these parameters in the appropriate sections).

hi,
~~.

It is the field at which the Bean penetration depth Ar is just equal to the range

r~ of the pinning well (Ar and r~ are defined below).

h~,~~. This is a threshold field below which the critical state is no longer valid and the

magnetic response imposed by the elastic displacement of the pinned VLL. It depends on the

experimental conditions and is anisotropic (see section13 for its exact definition). It is also

the field at which Ar
=

A~i where A~i is the elastic (or Campbell's) penetration depth defind

below. We shall see in section13 that for the critical state model to be valid we must have

H m max (hi
~ ; h~, u~).

2.3 THE VARIOUS MAGNETIZATIONS ASSOCIATED WITH LAYERED SUPERCONDUC-

ToRs. Because of the anisotropy we must in principle indicate the direction of H in the

definition of the measured magnetization. For the sake of simplicity we defer these definitions

to section14 conceming anisotropy effects.
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M~~. It is the London-Abrikosov equilibrium magnetization already seen.

M~~ =

(M+ -M~)/2 : This is the irreversible magnetization induced by vortex pinning.

M+ and M~ correspond to the upper and the lower branches of the hysteresis cycle

respectively (Fig. 3). The mathematical relationship between M~~ and the applied field, H,

depends on the considered branch of this cycle (see Fig. 3). As a consequence we are led to

distinguish between the following magnetizations.

M~~. It is the virgin or initial magnetization measured after zero field cooling. It

corresponds to a subcritical state in which the magnetic flux and the current loops have not yet

reached the centre of the specimen (Fig. 3).

M~y~. The sample is in a critical cyclic state. It is this magnetization which is related to the

critical current density in the famous Bean model (Fig. 3).
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Fig. 3. -a) Schematic definition of the various branches of the hysteresis cycle of a hard type II

superconductor. OO* is the virgin or initial magnetization. A'B and B'A define the cyclic critical state

whereas BB' and AA' refer to reversal states. Also shown is the field H~ at which magnetic flux just
arrives at the centre of the specimen (assumed to be cylindrical). The lower figures represent the field

and current profiles associated with M~~, M~~~ and M,j respectively. M~ is taken equal to zero (for

simplicity) and J is assumed to be independent of H so that H~
=

H~ (see text).
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M~i. This magnetization corresponds to a reversal state characterized by the existence of

both clockwise and anticlockwise currents in the specimen (Fig. 3). Remember that in real

conditions the hysteresis cycle has a more complicated shape than in figure 3.

M~ and M~ are the longitudinal and the transverse magnetizations defined with respect to

the direction of the field H respectively.

2.4 THE VARIOUS CHARACTERISTIC TIMES AND LENGTHS TYPICAL OF LAYERED SUPERCON-

DucToRs. Because of their pronounced anisotropy and because of their large Guinzbur

Landau parameter K
=

Aft (A and f denote the London penetration depth and the coherence

length, see below) high T~ superconductors exhibit a large number of specific properties which

are characterized by different time scales and lengths. Some of the parameters we are going to

define are seldom used in this paper but are worth mentioning as they are currently employed
in the literature. At first we define the effective masses of the charge carriers (electrons or

holes) as they enter many fundamental quantities :

m~~ and m~ are the effective masses of the conduction electrons (or holes) moving parallel to

the a-b basal planes and along the c-axis respectively. Many properties of HTSC are related to

the factor r
=

(mjm~~)~'~ (~ 6 for YBaCUO and 60 for Bi and Tl based cuprates). This is

illustrated in the equations of the characteristic lengths and fields given below

~2
~ l/2

A~~ =

°~

4 grn~ e~

This is the London penetration depth associated with the screening currents flowing in the

ab planes. We recall that c is the velocity of light, e the charge of the electron and

n~ the density of the superconducting charge carriers

~2
~

l/2

A~
=

~

4 grn~
e2

This is the London penetration depth associated with the screening currents directed along
the c-axis. The simplest way to visualize such a penetration depth is perhaps to imagine a slab

semi-infinite in the c-direction with the applied field H parallel to both the a-b planes and to

the slab. Now, it is worth racalling that it is often assumed that varies with T and B as

~ ~
B

j~ ~~~~ ~4j-1/2
0 f

~~~

c

c2

This
« two fluid

» temperature law is empirical and has no firrn theoretical basis. It is more

appropriate for type I superconductors and gives the correct feature [I -T/T~]~~'~
near

T~

hu~, ~ ~
[2 E~/m~]~'~

~~
" A(0)

aT
A(0)

is the coherence length along the c-direction for T close to zero. Here u~,~ and

E~ are the corresponding Ferrni velocity (along the c-axis) and Ferrni energy respectively,
whereas A(T) is the energy gap

~ab
iiii~

-

h
12 ifijjii/2
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is the coherence length in the a-b planes (see also Abrikosov's book [78b] p. 450, 451). It is

worth recalling that near T~, f is often assumed to vary as

T~ 1/2

f(T)
=

0.7 f(0) (generally Valid near T ~)
T~ T

The following remarks are of interest : (I) These expressions are calculated in the so called

clean limit in which the electron mean free path (I is much longer than the coherence length
f. (2) It is clear that the anisotropies of A and f are exactly inverse of each other. (3) It is

worthrecalling that A(0) is related to T~ by the forrnula A(0)
=

1.864 kT~ valid in the BCS

theory. (4) However, it seems that this property is strictly true only if the energy gap

A(T) is itself isotropic (a question not yet completely clarified in HTSC). (4) Finally it is

important to remember that the critical fields H~i and H~~ are related to A and f by

4~o
H~i

=
~

ln (A/f)
4 WA (T)

and

~
4~o

~~
2 grf(T)2

Here 4~o =
2 x 10 ? G/cm~ is the elementary flux quantum. Therefore, they will also exhibit

opposite anisotropies.
Aj is the Josephson penetration depth.

A~,~~~ is the effective penetration depth for non ideal samples: because of surface

imperfections the experimental penetration depth (deterrnined by magnetic techniques) is

generally a combination of London and Josephson lengths. For this reason (among others), it

is generally different from the one inferred from mSR experiments for instance. This is

because in this case the penetration depth is averaged over the whole volume of the sample.
Ar(H)

=
R r* (see Fig. 3) is Bean's penetration depth which depends on J and H.

&i~ is the flux flow skin depth.

&~~~~~
is the thermal assisted flux flow skin depth.

A~ is Campbell's penetration depth. When the applied field is not strong enough to depin
the vortices the penetration of flux is controlled by the elastic properties of the VLL.

A~i and A,~,~t are elastic penetration depths which generalize Campbell's penetration depth
for various configurations of the applied fields with respect to both the surface of the sample
and the crystalline axes (for anisotropic materials).

Depending on the experimental conditions (in particular on T, H,
w

and the microstruc-

ture), the penetration of magnetic flux is govemed by one or another of the above

characteristic depths. As developed in 13, these lengths depend also on the various kinds of

anisotropy present in the material. In general, these lengths are most easily illustrated in ac-

susceptibility measurements. However, in this paper we are mainly concemed with the critical

state model (except Sect, 13) where the penetration of vortices is described by Ar(H).

X is the hopping or jump distance of the flux bundle.

r~ is the range of the pinning potential (for the sake of simplicity these two parameters are

assumed to be equal throughout this paper).
V~ is the volume of the vortex bundle involved during flux creep events.

V~
=

L~ RI is the correlation volume entering the collective pinning theory (To avoid any

confusion, it is important to keep in mind that the same notation, V~, is used to define the

electric potential associated with the critical current I~ when investigating the V versus1
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characteristics). Here L~ and R~ are the longitudinal and transverse correlation ranges (I.e.

along and perpendicular to the vortex direction respectively).

V~ is the fractional volume (or packing factor) of the superconducting material.

v =

voexp[- U/kT] is the flux creep frequency while v~i and v~ are characteristic

frequencies of the VLL in the pure flux flow state and in the presence of strong pinning
disorder (U is an effective pinning potential). In the literature on superconductivity these

frequencies are generally referred to indistinguishably as phenomenological attempt fre-

quencies. In view of their central role in flux creep effects, particularly in resistivity data, we

shall try to clarify their physical origins.
ro(= vi ~) is the time needed for the vortices to begin to creep out of their potential wells

(formally speaking, To measures the life time of the most critical state that could be built up
immediately after an instantaneous application of a field equal or greater than H~, ~~~).

r~~~= r~~ or r~~i~ is a diffusion characteristic time associated either with
&~~ or

&~~~~
respectively.

r
is a correlation time which enters the argument of the logarithmic relaxation

(In (t + r)/ro) of the metastable magnetization M~~ and which depends on the experimental
conditions including T, H, J and the size of the sample under study (*).

r~~~ is the time constant of the measuring apparatus such as the integration time of a lock-in

amplifier.
It is to be emphasized that all of the above factors (except r~~~) are anisotropic as will be

discussed in the appropriate sections.

2.5 THE VARIOUS PINNING POTENTIALS ENCOUNTERED IN HARD SUPERCONDUCTORS.

U(r) : It defines the spatial profile of the pinning potential felt by a vortex line at site r in the

limit J
=

0 (I,e, there is no flux gradient and no Lorentz force). Because of the interaction

between vortices U(r) can depend strongly on H and T, especially in the limit of weak pinning
where the collective pinning theory is more appropriated than the usual flux creep picture
considered here : for the sake of simplicity we shall assume here that the pinning centres are

independent from each other (except in few cases such as sections 13 and 17).

U(T, H, J) : If J is different from zero, a moving vortex (whatever the origin of this

movement : creep, flow, thermal fluctuations, has to work against the Lorentz force. This

is why U depends on J. Moreover, because the experimental time scales are generally much

larger than the characteristic time scales of the VLL (for instance
r + f » To is generally true)

the dependence of U on r is averaged out during flux creep and other vortex movements

involving displacements larger than the range r~ of the pinning potential.

U~ This is the amplitude of the pinning potential. U~ w
U(r

w
0)

w
U(J

=

0), though

U~ is generally a not well defined quantity.
US : The effective potential barrier entering experimental data depends on the experimen-

tal technique employed. For the very usual magnetic measurements, it is noted US.

3. Critical state at zero temperature.

To help the understanding of the various subjects considered in this article it is useful to recall

that first very briefly the magnetic and transport behaviours of ideal type II superconductors
(I.e. without any extrinsic pinning forces) in which the critical current density J (as defined by
the critical state) is equal to zero if the material is isotropic (no intrinsic pinnings). Also, since

(*) It is often not realized that many experimental data depend on this factor which is generally not

accounted for in comparing with theory. In many examples of the literature
r

is taken equal to I-lo

seconds to avoid the divergence of In (t) at t
=

0).
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the notion of critical current density is closely related to the concept of the critical state it is

important to discuss briefly the basic assumptions of this state. A short discussion of the more

general model of collective pinning is presented in the last section of this paper.

3.I FIELDS AND CURRENTS IN IDEAL TYPE II SUPERCONDUCTORS. According to Ab-

rikosov's theory [78] the vortex density B(H)/4~o in an ideal type II superconductor has the

same value at any point of the specimen, except close to the surface in the London

penetration depth A (T). In addition, B(H) depends only on the applied field H and not on

the way the field has been increased from zero to its final value : in modem language this

means that there is equivalence between the field cooled (fc) and the zero field cooled (zfc)

states.

M~~ (H) and the associated B (H ) curves are shown schematically in figure 4a and figure 4b

respectively. The continuous curves correspond to conventional materials with relatively low

Hc~ H

'

I
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~ ,''"~~
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~t ',
'

~
' j'

'J
~#

'
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,~q~~

/(l~~
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J

J
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Fig. 4. -a) Schematic representation of the equilibrium reversible magnetization of conventional

type II superconductors (solid line) with moderate and laboratory accessible H~~ and of HTSC with very

high H~~ (dashed line, T«TJ. b) Schematic representation of the magnetic induction B(H) of

conventional type II superconductors with moderate H~~ (solid line) and of HTSC (dashed line,

T«T~). Recall that B(H~ is related to M~(H~ by equation(I) and that H coincides with

H~ here (no demagnetizing field).
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H~~. The dashed curves correspond to high T~ for which H~~(T « T~) is generally much higher
than laboratory available fields.

Sketched in figure 5a and figure 5b are the distribution of the fields and the London surface

currents associated with the equilibrium magnetization represented in figure 4a.

Shown in figure 6 is the distribution of currents within the same wire as in figure 5 but here

the sample is fed with an extemal current whereas the applied field is equal to zero. It can be

shown that in this case (H
=

0 the average transport current density is about H~i/R (in the

limit R»A(T) where R is the radius of the specimen). At higher field such that

H~~~,~~H~i we expect that the bulk critical current J
=

0. However, the general case is

probably more complicated. For example, it is likely that even in the mixed state (defined by

H~~~,
~

~
H~i) a thin specimen of thickness comparable to A (T) and less is not necessarily in a

dissipative flux flow state and could carry an apparent J different from zero. This might
happen either because the London-Abrikosov's surface currents or because the intrinsic

pinning (for layered superconductor, but see anisotropy section (14) and appendix A for a

more detailed discussion of this point).

@

H>H
,

4nM~~(H)
Ho

o~
~- §F_Hci

@

J~
j

s ,
o----

Fig. 5. Profiles of the local induction B(r) (a) and the associated reversible surface currents (b) in a

cylindrical sample of a perfect type II material for H w H~~ (left side) and H m H
~,

(right side). It is to be

noted that in both cases the currents are restricted to the surface of the specimen within the London

penetration depth A(n.

' Superconductor
'

Fig. 6. Distribution of currents within a perfect superconductor fed with an extemal current I the self

field of which satisfies the condition H~~wwH~~. There is no extemal applied field.
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In the above curves H, B and M~ are related by Gauss equation :

B =H+4grM~~(H, T). (I)

The following remarks are of interest for the forthcoming discussions :

(I) For ideal type II superconductors H coincides with the thermodynamic field

H~~ defined previously.
(ii) It is known ([78, 79], [118, p. 68-69], [120, p. 152]) that in the so called London

approximation the theoretical M~(H ) curve has an infinite slope at H
=

H~i whilst it varies

extremely slowly with H for H » H~i. Neglecting demagnetizing effects we have :

4 grM~~(H, T)
=

H (H w H~i) (2a)

aM
4 gr

fi (H H~i
-

0~ ) (2b)
3H

H
~

H~j
~ w

aM~ H~i
~ "

aH 2 H In (A If
~~~~ " ~ " ~

~~
~~~~

(iii) Throughout this paper we shall use such classical London's approximation. It is to be

noted however that more general theoretical treatments by Buzdin et al. [80, 81], by Zhidong
Hao et al. [82] and by Zhidong Hao and Clem [83] reveal that these expressions are severely

modified by vortex core effects, particularly near the critical fields H~i and H~~. For instance,
according to Zhidong Hao and Clem [83] the contribution of the currents circulating very
close to the vortex cores lead to an equation of the form :

4~o
M~~ =

p (H, T )
~

ln [a (H, T H/H~~] (H » H
~i

) (3)
8 WA

Here a(H, T) and p(H, T) are fitting parameters which vary slowly with field and

temperature (approximate values valid in restricted field domains are given in reference [83]).
(iv) The experimental occurrence of a singularity in M~~(H) at H

=
H~i requires that : (I)

the material is perfect on a scale much larger than the London penetration depth
A (T and (2) the demagnetizing field is zero everywhere in the specimen. Both conditions are

very difficult to realize in practice even for conventional superconductors. In fact, it can be

shown that the higher the critical current density J (see below) the smaller the change in the

slope of the measured magnetization at H
=

H~i, and thus the smaller the singularity at

H
=

H~i. The situation is expected to be more serious in HTSC because the vortices are softer

here (especially near H~i) and thus can be more easily deformed and attracted by the potential
wells of any defect.

(v) Since, from Maxwell equations the local current is proportional to Curl (B(r)), the

spatial uniformity of B (far from the surface (Fig. 5)) implies that a perfect type II

superconductor cannot carry any «
volumic

» or «
bulk

» current (Fig. 5b). It is to be recalled

however that the specimen always carries surface shielding currents extending over the

London penetration depth A(T). It is these currents which give rise to the equilibrium
magnetization M~~(T,H). Therefore, ideal superconductors are of no use for technical

applications (at least for materials thick compared to A (see also Appendix A for more

details).

3.2 THE CRITICAL STATE AT T
=

0, THE CRITICAL CURRENT AND THE PINNING FORCES. In

real materials there are imperfections which pin the vortex lines. Then, pinning leads to

irreversibilities in the vortex distribution, I,e, in B, and hence in the magnetization
(M

=
(- H + B )/4

w ). The result is a non equilibrium magnetization (M~~, Fig. 3) which adds
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to the equilibrium magnetization discussed above. M~~ is induced by local currents called

critical currents densities J (already involked) which exist within the interior of the specimen.
Usually, the material is homogeneous and the critical current density does not depend
explicitly on the point r within the specimen. In this case, the dependence of J on r is indirect,

via other parameters such as B(r) and T(r). This is not the case for sintered granular
materials nor for insufficiently oxygenated single crystals for which J depends directly on r. It

is not the case for surface pinning either.

To relate the irreversible magnetization to the field and current profiles within the interior

of the specimen, Bean [72] introduced the critical state concept and assumed that the critical

current density at any point r of the sample can only take one unique value among three

different states J, J or zero, depending on the past electromagnetic history of the sample at

point r. Moreover, in these conditions the resistivity of the specimen is assumed to be strictly

zero and as a consequence there is no time relaxation effects in the magnetization (except
those imposed by the Maxwell equations during variations of the extemal fields, see the end

of Sect. 4.2). As will be discussed in the next section, this hypothesis is equivalent to the

assumption that Tw 0. Bean's model is particularly useful for H ~H~ where H~ has been

defined previously as the extemal field above which the sample is entirely penetrated by
magnetic flux down to its core (these points will be developed in detail later). In such a critical

state and under the assumption that J depends only weakly on the applied field then the

current density and the equilibrium magnetization are related to the hysteresis cycle by the

two equations below [71, 72] in which R is given in cm, J in A/cm2 and M in emu/cm3

(« practical units
»

obtained from c.g,s. units by replacing c, the velocity of light, by lo) :

J~~~ =

15
~~ ~

=

30
~"

(4)

Mrev
"

~ ) ~
(5)

As introduced originally by Bean, the critical state concept was purely phenomenological.
Its microscopic nature and foundation were clarified by Friedel et al. [75] and by Anderson

[74] who showed that a vortex line is submitted to two kinds of force densities :

(I) A magnetic pressure exerted by the neighbouring vortices which, in some limit, is

equivalent to a Lorentz force density F~ acting on the vortex under consideration and thus

proportional to the critical current density J at the vortex site.

(ii) A pinning force density acting on the same vortex line and arising from structural

defects. The hypothesis of the critical state lies in the fact that this force can take any value up

to a threshold limit Pv. As long as the amplitude of the Lorentz force F~ is lower than

Pv the vortex lattice is rigidly locked to the crystalline lattice through the defect structure.

Naturally, this is only true if the defect itself is not mobile, a not impossible situation (near

T~) with light defects such as oxygen vacancies or perhaps traces of hydrogen atoms. Above

Pv the vortex lines are depinned and start to move under the resulting force F~ Pv. Then,

the material is said to be in a flux flow state in which the movement of the vortex lines is

damped by viscous forces uniquely (we shall ignore these viscous forces for the moment, they
will be considered briefly in the next section and in more detail in section 12 in relation with

frequency effects. Keep in mind that F~ and Pv represent the forces acting on the vortices

crossing the unit surface ([118], p. 83-84).

In the simplest case of homogeneous and isotropic materials the force balance equation of

the critical state at T
=

0 takes the form :

B aH~~(B) B aH~aB BaH~

4 w ax 4 w aB ax c aB
~ ~~' ~~~
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We recall here that H~~(r) is the thermodynamic field defined mathematically by equation
(I) in which we must replace H by H~~ (thus H~~ has no real existence within the material

except that it coincides with the applied field at the surface of the specimen in the absence of

demagnetizing effects (see Ref. [l18] page 84]. It is related to the local B(r) and to the

equilibrium magnetization by equation (I) and, hence, can be deduced unambiguously from

the curves of figure 4 for any value of B(r) even for dirty superconductors. Remember

however that the definition of H~ from equation (I) is only valid for ideal superconductors. In

view of the considerable interest of the above equations it is important to keep in mind the

conditions under which they can be applied for the analysis of experimental data.

(I) At first, the currents intervening in macroscopic measurements are related to

curl (B(r)) and not to curl (H~(r)).
(ii) Secondly, in the literature. it is commonly assumed that BWH~~ and hence

aH~~laB
w

I in equation (6) above. As can be seen from equations (2) and (3) this is justified
only at very high field such that H and B (r) » H~i everywhere in the specimen. Indeed, since

we know (Eq. (2)) that M~ has a logarithmic singularity at H
=

H~i, this assumption is only
valid for B (r) » H~i. To prove this claim we can put equation (I) in equation (6) and rewrite

the latter as below (valid for isotropic materials) :

B aM~~
-J

=
+ 4 w P

v
(7)

C °Heq

Customarily, it is assumed that at H « H
~~

the pinning force density. P
v,

is proportional to

the vortex density and thus to B. In other words Pv/B is the pinning force per vortex. Then for

individual pinnings and in the limit am~~laH~~
w

0, J should be independent of H. Then, in

these conditions it is clear from equation (7) that for H~~ l> H » H
~i

the critical current density
should be independent of B (and thus of H).

(iii) Nonetheless the above equation together with equations (2) and (3) predict that J

should be strongly enhanced (relatively to its high field value) in the region where the relation

B (r) » H~i is not satisfied. We in fact believe that this effect explains to a large extent the

characteristic peak exhibited by the hysteresis cycle of HTSC near the origin H
=

0 (see
Sect. 7-9). According to a suggestion by Aguillon, this peak can also be enhanced by
anisotropy effects : at very low vortex density the vortices are bended by defects allowing for

intrinsic current J~~,~~. This current would be supressed by high H (see Sect. 14 and 15 for

details).
(iv) It is to be emphasized too that because of the anisotropy of HTSC, the vectors B, H

and M~ are not parallel for an arbitrary orientation of the applied field with respect to the

crystalline axes. Obviously, in the presence of anisotropy equations (6) and (7) must be

modified accordingly.
(v) In concrete problems the interaction between defects (which are not necessarily

independent) and the rigidity of the vortex lattice render the computation of the resulting
pinning force acting on this lattice extremely complicated.

To account for the long range structure and interactions of the vortex lattice, the notion of a

Lorentz force (and the associated Eq. (6) must be replaced by a more general description
based on the elastic constants of the vortex lattice [I lo, 126] (see also [19] page 233). For

instance, the sharp peak sometimes exhibited by the J(H) curve of conventional materials

close to H~~ [127] arises because the vortex lattice shear constant C~~ falls to zero quadratically

as H~~ is approached (see [19] p. 326) : the vanishing of C~~ allows each vortex to minimize its

energy locally by locking with the local defects. When C
~~

is very large the lattice is rigid and

the pinning is very low as it is determined by the statistical pinning limit conceming the whole

rigid lattice (see [l10]). It tums out that using such a generalized formalism is even more
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crucial in the case of HTSC because of their large anisotropic properties. The role of the tilt

modulus C4~ is thought to be less important if the pinning defects are linear or very extended

as in this case the vortex line does need to tilt in order to go onto the defect.

As will be reported elsewhere the central peak in the hysteresis cycle can be explained
following the same arguments, namely the vanishing of the elastic constants as H approaches

Hci
There are also further physical phenomena such as dislocations and other defects in the

vortex lattice which are thought to severely influence the effective pinning forces and time

relaxation effects (see next section). Clearly, to account for these defects it is necessary to

consider the long range vortex structure and the elasticity of the VLL which is beyond the

ambition of the present paper (see however section 13 devoted to the very low field limit such

that the Lorentz force is too small to overcome the pinning force).

3.3 CoNcLusioN oF THis SECTION. In the above discussion we assumed that the

superconducting material was homogeneous and isotropic. We have seen that even in this

case the application of the usual critical state equations to the analysis of experimental results

must be considered with caution especially for H close to the critical fields H~i and

H~~. Naturally, the validity of the above equations is more restrictive in HTSC systems which

are of interest here. For this reason, we wish to add the following remarks now.

(I) We shall see that in the limit where the demagnetizing field is negligible, the applied
field parallel to a symmetry direction (c-axis or a-b basal planes), T and H far below the

irreversibility line (I,e. T and H sufficiently small) then both magnetic and transport critical

currents (in single crystals and isolated grains) are correctly described by the critical state

above at least in the case of YBa2Cu~07.

(ii) However, in so far as HTSC are concemed, it is important to keep in mind that for an

arbitrary orientation of the applied field with respect to the symmetry directions the
«

scalar
»

critical state equations as written above (Eqs. (4, 6 and 7)) are not valid and must be extended

to the case where the magnetic vectors H, M are not parallel. We believe that there is a need

for more theoretical development in this case often encountered experimentally (see

Sect, 14).

(iii) For the above reasons and because of demagnetizing effects Bean's forrnula (4) must

be used with considerable caution except for a long cylinder with its axis parallel both to the c-

axis and to H.

(iv) When the applied field is close to H~i, it is not correct to replace H by B in the critical

state equations and thus in the force balance equation (6).

(v) As we shall see later the critical state equations, including Bean's expression (4), do not

apply for intergranular currents in polycrystalline materials.

(vi) We shall also introduce a characteristic length Ro beyond which (I.e, for a sample of

radius R
~

R o) both the transport current (J~~) and the magnetic current (J~~~, deduced from

Bean's equation) are different from the local current density.

(vii) The above critical state picture is more or less severely modified by demagnetization
effects, particularly for thin films (see Sect, 15).

(viii) The critical state picture breaks down totally at very low variable fields of amplitude
how h~,u~, where h~,u~ is a threshold field calculated in section13.

(ix) Conceming ac-measurements (susceptibility, resistivity, NMR, EPR etc. ) the validity
of the critical state depends also on the frequency of excitation (see Sect. 12.5 and 13).

(x) Because of relaxation effects the situation is even more complex at finite temperature,
in particular close to the irreversibility or depinning line (thermal assisted flux flow (TAFF)
and flux flow (FF) regimes). This is discussed in the next section.
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4. Flux creep theory.

The critical state picture discussed just above predicts no relaxation effects in the

magnetization (except time effects related to variations of the external applied field via Lentz

law). To explain magnetic relaxation observed in conventional hard type II superconductors,
Anderson proposed in 1962 [74] the so-called flux creep theory based on thermally activated

flux motion. In this theory the rate at which
«

flux bundles
»

jump over the pinning barriers U

is given by an Arrhenius equation :

~ ~ ~- u(T, H, J )'kT (8a)

vow vp(T) + vvi(T) (8b)

v~i(T )
=

c~ p~(T) (B/Bc~) (I B/Bc~)/ (16 w~ A 2(T
=

0 )) (8c)

or

v~~(T)
=

6 x 10~°(s~ ) (BIB c~) (I B/Bc~) (p~(~flcm)~ ~) (l 000 ilA (0))2 (8d)

Here U(T. H, J) is an effective energy barrier which depends on T, H, the critical current

density J and the direction of the flux jump (forward or backward) with respect to that of the

current density J (we recall that the various pinning potentials that will be introduced in this

section have already been defined and discussed briefly in § 2.5). Conceming equation (8b)

we would like to emphasize that it is not rigorous and must be regarded with caution. Others

combinations of v~ and v~~ such as vow [(v~ )~ + (v~~)~]~ W
are possible. Our purpose here is

to have some information on vo which is in general considered as a constant parameter in the

literature. This is why we wish to discuss v~(T) and v~j(T) in more details below.

4.I THE PHYSICAL ORIGIN OF THE ATTEMPT FREQUENCY vo. Apart from very few

examples [l10a, 121-124] vo is generally referred to in the literature on magnetic relaxation

experiments as an attempt frequency the physical origin and the value of which are vaguely
defined. Also the flux creep resistivity (see below) is proportional to this attempt frequency so

that its vagueness often leads to confusion in the discussion of this important parameter. For

this reason we believe that it deserves some comments. This frequency was first introduced by
Anderson [128] as a phenomenological parameter, of order 106 to 1013 Hz. It was noted by
Anderson that the origin of vo was «

readily not understood
»

(at this time). According to

references [I lo, 126] it would be considered as a part of the more general problem of the

Brownian motion of particles in a viscous medium treated first by Kramers [121] as early as

1940. Accordingly, vo would be given by equation (8c) in which p~ is a norrnal state resistivity.

It is not clear how to define this resistivity but we propose that p~ can be obtained by
extrapolating the norrnal state resistivity from T

~
T~ (or H

~
H~~(T )) to the temperature and

the field of measurements. (This question is discussed in many details in Ref. [124]). It is

interesting to note that this frequency is the same (within a numerical factor of about 4 w) as

the one introduced by Fisher et al. [106] (in the limit H~i « H « H~~ when they investigated

the problem of therrnal fluctuations in disordered FLL. The calculation of the frequency terra

of (8b) as proposed by Brandt [110] for example assumes an ideal vortex lattice (or very weak

pinning disorder), hence takes no account of strong pinning which probably prevails in such

materials as YBaCUO. According to equation (8c), vo goes to zero as B
-

0. It seems that

such a result is not physical for a disordered lattice. For this reason we added a

phenomenological term v~ in equation (8b) to account for the fact that isolated lines (limit

B
-

0) would fluctuate within their own potential wells (see also Sect. 12 and 13 for other

details). We believe that this pinning terra should also somehow depend on p~. Indeed the
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localized eigenmodes of the pinning potential should be damped by the flux flow resistivity
just as in the case of v~i. The existence of v~ can be justified qualitatively as follows : as noted

by de Gennes and Matricon a long time ago [I19] the presence of pinning disorder should lead

to a gap in the energy spectrum of the VLL such that
w = wo +

Dk~ for long wavelengths.

Finally it is obvious that equations (8b, c, d) will be valid only in the limit of flux creep theory.
A possible second approach is that of Coffey and Clem [123] who calculated the frequency

dependent complex resistivity p~(w ) associated with the local vortex motion in the elastic

limit (see Sect,13). They found that p~ depends on the angular frequency
w via a

dimensionless factor
w r

in which r
is a characteristic time given by

(
y~ /K~ ) [I /(

v )/I
o u I

i
( u ]. Here

u =

Uo/2 kT, 1~ ( v is a modified Bessel function of the

first kind of order p, y~
is the viscous drag coefficient and K~ is the so called Labush parameter

(defined as the average value of the second derivative (d~U/dr2) of the pinning potential
through the specimen). Uo is defined in [123] as the barrier height of the potential. We find

that this forrnula can be rewritten (in SI units) approximately as

r w

(B~~r/p~J)[I((v)/Io(u) Ii (u)] where r~ is the spatial range of the pinning potential

(~ f) while p~ is a norrnal state resistivity defined in [124]. Another approach involving
similar characteristic time scales has been carried out by Martinoli et al. [125].

4.2 THE VARIOUS POTENTIAL BARRIERS DEDUCED FROM MAGNETIC AND TRANSPORT

MEASUREMENTS. Flux creep theory was further extended by Anderson and Kim in 1963

[128] to include thermo-transport properties. They also showed that the pinning barrier

U(J) should be a decreasing function of J and took a linear law (represented by the upper

curve of Fig. 7) to account for this decay. Later, the relationship between U and J was

discussed in more detail and greatly clarified by Beasley et al. [129]. This question was

reexamined more recently by Xu et al. [130] in relation to HTSC oxides (in the flux creep
limit).

It results from these investigations that the exact expression for U(J) depends upon the

spatial shape of the true energy barrier (I.e, upon U versus r function, see U(J) curves of

Fig. 7 and the associated insets). It is found that for sinusoidal U(r) law [129] and for potential
wells of various depths U~ (with a large variety of assumed shapes and spacings [130]) the

effective activation potential should approximately obey a relation of the form :

~~~ ~~ ~~ ~~
~ J19£I) ~ 1~

~ ~ ~ ~~~~

We recall that J~~ is the maximum critical current density which could exist before flux

creep takes place and which is not accessible except at T
-

0. Note that : (I) a more exact

relationship between U and J is obtained by replacing in equation (9a) the ratio

J/J~~~ by the ratio VB/VB~~~ of the gradients of B and (2) it is assumed that the jump (or

hopping) distance, X, of the flux bundle and the range, r~, of the pinning potential are

approximately equal (otherwise the ratio J/J~~~ in Eq. (9a) must be replaced by the factor

(J/J~~~)(X/r~)). It tums out that this condition X- r~ is realized either for a very dense

system of pins or for a very dense VLL such that B
~

0.2 x B
~~

(for the sake of simplicity we

neglect these effects here). It is to be recalled too that in the original paper of Anderson and

Kim [128] as well as in the recent work of Hagen et al. [135, 136] on HSTC the exponent n was

taken tacitly equal to one (linear approximation). Then, using the above power law for the

function U, Xu et al. [130] calculated the apparent pinning energy US which enters the time

dependent equation controlling M~. Their result is :

U?(T, H, J )
=

nU~
~ (l ~ ~~ ~~

(9b)
max max
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Fig. 7. Variation with the critical current density J of the effective energy barrier seen by the vortices

and entering Arrhenius formula (8a) of the text. The relationship U(J~ depends on the spatial shape of

the actual potential barrier U(r). The upper curve (a) corresponds to the initial model of Anderson and

Kim [128] in which U(r) varies linearly with r up to a certain threshold limit r' and then becomes

constant (inset a). The middle curve (b) corresponds qualitatively to the sinusoidal example first

discussed by Beasley et al. [129] (inset b). The lower curve (c) is intended to represent HTSC oxides for

which U(r) seems to behave logarithmically at large r [139-141] (inset c). The dashed portions are

intended to represent the regions spanned during the duration of the experiment at given T.

It is to be emphasized that it is this apparent barrier (and neither U(J) nor U~) which is

deduced from magnetic relaxation. In fact we can show that the apparent magnetic barrier is

related to the derivative of U(J) at J by US
=

(J/J~~~)(aUlaJ] while that deduced from

transport data is closer to U(J) or U~ depending on the analysis of these data (see Refs. [131-
l33] and subsection 5.5.3).

To calculate U~ and relate it to the experimentally accessible quantity US we can use the

following procedure which is expected to be valid in the limit T « T
~

and in the approximation
where the above power law for U(J) is justified. Then, from measurements of M~~ as a

function of both time and T we can determine both US and J as well as J~~~ by the

interpolation of the J(T) curve to T
=

0 (this is valid if T« T~). In other terms we have :

It tums out that equations (9-10) above are badely (I,e. not rigorously) obeyed even by
conventional superconductors if one takes n=I. The result is that in the linear

(n
=

I) approximation used originally by Anderson and Kim [128], the time decay of

JOURNAL DE PHYSIQUE tJJ -T 2, N'7. JULY J992 39
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M, is given by :

M~(T, H, t)
=

M,(T, H, 0
1 ~~

ln (t/ro)j (11)
U~(T, H, J)

with (U~ » kT, t » To, n =
I ).

Here To is a relaxation time related to equations (8b), (8c) of order 10~~ to

lo ~~
s [128, 135, 136], but as we have just seen depends on many experimental conditions.

This linear equation was also used more recently by Hagen and Griessen [137] to interpret the

time decay of the magnetization of HTSC. Using Monte Carlo simulation and the same

U(J) linear law, Hagen and Griessen also showed that at extremely long elapsed times such

that M~~(t)/M~(0)
~

0.05 the t-dependence of M~~(t) goes over from the above logarithmic
behaviour to an exponential law (diffusion process). It is to be emphasized that equation (I I)

is only valid for n
=

I. This important point will be discussed briefly at the end of 4.3.

If the linear equation (11) is valid, then M~~(T) and the associated J(T) should decrease

linearly with T, in contradiction with the exponential decay observed experimentally for

single crystals. To explain the temperature dependence of M, Hagen and Griessen [135, 136]

assumed that there is a wide distribution of energy barriers (U~) extending from

U~ =

0 to U~ »kT. Under these conditions, at a given temperature the strength of the

experimentally accessible magnetization and its decay with time are govemed by the barriers

such that U~ » kT (I,e, lower barriers are irrelevant). As we will now show the exponential
decay of J(T) can also be explained in the framework of other plausible models for

U(r) without the need for a wide distribution in U~ (even though some distribution in

U~ is physically unavoidable). Also, the collective pinning theory predicts an exponential
J(T) relationship. Finally, there is no doubt that the pinning potential intervening in

Anderson's equation is already a mean quantity averaged over the whole volume of the vortex

bundle. Clearly this will contain a large number of individual pinning sites except perhaps in

the case of extended defects as those considered in reference [139]. Finally, it is to be added

that model calculations of the magnetic relaxation (dM~/d In t) Mp in the presence of both

narrow and broad distributions of the pinning potentials, assumed to have a general shape of

the forrn given by equation (9a), can be found in references [137, 142, 143].

Tuming back to the U(T, H, J ) relationship, it is now worthy to note that in the flux creep

regime the critical current density is derived from the implicit equation :

vo BX
U(T, H, J)

=

kT In (I16)
E

where E is the electric field within the material just at the moment of measurement. We feel

that E is generally constant ( 10~~ to 10~~ V/cm) in transport measurements. However, in

static magnetic experiments, E can be determined from Maxwell equation
(curl (E)

=

aBlat) and Bean's equation (4) and flux creep equation (I I). At intermediate

time scale t, it is probably of the form :

~~ aM~
~

kT J(T, H )
(I lc)E

~
~ $ ~

"~
at

"~
Ui t

Taking the following realistic values : vow
lfl° Hz, B

=
I Tesla, X

=

I nm and E
=

10~~ to

10~~~V/m
we find In (vo BX/E )

w
20 to 30. Note that in the case where U is given by

equation (9a) one has :

J
=

~~~ll j ) ~~~

ln
~

(I Id)
p
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Finally, it is to be added that if H varies with time (as during hysteresis cycle registrations or in

ac-susceptibility experiments), E will also include an extemally induced large term pro-

portional to R dH/dt. Note that at short times t must be replaced by t + r
in equation (I lc),

where r is defined below.

4.3 THE LINK BETWEEN THE APPARENT PINNING BARRIER, THE REAL BARRIER AND

M,(T~. Tuming back to the case where Mw(T~ is controlled by a very narrow distribution of

potential barriers, we note that in the above equation U~ is the real energy barrier (seen by

isolated vortices), J the critical current density at the time t of the measurement whereas

M,(T, H, 0) is the irreversible magnetization corresponding to J~~~ or equivalently to the

most critical state which would be realized before flux creep has had time to occur (I,e. for

t~ To). Of course, such an M~~(T,H, 0) is not accessible in real experiments (except
eventually by interpolating the experimental results to the limit T

=

0). Moreover, as far as

HTSC are concemed equation (11) is generally not valid (in its above forrn) and has led to

many erronous conclusions conceming the amplitude of the potential barriers. This is due to

the fact that both the experimental magnetization M,~(T, H, t) and the apparent energy

barrier (US) are as a rule very different (several orders of magnitude are usual) from those

assumed in the right hand side of equation (11). Therefore, it is essential to emphasize once

again that the above equation is only valid in the very restrictive approximation where U

varies linearly with J (I,e. n= I in Eq.(9a)). Since US is related to the slope of

U(J~ it is clear from figure 7 (dashed region) taht this slope can differ considerably owing to

the real U(r) law.

We propose that the variation with time of the irreversible magnetization can be written in

the more general form (but restricted to the flux creep regime) :

kT
j~

T + t to

M,(T, H, t)
=

Mi~(T, H, to)
~~ ~°

(12a)
kT

j r

Ui ~
To

with :

US(T, H, J~
=

Ut » kT In l~ ~ ~°

,

(t
~

to) (12b)
To

r m

~~'~~~~~ ~ ~~~
(to be justifed in 4.7) (12c)

The reference time to refers to the starting of the first measurement. This initial time

depends on the experimental conditions but can be taken equal to zero provided that we

remember that Mi~(H, T, 0) is in this case the value of the measured irreversible magnetization

at the beginning of the experiment (assuming condition (12b) true), whereas in equation (I I)
it corresponds to the value of M~ at J =J~~~ (a situation never realized in practice). In

addition, we have introduced a correlation time
r

which is found experimentally to depend on

the field H~(T, R) of full penetration and which is inversly proportional to the sweep rate

dH/dt of the applied field. Qualitative arguments that will be developed later in subsection

(4.6) show that
r

should also depend on the penetration field H~, ~~~(T, R) corresponding to

the most critical state which would exist at J
=

J~~~(T~ before flux creep has had time to begin.
Note that

r
is expected to vary both with T and R through the penetration fields. We find that

in usual experimental conditions with vibrating sample magnetometers r is generally of the

order of 10 to 100 s and one to two orders of magnitudes longer for SQUID magneton~eters.
This leads to a departure from the logarithmic law at short time scales (often erronously
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ascribed in the literature to « some fundamental effects »). However we emphasize that the

exact dependence of Ton H~, H~,~~~ and dH/dt certainly needs more investigations. For

instance, in the simple model of Bean, the penetration field is proportionnal to the product of

the critical current density times the radius R of the specimen. Then using equation (11)

gives :

r =

RJ~~(kT/U~ )~'~ ln
1

/(12 ngr dH/dt )
E

Naturally, when in relaxation experiments one has t/r » I together with inequality (12b) we

can rewrite equation (12a) in the following forrn commonly encountered in the literature :

i dM~~(T, H, t) kT

M,(T, H, to) d In t US(T, H, J~ '
~° " ~° ~~~~~

Ut(T, H, J~
=

J(dU/dJ~ (13b)

We wish now to emphasize some important points.
(I) At first, it is to be recalled that the potential barrier US in equation (13) depends on T,

H as well as on the critical current density J
=

J(T, H, to). In addition, J is assumed to be

given by the Bean equation (4) which is only valid in the limit where J is spatially
homogeneous (I.e. does not depend explicitly on r as in granular or in multiphased materials).

J is also assumed to be approximately independent of H. It is clear from equation (13) above

and from figure 8 (comparing U~ and Ut) that Ut is related to the real U(J~ as well as to the

potential well height U~. However, it is also clear from this figure that under no physically
realizable conditions is Ut equal to U or to U~.

~j
~~~~~~~A

',
,

' ,', ~' ',

'
u '

' Q' ° ~ ~
C

'

u

~ ~ ~maX
Fig. 8. Definition of the various pinning energies intervening in the flux creep theory (see text). The

inset is a schematic representation of the temperature dependence of the apparent pinning potential

U? as deduced from magnetic relaxation experiments and the height U~ of the expected real potential in

the absence of any current J.

(2) It is important to remember that this equation is not an exact solution (except for

n
=

I) and corresponds to the linearization of the flux creep equation around the point

(U, J~. This implies that it might happen that equation (13) is not obeyed over a wide range of

t.
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(3) Often in the literature on HTSC equation (13a) is written in the forrn (I/M)

(dM/d In t)
=

kT/U
=

S with the factor I/M referring sometimes to the total magnetization
(including M~) and sometimes to the measured irreversible magnetizations Mw(t),

M~~(to) or M~~(0). To avoid such confusions we intentionally expressed the parameters M, J

and U entering equation (13) in a more explicit way, insisting on the fact that M is the value of

Mi~ at the beginning of the measurement (in the limit of Eq. (12b). Therefore, it is the

experimentalist who chooses the time origin according to his experimental conditions.

(4) However, from the experimental point of view it is not always clear how to define the

time origin because of transient effects particularly when these transient times are comparable

or higher than the correlation time r given by equation (12c). Such transient effects can have

many different origins among which the eddy currents (flux flow) induced by the variation of

the extemal field, the time constant of the measuring set up including that of the magnet
producing the extemal field and the difficulty to avoid small instabilities (small oscillations

during a short time) of the applied field just after stopping the variation of this field. The last

difficulty is due to the fact that these oscillations lead to an inhomogenous distribution of the

currents (I,e, positive and negative currents, a small reversal branch) near the surface of the

sample thus influencing the apparent time decay. In terms of the hysteresis cycle of figure 3

these oscillations imply that the sample is in the reversal branch (for example just below

point A of such a branch, Fig. 3), through generally not far from the desired unperturbed
value. A last undesirable and more general effect is the fact that the electric field,

Ei~~, induced by the variable field, H(t) leads to local dissipation and thus heating. Therefore,

if the effective thermal conductivity of the superconducting material plus the surrounding
exchange fluid is high this can lead to some extra heating of the sample during the field

sweeping time. Such an effect should also depend on the specific heat as well as the effective

size of the specimen. This point is discussed further below. All these effects are neglected in

this paper except eddy currents which will be reconsidered briefly below in subsection 5.5

(devoted to thermal assisted flux flow (TAFF) effects) and later in relation with frequency
effects in a,c.-susceptibility measurements, section12.

(5) Close to the irreversibility line (or depinning line), in particular close to T~, the

effective pinning forces and the associated Ut are vanishingly small. This implies that the

condition U? » kT on validity of equations (12) and (13) is no longer satisfied. In fact we

have seen that in this limit the logarithmic relaxation is replaced by an exponential decay law.

In addition, within this limit flux flow effects become important as will be discussed in relation

with a,c.-susceptibility data in section 12.

(6) We have already mentioned that the variation of the pinning potential U with J

(Beasley curve), T and r are not independent. In particular, it was shown very recently
independently by Manuel et al. [139] (from magnetic data at T« T~) and by Zeldov et al.

[140, 141] (from resistivity measurements near T~), that the spatial variation of the pinning
potential U(r) would follow a logarithmic behaviour at large distance r. As a consequence, we

expect that in HTSC oxides the apparent potential U? associated with this logarithmic
behaviour would be much smaller than the height U~ of the same potential. This is illustrated

schematically in figure 7 which shows U(J~ curve in the linear approximation of Anderson and

Kim [128] together with the more realistic approximation of Beasley et al. [129] for

conventional materials and the expected behaviour for HTSC materials [139].

(7) Recent experiments on HTSC [144, 145] showed that magnetic relaxation persists down

to T very close to 0 K (from the extrapolation of the data to T
=

0) suggesting the existence of

vortex depinning via quantum tunneling. This quantum tunneling has been investigated
recently in two theoretical papers by Blatter et al. [146] and by Fisher et al. [147] and seems to

exist in conventional superconductors as well (see Ref. [3-5] in [146]). This fascinating effect
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is at present the object of intense experimental investigations, in the temperature domain

down to 10~ ~ K.

(8) Tuming back to equation (lo), it is interesting to see that at very low temperature the

experimental critical current of HTSC is expected to be linear in T

(J
m

J(0) exp( TIT o) m
J(0) (1 T/To) ). Then, as U~ reaches its highest value at T

=
0 it is

easily seen from equation (lo) that as T approaches zero the apparent pinning energy
U? should vary as

T~~~ and hence should go to zero if n ~
l. Putting this value into

equation (13), it is easily seen that [dM/dln(t) JIM goes to zero as
T~~~ Since from

equation (8) we have n ~
l, we see that the temperature derivative of this expression diverges

as T tends to zero. In other terrns, if n is close to 2 this factor will not extrapolate to zero with

T suggesting that flux creep might persist down to the lowest temperature of measurement

(T
=

0).

On the other hand, from the experimental point of view it is possible that due to the very

low therrnal conductivity K of HTSC, especially at T « T~, it is likely that flux creep will result

in a continuous drift of the effective temperature felt by the vortices. In other words, at very

low T the establishment of thermal equilibrium can be very slow due to heat dissipation
accompanying each flux creep event. The clarification of this point requires the simultaneous

resolution of the equations of thermal and flux diffusions.

It is usually assumed that there are no thermal instabilities during the experiment so that

the function U(J~ (Eq. (9)) does not depend directly on time. This hypopthesis is not always

easy to satisfy at very low temperatures, particularly for large single crystals with large J.

When this condition is fulfilled the pinning barrier depends on t only via J and we can write

U(Jj
=

U(J(t)). Then at a given fixed temperature T # 0, the point U(Jz~~) of Beasley curve

(I,e. the intersection of this curve with the J axis, Fig. 7) would correspond to the initial

instant of establishement of the hyper-critical state (J(t « To) mJ~~~) whereas U(J
=

0)
= U~

would correspond to t equal infinity (J(t
-

co)
=

0). Of course, the time scale involved in real

experiments is finite so that the measured J is comprised between these two extreme limits as

illustrated by the dashed sections of the curves in figure 7 : this dashed region represents in

fact the portions of the curves described during the duration of the experiment. It is clear from

this figure that except for the linear model of Kim-Anderson the apparent effective pinning
potential US, which is proportional to dU(Jj/dJ, should increase with time since J decreases

with time. It can be shown that in this case the linear logarithmic relaxation of M and J is not

strictly obeyed. It can also be shown that in a first approximation the term (kT/U~) In (t)

entering equation (11) must be replaced by [(kT/U~) In (t)]~'~ where n is the exponent of

(Eq. (9a)). Such a possible deviation from the linear logarithmic relaxation is easier to detect

at very long experimental time and close to the irreversibility line where the relaxation is

expected to be more rapid. Relaxation effects are an important topic which needs more

discussion and more clarification but this is beyond the scope of this paper.

Defined schematically in figure 8 are the various pinning energies intervening in the flux

creep theory. Sketched in the insert of this figure is the temperature variation of both the

apparent energy potential US intervening in magnetic relaxation measurements and the

height U~ of the real pinning barrier. It is clear that US is generally much lower than the actual

energy U~. In the classical model of Anderson, the variation of the real U~ with T is principally
via the physical parameters A(T~ and f(T~ and thus would be significant only close to

T~ as these quantities diverge at T~. Therefore, neglecting other possible causes of variation of

U with T (other less direct causes are the volume of the flux bundle and its jump distance), we

expect that U(Jj would be practically independent of T for T « T~.

It is equally clear from the above discussion that only a very narrow portion of the

U(J) curve is spanned in real experiments at fixed T and H. The question is then how to
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determine this curve experimentally and extract the real pinning potential U~, it tums out

[148-150] that this is partially possible if one accepts that the U(J) is to a first approximation
independent of temperature. In this case, increasing T from zero to T~ amounts to moving the

interval of measurement in figure 8 from point U(J~~) towards the point U(J
=

0). Of

course, the reality is probably more complicated especially at high temperature since

U~ goes to zero at T
=

T~. This scaling procedure would be valid for T w Tj2. In fact, it is

known that resistivity measurements as a function of T can give U~ by interpolation of p to low

temperatures T« T~ (see Sect. 5.5.2).

4.4 TYPICAL EXPERIMENTAL RESULTS IN HTSC. Figure 9a shows a typical example of

hysteresis cycle (M versus H, upper figure) together with two relaxation curves (M versus t)
registred at points A of the cycle. This corresponds to the longitudinal magnetization of

granular YBa2Cu~07 measured by means of a vibrating sample magnetometer. Illustrated in

figure 9b is the relaxation of the transverse magnetization (in a semilog scale) of a single
crystal of YBa2Cu30~ as deduced from torque measurements [153]. The comparison with

conventional materials [152] shows that the relaxation is considerably faster here though the

logarithmic law is exhibited in both cases. It is found that the logarithmic relaxation is

followed in most experimental conditions except very close to the irreversibility-line, a

situation encountered in Bi oxides but rarely in YBa2CU~O~ compounds (see 5.5 and [165,
166] for more details). It is found that the logarithmic relaxation rate Mp (dmild In (t))
varies notably with temperature in a way which depends considerably on H and on the
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Fig. 9. a) Hysteresis cycle (upper) together with magnetization versus time (lower) at point A of the

cycle [155], b) Torque relaxation in a single crystal of BiSnCaCUO (after Fruchter [153]).
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dimensions of the sample under consideration. This is illustrated in figure10 taken from

reference [154].

As already mentioned, in some conventional superconductors [152] the relaxation rate of

Mi~ is generally quite slow and more conveniently (but not rigorously) described by the

linearized Anderson's theory (for U(J)) in usual experimental time scales (t ranges from a few

seconds to several hours). From figure lo it is seen that the situation is very dramatic in high

T~ oxides (more especially in Bi families not shown here) where :

(I) Large and fast relaxations are observed [26-34].

(2) The apparent pinning barrier US (related to the relaxation rate of figure lo by

o,09
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Fig. lo. Temperature dependence of the logarithmic relaxation rate S
=

a Inmla Int for various

YBa2Cu307 samples. Note the anomalous behaviour both at H
=

500 oe and at the low-H peak of the

hysteresis cycle (the peak is indicated by point P in Fig. 9). Recall that the field H~ of the peak varies

with T (after Ref. [154]) and that S is related to the effective pinning potential by Ut
=

kT/S.
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US
=

kT(d Inm~~~/d In t)~ ~) is very low (compared to what is seen in some conventional

materials such that NbTi) at low temperature and passes by a maximum with increasing T

[130, 116] and then tends to zero at T~. In addition, this T-behaviour is very different from one

HTSC family to another [153-161]. It is to be recalled that according to the preceding
discussion the large difference in the apparent energy barriers does not necessarily imply that

the amplitudes U~ of the real barriers are so different.

(3) The critical current density J which is proportional to M~~ falls off sharply (approxi-
mately exponential in T~ in many cases [20-25].

(4) The low US value is not a unique specific feature of HTSC since Chevrel phases exhibit

even smaller U? (~15 mV [152]).
(5) At high temperature, in particular near the irreversibility line, J also drops dramatically

with H [20, 35-41]. Here too the behaviour is very different from one HTSC family to

another. For instance, in Bi based oxides J is often virtually zero in B
=

I Tesla at

T m Tj2. This is to be compared with the case of conventional superconductors [162-164] for

which J stays notably large at high fields and temperatures and vanishes only near

H~~. This means that in classical systems the irreversibility line coincides virtually with

H~~. This is illustrated schematically in figure11 which compares the field dependence of

U? of classical (upper curve) and HTSC (lower curve) at T far from the irreversibility line.

Because of the uncertainties on U? due to both the constraints of measurements and to

temperature (when Ut becomes comparable to kT~, it is difficult to decide (from the

experimental data) whether Ut extrapolates to zero at some irreversibility field H~~ (~ H~~) or

goes to zero only at H~~.

u

U~

kT

H
°

H~~ H~~

Fig. ll. -Schematic illustration of the variation of U? with the applied field for T close to the

irreversibility line. Upper and lower curves would correspond to classical and high T~ superconductors
respectively.

4.5 THEORETICAL PREDICTIONS oF THE FLUX CREEP MODEL. Shown in figure12 are the

results of Monte Carlo calculations of Hagen and Griessen [135, 136] in the conditions

explained previously. Apart from the choice n =
I in equation (8) (linear approximation) this

calculation is valid with no restriction on the ratio kT/U~ and whatever the time scale.

However, when comparing with experimental data it is important to remember that other

time effects such as eddy currents can become preponderant near the irreversibility line and

must be accounted for more properly (see TAFF paragraph 5.5 in the next section and
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Fig, 12. Calculated magnetization versus In (I + t/r~) with r~ is a reference time [135]. The right
hand side of the dashed region would correspond to time scales where time effects are accessible in

magnetic relaxation experiments. The left hand portion of the same dashed region would be closer to the

time scales of transport measurements e =

U(7l/kT.

section 12 on a,c.-susceptibility). Also, the analysis of the short time scale data is extremely
difficule as it depends critically on the experimental conditions (see paragraph 4.7 for

instance). At this point it is interesting to emphasize that long-term non logarithmic relaxation

is observed experimentally in Y-Ba-Cu-O single crystals [165, 166]. Note that the time scale

used in the calculated curves of figure12 is somewhat arbitrary because of the fact that the

characteristic relaxation times To is unknown (10~ ~ to 10~ ~~ s), To is related to vo of equation
(8b).

4.6 FIELD AND PINNING ENERGY PROFILES WITHIN THE SAMPLE. it is now interesting to

discuss briefly the evolution of the field gradient and the energy barriers inside the material as

a function of time and the magnetothermal history of that material. In the insert of figure 2

(Sect. 2) we showed the field profile within the sample as predicted by the critical state model.

In this example the field gradient and the corresponding irreversible magnetization were

assumed to be independent of time (or equivalently the temperature was assumed to be zero).

However, we have just seen that because of flux creep this is never realized in practice even

for T/T~ as low as 5 x10~~ [144] in HTSC. The same problem happens with some other

families of superconductors [167, 168].

According to the flux creep model, the evolution of the distribution of flux and currents

within the specimen with time can be represented schematically in the various but equivalent

ways sketched below.

Figure 13 corresponds to a sample in the field cooled state (I.e. the sample was cooled in a

certain field H~~~i down to the measuring temperature, fc-state) : figure 13a presents the

energy barriers experienced by the vortices in this fc-state, far from the surface of the

specimen. The field profile associated with this same state is depicted in figure 13b. In this

case J is close to zero and the effective U is large. In term of U(J) curves (Figs. 7 and 8) this

means that we are describing the top regions of these curves. The time variation of the fc-

magnetization (Mi~,~~) [169] probably arises from currents at and near the surface of the

sample and should be negligible in large single crystals. The physical origin of this effect can

be understood as follows : Because the field cooled magnetic induction B~~ is related to the

magnetization by B~~(T) =H~+4grM~~(H~,T), it is expected to decrease with T as

H~ + 4 grM~~(H~, T) in the reversible region of the T-H plane (I.e, down to the irreversibility
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Fig. 13. -a) Energy barriers in the field cooled (fc) state far from the surface of the specimen.

b) Field profile in the same fc-state. The local vortex density is constant far from the edges. This

situation would correspond to the top (J
=

0) of Beasley curves of figure 7. The discontinuity of field at

the surface is due to London-Abrikosov's shielding currents.

line temperature T,(H~). It then becomes constant, at least if this line is traversed very fastly
(quenched vortex state). This means that for any temperature T~T,(H~) one has

B~~(T)
w B~~(H~, Ti~(H~)). The relaxation of B~~(T) is then due to the fact that one has

Bi~(T)
w

B~(H~, T~(H~))
~ B~~(H~, T). This also means that there are more vortex lines in

the sample than needed for thermodynamic equilibrium at the measurement temperature T.

Since the vortices (in excess) lying near the surface will be the first to leave the sample, this

results in a field profile of the form sketched in figure 13b. The exact interpretation of time

effects is certainly more complex in the fc-state.

Figure 14a, b provides schematic representations of the energy barriers (a) and the field

profile (b) in the extreme case where the sample is assumed to be in the most critical state

(hypercritical). Formally speaking, this means that the sample has been cooled in zero field

(zfc-state) and then submitted instantaneously (I.e, in a time t
~

l/vo) to an extemal field high
enough to build up the full critical state everywhere in the specimen. This implies that the

critical current density has its largest possible value J~~ at the specified H and T, whereas the

effective pinning barrier is zero. Of course, in real experiments this critical state is never

reached, even at temperature as low as 50 mK in the case of YBa~CU~07 [145]. In many

ordinary experimental conditions the shortest reasonable time is of the order of I s. This time

is generally notably larger in SQUID measurements (5 to lo mn).
The curves in figure 14c, d have the same meanings as those in figure 14a, b but correspond

to a more realistic experimental time scale. In this example the critical current and the

@ @ j @
H H

)fP
U= 0

~

~
lJ,At=c)

At«i~)

Fig. 14. a) Schematic plot of the energy barriers in the most critical state. b) Field profile in the

same critical state. The gradient of the vortex density has the highest possible value obtained before flux

lines begin to jump across the energy barriers (At
~

l/vo
= To, a purely theoretical assumption used in

the flux creep model, see text). This defines the current density J~~ used in the previous figures. (c, d)
The curves have the same meaning as in (a and b) but correspond here to a more realistic time scale of

the order of the experimental or observation time r
(see text).
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associated magnetization have decreased by about two orders of magnitudes relatively to their

full critical values represented formally in figure 14b. This is approximately the real case for

YBa~CU~O~ in a few Tesla at about 70 K. The difference between the two quantities is even

more dramatic at present in the case of Bi-based oxides where J is virtually zero for the same

T and H. Clearly, in this limit it seems unphysical to represent these very different values of J

by the same equation as it is done in equation (11).

4.7 THE CORRELATION TIME r INTERVENING IN THE FLUX CREEP EQUATION. We can now

use the results of figure 14 above to estimate qualitatively the correlation time r intervening in

equations (12a, c), as illustrated in figure 15 (recall that H~ and H~,
~~~

in this figure have been

defined previously as the complete penetration fields corresponding to the experimental and

the maximum critical current densities J and J~~ respectively). Let us imagine the following
experimental process : (I) First we assume that at some time t the «experimental

»
field

profile is represented by the heavy line labelled t and corresponding to an applied field

H(t) and to the
«

experimental
»

critical current density J. (2) The field is then suddenly
increased (in a time less than To) from the value H(t) to H(t) + (H~,~~ H~). Since the

increase (H~,
~~

H~) in H (t) was faster than the time needed for the flux to start creeping,
the corresponding field profile dH/dr would correspond to the current J~~ and would be like

the dashed curves labelled t+ To. (3) To get the new «experimental» flux profile
(corresponding again to Jj we must wait a time equal to the correlation time

r we are

searching for. Consequently, the latter is defined by the equality H~,~~~-H~=
H(t + To + r ) H (t)

m
(dH/dt ) r, assuming that in a first approximation H varies linearly

with t. We stress again that the above considerations are only qualitative and must be

considered as a first step approach to this complicated problem. Recall also (point 4 of

paragraph 4.3) that the interpretation of magnetic relaxation experiments can present other

experimental difficulties at short time scale.

t+c+ca

i

,
/ Hp

H lt) ~~~~
i

Fig. 15. At the time t and field H(t) the field profile is represented by the curve « t », If the field is

then increased instantaneously (in a time shorter than or equal to ro~ from this H(t) value to

(H(t) + H~
~~~

H~) the resulting field gradient is the highest possible as schematized by the dashed

curves labelled t + To and by figure 14b. However because this is a highly metastable state and because

the ensuing flux creep, the field gradient will tend to the experimental profile after a correlation time of

the order of r~ + r.
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4.8 CONCLUDING REMARKS oF THIS SECTION. In summary, the first problem faced by

many experimentalists when analyzing relaxation experiments is the fact that flux creep

theory includes many unknown parameters.
First of all, we do not measure the actual energy height U~ but an apparent term

US which depends on T and the value of J at the instant of measurement (with J in tum

depending on T, H and t).
Secondly, the theoretical model includes at least two other experimentally inaccessible

quantities J~~~
=

J(T, H, t
=

0 ) and To.

Thirdly, the measured magnetization, M~~~, depends on the shape of the sample (especially
its diameter) and includes the equilibrium magnetization (M~~) which is not always easy to

obtain. In addition, the simplest Anderson's equation (I I is in principle only valid in the limit

of a single energy barrier U(r) with a very special spatial shape (short range interaction).
Fourthly, we have seen that other U(r) laws give very different J(T, H, t functions [139,

140]. In clear, the spatial shape of the pinning potential has a fundamental bearing on the

apparent potential.
Finally, in the above discussion we ignored the structure of the vortex bundle involved in

flux jumps and the associated physical parameters (correlation volume V~, jump distance

X, .) which probably vary with temperature, field and perhaps time (thermal instabilities).

We also firmly believe that at very low temperature intemal heating effects connected with

the very low thermal conductivity K (and diffusivity) of HTSC should play a significant role in

relaxation experiments, especially for large samples. We also believe that such heating effects

are generally quite important in pulsed field hysteresis cycle measurements. These effects are

generally not accounted for in the literature and could explain some anomalous T and H

behaviours of J, in pulsed field experiments. Also, we believe that heating is generally at the

origin of the very asymmetrical hysteresis cycles deduced from these experiments.
It tums out that the combination of all these effects make the apparent US of HTSC much

lower than the real U~ (at low ll~ so that the latter is probably in the range of I to 2 eV as

deduced from some resistivity data [170, 171]. It is to be added that for better understanding
of the data it is recommended to analyze temperature and time effects simultaneously when

possible.
A more general question concems the correct treatment of collective thermal fluctuations

in the vortex lattice and the validity of the classical flux creep model outlined above, in

particular near the irreversibility line. Conceming this point, it is possible that other more

sophisticated models [172-174] incorporating characteristic effects of HTSC (such as the

anisotropy, the high temperatures involved, ...) would be more appropriate for some of these

materials. For instance, according to a recent paper by Markiewicz [176], thermal fluctuations

and thermal depinnings could also be incorporated in the melting theory to generalize the flux

creep model and investigate the important question conceming the meaning of the

irreversibility line (see also Brandt [l10]).
Finally it is clear that as long as we are not able to control the nature, the distribution and

other features of the defects responsable for vortex pinning it is difficult to propose any clear

cut interpretation of the experiment data. Also, as already mentioned many experimental
data such as a,c.-susceptibility or «

vibrating reed
»

experiments [177] are probably related to

flux creep and flux flow phenomena but are often analysed as manifestations of a

thermodynamic transition in the vortex lattice (see [178]).

5. Criteria defining the experimental critical currents J~~~ and $~.

As pointed out first by Anderson and Kim [128], the fact that the magnetic flux profiles
(depicted in Figs, 13-15) evolve with time implies the existence of a finite electrical field E
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(Lentz law e =
d4~/dt

w
2 grRE) across the specimen, and thus a non zero resistivity. This

means that for practical purposes the critical current density must be defined from the V

versus I characteristics by setting a minimum acceptable electric field. In other terms, this

means that the critical current density must be defined in relation to a measurement criterion

and depends on the application considered [73, l12, l13]. We have seen that the most

common methods used to determine J are, by increasing order of importance : (I) the

transport or resistive technique (J~) (via V-I curve), (2) the magnetic hysteresis cycle
(J~~~) and (3) inductive methods including a,c.-susceptibility through its imaginary part
x" (this point will be clarified later). In this and in the next section we wish to compare and

discuss the apparent critical current densities corresponding to transport and magnetic
methods and the influence of time and spatial averages on each of these currents.

S-I V vERSus I CHARACTERISTICS. One generally encounters in the literature two

different procedures for the analysis of the V (I ) relationship. First, it is known [73] that in the

flux creep regime, conventional hard superconductors exhibit a V versus I characteristic often

written in the form of a power law as below :

V
=

kI ~ (14a)

Here k and m can be considered as constant, but only for a given specimen of a well defined

shape. For conventional superconductors, such as NbTi and Nb~sn, the exponent m is

extremely large and varies approximately from 15 to 150 [73], but far below T~. It is to be

noted that the above V versus I power law is rather empirical and has no firm physical
justifications. It tums out that it is especially useful for the characterization of the material

when the shape and other structural parameters of the specimen undr study are not well

defined. For instance, this seems to be often the case for granular HTSC, For well defined

specimens, this equation is less appropriate especially for the study of more microscopic and

more fundamental properties. The flux creep model predicts a rather different relationship
which is more suited in this case. It depends on the relative value of U? and kT. Let L be the

length of the sample under study, X the distance moved by the flux bundle during the jump
and let n =

I in equation (9a) (linear approximation). Then the flux creep model gives :

V
=

LX AB
v o

e~ ~P~~ ~'~~~~~~
=

V
o

e~ ~°~~'~~

,

~~ ~~
» l (14b)

kTJmax

V
=

2 LX AB v o

~~ ~~
e~ ~/~~

=
2 V

o

~~ ~~
e~ ~/~~

,

~~ ~~
« l (14c)

~~~max ~~~
max

~~~
max

Here J~ is the applied current density : the subscript a is intended to recall that in transport

measurements the current density can take any value according to the experimentalist choice.

This is in contrast to the case of magnetic measurements where the current density is generally
(not always) close to its critical value at the working T and H. The limit U~ J/J~~~ « kT (Eq.
(14c)) corresponds to the TAFF regime discussed later (we shall also call this creep domain

the diffusive regime). The other limit is the usual flux creep regime. Having in mind that the

electric field is simply related to the electric potential V by E
=

V/L and to the resistivity by

p =

E/J, it is interesting to rewrite these equations in terms of flux creep and TAFF

resistivities p~~ and p~~~ respectively

~~~ ~

(x AB
~

0/Ja) C~ ~P~ &'~mm)'kT
~ ~ ~- U(J~)/kT

u~ J

~/

° ' kTJ~)~ " (l 4d)

~~ ~ ~ ~
~ ~ ~~~~°~ ~

~~~~~ ~°' ~~ ~
~~~~~

'

~~~
~ ( l 4e)
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Other V (I) laws have been predicted theoretically [174, 179] and seem to be observed

experimentally [180]. The induction AB is probably dominated by that induced by

J~.

For completeness we also give the flux flow resistivity, p~~, [181] associated with the so

called flux flow regime which sets in when the pinning force becomes small in comparison with

the viscous force y~u experienced by the norrnal electrons of the cores of Abrikosov vortices

moving at a velocity u

pff " pn B/Bc2 (Ja " Jmax(T)) (14f~

Here p~ is the norrnal state resistivity that would exist if all the superconducting electrons

were norrnal at the field and temperature of measurements [125].

For completeness we note that, (I) the viscous drag in a conventional Josephson junction

was first treated by Lebwohl and Stephen [182] and (2) Clem and Coffey [183] deterrnined the

flux flow resistivity induced by the motion of vortices (treated as Josephson lines) between a-b

sheets in HTSC. It is to be added that all these calculations are based on the idea that the

cores of the vortices are made of norrnal electrons. However, as shown first by Caroli et al.

[184] and then in more detail by Barden et al. [185] this property does not hold at sufficiently
low temperature (probably below about 20 to 30 K in the case of YBaCUO, see Ref. [125] for

the evaluation of these temperatures). Note that the viscosity coefficient
y~

is related to

p~~ (Eq. (14f~) by the equation
y~ =

B~/p~~. This is easily shown by eliminating the velocity

u from the equations y~u =JB (viscous force =Lorentz force) and E= (d4~/dt)/Lm

B (dr/dt )
=

Bu
=

Jp
~~.

Figure 16a and figure 16b illustrate schematically the various regimes associated with V

versus I characteristics. All of these regimes are encounterted in resistivity data while the

sample is cooled down from the norrnal state. It is clear from (16b) that the transport criterion

defining J loses any meaning at low J, since it gives a finite value even in the norrnal state.

At this point we recall again that the above results are expected to be more or less modified

by thermal fluctuations, anisotropy and collective pinnining all of which have been neglected

up to now. In particular, according to the collective pinning theory disorder induced pinning
of a 3D VLL would lead to the formation of a « vortex glass

»
phase [174] characterized by the

absence of long range crystalline order in the VLL. What is then important to note is that the

vortex glass phase would lead to very high energy barriers between different metastable states

of the VLL and as a consequence to a zero resistivity in the weak current limit. Nevertheless,

we have already mentioned that there are both theoretical and experimental arguments
against the vortex glass concept. We shall come back briefly to the complicated subject of

collective pinning at the end of this paper. We also believe that the above
«

flux creep »

picture of Anderson provides an excellent starting approach to the physics of the VLL.

5.2 TRANSPORT CRITERION AND TRANSPORT CRITICAL CURRENT. The transport critical

current is generally defined from the V(I) curve assuming an electric field E of

10~ ~ to 10~ ~ Vcm~ ~, depending on the experimental conditions. Because of the large value of

the exponent m in the flux creep regime (Eq. (14a)), the exact choice for E is in fact of little

influence on I~ (see Fig. 16a). Using realistic values of m and k in equation (14a), we can show

that one order of magnitude variation in V leads to only few percent changes in the transport

current density J~. It is to be emphasized again that this is only true in the flux creep regime,
which in practice means that we are far from the irreversibility line. At this point it is

interesting to note that the time scale intervening in transport measurements is the
« creep

time
» : r~~~~~ w v

=
vi exp [U/kT] (see Eq. (8a)).

In terms of the electric field criterion, the critical current density deduced from magnetic
data would generally correspond to 10~~ to 10~ ~~ Vcm~ depending on the time scale of the
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Fig, 16.- Schematic representations of V versNs I characteristics. a) Flux creep regime with

T « T~. The dashed region on the fight hand side would correspond to the transport critical current for

electrical fields in the range 10~~ to 10~ ~ V/cm. The left hand dashed side would correspond to electric

fields (10~~ to 10~'~V/cm) accessible with magnetic measurements. The difference between

J~ and J~~~ is about zero at T
=

0 but increases with T. b) In the TAFF, FF or norrnal phases, the V

versNs I curves are roughly linear in J. This makes it difficult and unphysical to define a transport critical

current and to distinguish between these regimes including the fluctuation regime very close to

T~.
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experiment, the dimension of the sample and other conditions (E is in fact roughly
proportional to JR ~/t if R is the dimension of the specimen see Eq. (I lc) and Sect. 4.2). For

instance, taking m =13 in the above formula yields a magnetic current J~~~ I to 2 times

smaller than the transport one (see below). In principle, this difference depends on T and H.

It would be zero at T
=

0 (Fig, 16a) and remains small in the flux creep domain, but would

increase with T and H becoming very large near the irreversibility line (determined from

magnetic data) where we believe that the transport criterion looses any physical meaning.
This is because J~

=

Ejp (T) has always a J~ different from zero solution, even in the normal

state (see Fig, 16b). This and other effects discussed previously (such as the reversible

currents) can explain the difference in the irreversibility lines determined from the two

experimental methods. As suggested by figure I and as will be discussed in section14,

anisotropy is another source of large discrepancy between J~ and J~~~.

5.3 MAGNETIC CRJTERION AND MAGNETIC CRITICAL CURRENT. As we know the magnetic
critical current density is determined from the hysteresis cycle via the critical state and Bean's

model (Eq. (4)). However, because of the flux creep phenomena we have just discussed, the

measured current depends on the time scale of the experiment in particular on the time spent

to plot the whole cycle. This is illustrated qualitatively in figure17 which displays the

evolution of the M(H) loop as a function of the sweeping rate of the applied field at a given
fixed temperature. Note that curve (4) of figure17 is obtained by interpolation of

M(H, t) from the predictions of the flux creep theory (see also subsect. 4.7). It would

approximately correspond to the shortest transport time scale and thus to the transport critical

current. Indeed, from the flux creep approximation, the transport time scale discussed in the

preceding paragraph would be in the range
10~~ to 10~ ~~

s. We recall that at very short time

scales the relaxation effects are controlled by the so called attempt frequency vo =
vi the

value of which is unknown at present (see Eq. (8b) however) and by eddy currents neglected
here. However, it tums out that To is generally in the range 10~ ~ to 10~ ~~

s and can probably

be in some conditions comparable to the effective time scale in transport experiments. As an

extreme example we take To
=10~~~s, then we can check that for most experimental

conditions the ratio J~/J~~~ is generally of the order of I to 3. More generally, this ratio would

tend to I close to T
=

0 and would increase considerably as one approaches the irreversibility
(or depinning) line.

5.4 EXPERIMENTAL V-I CHARACTERISTICS OF HTSC THIN FILMS AND SINGLE CRYSTALS.

To our knowledge the V versus I relationship is still practically unknown in the case of high

T~ single crystals. However, this relation is presently extensively investigated in highly
textured thin films of YBaCUO [186-189] oxides where V is found to increase extremely

rapidly with J. Very often the experimental results are interpreted in terrns of the classical flux

creep predictions outlined above (Eqs. (14b)) but there are several points which are difficult

to understand in this model. For instance, it is often found [60, 188] that the resistance is

rather insensitive to the orthogonality requirement of the Lorentz force. Another probably
related problem is that epitaxial thin films generally exhibit gross microstructural features

[186, 188, 189] which could perturbate severly the local directions of the currents and hence

the orthogonality with the local field. In addition, there are fine details in the curvature of

V (I characteristics [190, 191] which are not consistent with the flux creep model. It seems to

us that such changes in the curvature of V (I could also be considered as the signature of

weak link effects [192, 193]. Finally, as will be discussed in sections 14 and 15, it is probable
that the V (I ) of thin films is to a large extent imposed by intrinsic pinning.

Other laws of variations of V with I were also reported in the recent literature on HTSC : V

proportional to exp(-a/J) [180] for example (a being a constant). Such laws are often
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Fig. 17. a) Evolution of the hysteresis cycle of YBaCUO at 4.2 K as a function of the sweeping rate

dH/dt of the applied field. Cycles I and 2 represent measurements performed with an ordinary VSM

magnetometer (dH/dt
=

lo to loo G/s). Cycle 3 corresponds to experiments in pulsed fields where dH/dt

is of the order 105 G/s. Cycle 4 is only schematic and would correspond to the time scales of transport

measurements, b) Low-H cycle in granular materials recorded at two different frequencies (discrete
points correspond to about 10~~ Hz while continuous line refers to l~i Hz [198]. We see no detectable

difference between the two.

described in terrns of a therrnodynamic transition at the irreversibility line (but further

comments will be made at the conclusion of this section).

5.5 THERMALLY AssisTED FLux-FLow (TAFF). The notion of thermal assisted flux flow

(TAFF) is a new terminology which appeared with high T~ materials [194]. Its exact definition

is not yet quite clear for us and differs slightly from one author to another. It seems to

correspond to the region of the T-H plane where creep is controlled by equation (14c), in
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which the electric field E is proportional to J, the critical current density. In other words the

resistivity (p
=

E/J is independent of J as illustrated by the low I portion of figure 16b. This

is to be compared with the other and more usual creep limit of equation (14b) where p varies

exponentially with J. TAFF has the same physical origin and obeys the same basic equation
(8a) as flux creep. It also satisfies the same continuity equation for the magnetic induction B,

which expresses flux conservation. The main difference with respect to the flux creep case is

that reverse vortex hopping is no longer negligible. It tums out that TAFF exists in

conventional superconductors as well [196]. Since equation (14c) defining the TAFF domain

of H-T plane is valid only in the limit UJ/J~~ « kT, it is in practice only observable close to

the irreversibility line. In the case of YBaCUO'S system, this region is practically limited to a

few degrees (~ lo K in ordinary experimental conditions) below T~. It is more extended in

BiSrCaCUO compounds and other related families. It is thought that in this H-T domain the

time behaviour of the irreversible magnetization obeys a diffusion of the form Mw(T)
=

M(to)exp[-t/r~] where r~~ is given by equation (14g). Conceming YBaCUO such an

exponential decay law has been observed [165] close to T~ (T
=

0 to 80 K and H
=

2 to 4 kG)
after a very long observation time (~ five days). This diffusion regime is expected to occur at

much shorter times in the case of Bi and Tl based cuprates. For a deeper insight on this topic

see Dew-Hughes [197].

5.5, I Some experimental and theoretical difficulties ofthe TAFF concept. We would like to

make the following comments now.

(I) Firstly, since in the TAFF region the electric field E is approximately linear in J (Eq.
(14c)), the criterion defining J becomes very unclear conceptually and needs to be

reconsidered in this region. In addition, in term of p, it is possible that for very low J the

criterion will be satisfied by the flux flow resistivity or even by the norrnal state resistivity (see
discussion below, 5.8, conceming the implication of these criteria for the resistivities of

some very pure metals).
The comparison between criteria defining J via a given fixed electric field E or a given fixed

resistivity p is done in references [l12, l13].

(ii) Secondly, we may wonder if the very popular Bean picture is still valid. We believe that

this picture, in particular the notion of critical current density, looses any physical meaning in

the TAFF limit. Indeed, the famous field diagram of Bean, such as that displayed in figure 3

(which is very helpful for the interpretation of magnetic data) is no longer justified in this

case. The reason of this is outlined in the next paragraph.
(iii) One important deficiency of the TAFF model is the neglect of flux flow effects which

are expected to become preponderant above the irreversibility line. In particular, it is obvious

that p~~~~ (Eq. (14e)) does not tend towards p~~ (Eq. (14e)) when the pinning force approaches

zero.

(iv) To our knowledge, there is at present no satisfactory theory which treats flux creep,
TAFF and flux flow simultaneously, on the basis of the same model. This is particularly true

when the pinning is strong because most of the collective pinning theories assume that the

pinning is weak. This makes the interpretation of the experimental data difficult in many
conditions.

(v) Fortunately, there are some limiting examples where TAFF and FF are treated

simultaneously : (I) An interesting approach is that of Feigel'man et al. [122] who calculate

the critical current density J starting from the unperturbed (I.e, defect free material) flux flow

state in which the sample is assumed to carry an applied current density J~. Then, they
introduce pinning disorder gradually and look to the reduction &v in the initial flux flow

velocity u~~ as a function of the increasing disorder strength. The critical current is defined at

the point where the velocity of the vortices is reduced by 100fb (that is to say when
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u= u~~- &~w0, which means that the VLL is totally pinned within this first order

perturbation calculation). In other terrns, as the disorder is increased the applied current

density J~ becomes equal to the critical current J at u~~- &u
w

0. (2) A second interesting
approach initiated by Coffey and Clem [123] takes into account simultaneously both TAFF,

FF as well as flux creep, but this theory is only valid in the limit of nearly elastic displacement
of the VLL (this model will be reexamined more extensively in Sect, 13).

5.5.2 The penetration depths associated with the various flux regimes : flux creep, TAFF, FF

and normal. We recall that in Bean's model the penetration depth Ar
=

R r* depends on

the field. For small fields and for the virgin branch of the hysteresis cycle it is given by

Ar
=

RH/H~ (14g)

This forrnula is no longer valid in the diffusive or TAFF region where it must be replaced by

an exponential decay length [I IO, 194] given (in SI units) by

~taff
~

lP1aff/~ ~0 ~° l~~~ (14h)

This length can be called the TAFF skin depth in analogy to the usual norrnal state skin

depth (remember that
w

is the angular frequency of the applied variable field). The same kind

of equation has been derived some time ago by Clem et al. [195] in the flux flow domain :

&rr ~
iPr/2 mo w

]1'2 (14i)

We note that these
«

screening» lengths tend to diverge in the dc-limit. Then, it is

interesting to see that strictly speaking this implies that the sample cannot sustain any

«
persistent

» current, or equivalently the magnetic critical current density is equal to zero. In

practice however, the above equations suggest that in the FF and TAFF regions of the H-T

plane any induced magnetic current (or equivalently any irreversible magnetization) will

vanish over a period of time

r~~~ w
2 mo &2/p

=

2 moR ~/p (if
w

R) (14j)

As usual, R is the radius of the sample (note that we have dropped the subscripts
«

taff
»

and
«

ff
»

for simplicity).
At this point it is interesting to see that the characteristic time r~~~~ can be deduced quite

simply from the usual time constant L/3l of a superconducting coil magnet having a self

inductance and shunted by a resistance 3l : On the one hand, assuming that the sample is a

cylinder of length unity we have by definition cl
=

4~
w

AB S
w

AB (2 grR& ) and AB
w m of

(Ampere's theorem). On the other hand we can write I
=

J& and 3l
= p ( I/S)

= p (2 grR/& ).
Combining these equations we easily obtain L/3lm mo &2/p which is equal to the above

characteristic time within a numerical factor of about 2.

More general treatments of field and current penetrations within the sample will be

considered in section 13. Later (§ 12.63, Eqs. (68)), we will use the above equations to derive

the crossover lines between the flux creep regime and the other regimes as a function of
w.

Now, we wish to discuss some experimental problems that can be encountered in transport

measurements.

5.5.3 Comparison between ZFC and FC transport measurements. As a general rule the

interpretation of transport experiments are based on equations (14a-f~ which assume tacitly
that the distribution of currents within the sample is homogeneous. There are however several

experimental examples where this condition is not satisfied, in particular in V versus I

measurements. More precisely, as discussed previously in connection with equation (14f~ the

distribution of the current within the sample is expected to be uniforrn at very low frequencies
of measurements, in both the FF and the TAFF limits. However, it is likely that this
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distribution becomes inhomogeneous in the flux creep regime. This is illustrated schematically
in figures 18a, b, c which assume that the current penetration across the sample as the applied

current is increased evolves following three successive steps defined in these figures, in

analogy with the field penetration in magnetic measurements (see Fig. 3). This analogy can be

justified qualitatively if we note that the penetration of current is accompanied by that of the

self field and the associated vortices. In standard V(I) measurements, the current I is

increased (at constant T~ from zero to some maximum value I~~~ greater than the critical

current I~. At first we expect that at low excitation levels the average current density within

the sample is deterrnined by the London-Abrikosov current J~. For instance, when the self-

field is equal to H~, the corresponding average current density would be given approximately

by J~(R ) 2 AIR
w

(I to 5) x
lo? AIR

w
2 H~~ Ii (fur T

~
77 K and A « R typically see

appendix A). Since the contribution of this terra (which produces no dissipation (p
=

0) to

the total current is proportional to the ratio AIR, it is expected to become preponderant at

high enough T as AIR diverges as T
=

T~.
Let us now neglect such a London current (an assumption generally valid at T« T~ or

R » A and assume that, like in magnetic measurements, the applied current penetrates and

develops into the sample from the surface as assumed in figure 18b (but see Sect. 13 for other

possible modes of penetration). Then, it follows that the local current density is highly
inhomogeneous while the average current density (J) entering the measured V (I is given by

J~(I r*~/R~), for (J) lower than the current J~ of full penetration of the sample. It is only

when the biasing current exceeds grR~J~ that the critical current density becomes eventually

uniforrn (see next Sect. 6 for other possible causes of unhomogeneties in the current

distributions) and the application of equation (14b) becomes justified. From the above

considerations it seems probable that upon cycling the current I up and down this effect will,

in some conditions, lead to a regime of low hysteresis between the virgin (or initial) and the

cyclic branches of the V(I ) curve (Fig. 18d). It is also possible that the zero current state

realized after such a V-I cycling exhibits macroscopic remanent currents (in the forrn of closed

loops) and is thus different from the virgin one. The above predictions need experimental
confirmations, e.g. they can be tested either by decoration experiments or by means of

microscopic Hall sensors (of dimension comparable to the remanent current loops) placed

very close to the specimen. Finally, the V-I characteristics considered above must be regarded

as ZFC experiments. Equivalent FC and ZFC magnetic susceptibility measurements are

considered in § 12.5.

The situation is expected to be much simpler in ordinary resistivity (p ) measurements than

in V (I ) characteristics just discussed. This is because p is usually measured under field cooled

and current cooled conditions. In this case indeed, the repartition of the current within the

specimen and the associated field gradient are created at T~ T~ (or eventually above the

irreversibility line) and J is then relatively uniforrn (Figs,18e, f, g) whatever its value

(assuming that the influence of the self field is negligible, see however next Sect. 6 for the

consequences of self fields). Therefore, p measurements (in static conditions) are equivalent

to FC- experiments whereas V (I ) (Fig, 18h) characteristics are equivalent to ZFC-conditions.

Of course, we can also carry out ZFC resistivity experiments by applying the current at low

T and then heating the specimen up to the norrnal phase, ac-resistivity presents great interest

but is more difficult to interpret and depends on the amplitude, io, of the altemating current

as well as on the measurement frequency, v. It is probable that for large enough

ho and low v the ac-resistivity is equivalent to the ZFC one just discussed while for very low

ho and high frequencies it is govemed primarily by the elastic response of the VLL and

includes a large quadratic terra (see Sect. 13 for more details).
Finally, it is extremely important to note that the above considerations apply also to
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ZFC ' FC

> I

1<2zRH

ZFC FC

§ 2r* ' f

2zRH~i <l<l~ =zR ~j

ZFC FC

j @

I>l~

v
@ @

ZFC FC

l~~~

Fig. 18. Suggested current distributions within a sample prepared in two different cooling states. a,

b, c) The sample is cooled in zero field and zero current. The current is then increased continuously
from zero to some value I~~ ~I~. d) A schematic V(I) curve which would correspond to the field

profiles of figures a, b, c.

Fig, 18e, f, g. The sample is cooled in an extemal constant current I. In this case the current is

expected to be approximately (not rigorously) uniform across the sample, h) Intended to represent the

V(I) curve corresponding to this
«

field cooled
» state. Curve (h) is expected to be more consistent with

the theoretical models (see text) than curve (d). Such an fc-curve would correspond to usual resistivity

measurements.

V(I) characteristics of granular samples where the situation is even more complicated
because of the extreme sensitivity of these systems to the self fields (generated by the applied
current) which make J~i very inliomogeneous through the sample whatever the experimental

conditions (ZFC, FC or AC, see below for more details). It is clear that more theoretical and

experimental investigations are needed to clarify these important points.
In the following paragraph we limit our attention to the FC-resistivity which is, as we have

just seen, more appropriate for comparison with the theoretical predictions of equations (14).

5.5.4 The link between the FC-resistivity and the apparent pinning potential. Now, we are in

position to discuss resistivity measurements in some detail and ask the two important
questions : (I) how to derive the apparent pinning potential from such measurements ? and

(2) what is the exact meaning of the resulting potential barrier? Firstly, to avoid
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complications from the London currents we shall assume that the effective field (including the

self-field) is larger than H~~ (0). If there is no extemal field this implies I~
~

2 grRH~~ (T
=

0 )

(see lower region of Fig, 18i) where I~ is the applied current and R the radius of the sample.
Secondly, also for the sake of simplicity, we shall restrict the quantitative discussion mainly to

the TAFF region of the T-H plane (Eq. (14e)). In the previous analysis of magnetic relaxation

we did not pay much attention to the fact that the pinning barrier depends in fact on

temperature. This was justified because most magnetic measurements are perforrned well

below T~ in the pure flux creep regime. This is not generally the case in resistivity data as in

most experimental conditions p is significantly different from zero only close to T~. Moreover,

as illustrated by the dashed lines labelled
«

Ii », « I~ »
and

« I~ »
(Fig. 18i), we expect that the

TAFF domain spanned during resistivity measurements increases as I~ increases (recall that

the self-field associated with I~ is given by H~~(I~)
w

I~/2 grR). The figure suggests that

H~~(I~) is expected to have the same broadening effect (on the resistive transition) as an

extemal field H. This implies that the analysis of p in the framework of the TAFF model is less

justified at very low I~. However, in practice H~~(I~ is often very small (generally much less

than I m) implying that p (T) goes to zero in a very narrow temperature domain known as the

width of the resistive transition.

Many workers assume that the pinning potential varies with T as

U(B, T
=

U(B )[I (T/T~)~]~'~ (14k)

with the exponent n =

I to 2. Quite often, experimentalists [87, 131-133, 140] analyse their

data in plotting d In p/d(I/T) as a function of T. Then putting equation (14k) in (14e) gives

d In p~~ir d In p o, ~~R u (B, T ) I + (1.5 n I ) (T/T~)~

d(I/T) d(I/T) k I (T/T~)~
~~~~~

Generally the first term of the right hand side of (141) is thought to be negligible. Accepting
this approximation we can get directly both U~(B) and n from the experimental data.

Therefore, in contrast to magnetic measurements resistivity experiments can give direct

iTi

FF N

o

Fig. 18i. During field cooling, the sample undergoes several flux regimes and always crosses the FF
and the TAFF regions where p is linear in I. If there is no extemal field the applied field is equal to the
self-field- Moreover, if I

=
Ii w 2 WRH~~, it is in the Meissner state where p =

0. The dashed areas

mean that the border lines between the various flux regimes are ill defined.
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access to the strength of the real pinning potential. This could explain many apparently
conflicting data of the literature. Figure 18j presents schematically the U versus J relationship
at various fixed temperatures and compares the U versus the experiwiental J curves obtained

at different temperatures by means of either magnetic relaxation (dashed curve of Eq.
J

=
J~~~(T~) or resistivity measurements (thin vertical line of Eq. J

=
J~

=

Cte). Note that the

dashed curve represents also the equation of U(J~~~(T~, T~ in which J~~ (T~ is the magnetic
critical current at the temperature T. At T « T~, the pinning barrier doe~not depend directly

on T (in the flux creep model) but only through J(T~. However, close to T~ it depends on T
both directly and via J~~~ and tends to zero rapidly. For investigations on magnetic relaxation

and U(J~ at T very close either to T~ or to the irreversibility line see reference [134].

lJm~~lT ),Tl
Ti « T~ < Tj <T~

ii
TST~

° J~~~(jj JlTl
P

Fig. 18j. Compares the points of the U-J diagrarn spanned in resistivity measurements at constant J

(vertical line labelled p) and in magnetic relaxation experiments (dashed curve) defined by the equation
U(J~

=
U(J~~~(n, n. Usually, at low temperatures U does not depend directly on T and thus

U(J~~~(n, n merges with U(J~ at T
=

0.

5.6 GRANULAR suPERcoNDucToRs. It tums out that for sintered high T~ materials the

exponent m equation (14a) is only of the order of lo to 20 instead of 20 to 150 typical of

conventional materials [73]. However, m is related here to the weak link network and the

associated intergrain current. As a consequence, it would obey different flux pinning
mechanisms and thus leads to a different V(I) relationship. Moreover, it is likely that for

granular materials the exponent m is strongly dependent on the shape of the sample [39, 73,

196]. This is because of the self-field which will be discussed in the next section. For the same

reason, the V(I) relationship is sometimes hysteretic as the applied field is swept upwards and

backwards. This is due to up and down fields trapped by the grains whenever H exceeds (or

had exceeded) H~~ for such grains. It is important to realize that the physical origin of the

hysteresis exhibited by the V versus I curves is different from that responsible of the hysteresis

in the M(ll~ curves. The existence of hysteresis here implies that the parameters m and k

forrnula (14a) depend on the magnetic history of the specimen. Hereafter, we shall neglect
irreversibilities in V I characteristics.
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5.7 TIME DEPENDENT EFFECTS IN GRANULAR MATERIALS. In the previous section on flux

creep, we only considered homogenous materials. Here we wish to examine quickly the case

of intergranular currents in granular materials. At present there seems to be no strong

evidences of time dependent effects in the low-H hysteresis cycle ascribed to intergranular

currents of granular materials. This is illustrated by figure 17b from Maury [198] which shows

a low-H magnetic cycle recorded at two very different sweeping frequencies (about

lo ~ and 10+ ~ Hz). It is clear that M is approximately independent of the sweeping rate of the

measuring field (within the experimental accuracy) over this wide frequency range and at

T«T~. In the same way, a,c.-susceptibility measurements close to T~ reveal almost no

frequency effects up to about I MHz (this will be reexamined later). This quasi absence of

relaxation phenomena has led many authors to the conclusion that the pinning barriers

associated with intergranular currents is excessively large, up to 35 eV. We believe that the

absence of any significant time effect together with other unusual properties such as size

effects (see section 6 below) suggest that the flux creep model is probably inadequate for the

description of time and temperature dependences of the intergrain currents considered here

(we recall that in the flux creep forrnalism, the variations of J with t has only one physical
origin : the creep of the vortices over the barriers). In any case, it is clear from this discussion

that the question of time dependent effects in granular systems requires more systematic
investigations. (We shall come back later to this question and see that time effects can be

detected in some special experimental conditions such as the field induced by persistent
currents in the centres of toroidal samples, in apparent contradiction with magnetic
measurements). However, in these experiments (persistent I in toroids) the time effect is

perhaps connected with trapped flux in the grains, due to the fact that H has exceeded

H~~ somewhere.

5.8 COMPARISON WITH THE RESISTIVITIES OF SOME ORDINARY NORMAL METALS. Let us

consider again the transport critical current J~ and assume that the corresponding electric field

E is limited by the experimental precision to 10~~ Vcm~ (this is a rather low field value but

corresponds to the usual criterion used in magnet construction and is meaningful for the

following comparison). It is then interesting to compare the associated creep resistivity
defined here as E/J~ with the resistivities of some ultra-pure ordinary metals at liquid helium

temperature. On the one hand, we can easily see that for granular ceramics where

J~ is generally less than 10SAcm~~ the creep resistivity is about lo ~ flcm~~, which is

comparable to the value of most commercial Cu wires at liquid helium temperature. On the

other hand, intragranular current density J (in single crystals) is of the order of

10~ Acm~ ~ (at 4.2 K) corresponding to a creep resistivity of
w

10~ ~~ flcm~ ~. Again, this value

is comparable to that of very pure gallium, potassium or aluminium at 4.2K and

H
=

0 (for these metals, especially for gallium, residual resistivity ratios RRR as high as

2 x
lilt have been reported in the literature).

5.9 DISCUSSION AND CONCLUSION. Current-voltage characteristics (and more generally
resistivity broadenings) are generally used to deterrnine the energy barriers entering
equation (14b, 14c). These energy barriers were also discussed in this section in terrns of

magnetic relaxation. The values (U?) deduced from magnetic relaxation are often one to two

orders of magnitudes lower than those inferred from resistivity data. As we have seen, this is

probaly because of the fact that the apparent barrier (U?) in magnetic data does not

correspond to the actual energy potential but to an apparent terra which depends on the

associated region of the U(J~ curve. On the contrary, according to section 5.5.3 the apparent
potential barrier deduced from resistivity data is closer to the real one. A second possible



1094 JOURNAL DE PHYSIQUE III N° 7

cause of this difference could be due to the fact that the time scales involved in the two

experimental techniques are generally very different.

Careful analysis of the V-I characteristics of thin films [190, 191] reveals some fine details

(in particular some changes in the curvature of the V(I) curve) not consistent with the usual

flux creep model, in particular with equation 14b, c. Such effects have often been ascribed to

a melting transition [180] or to a vortex glass like transition [106, 174]. Also, there is some

evidence that relaxation effects persist in the limit T
=

0 which is not consistent with classical

therrnal flux creep. As we know other interpretation problems arise in zero field cooled V

versus I experiments because the distribution of the current through any transverse section of

the sample is not uniforrn.

However, despite the many important work which has been achieved in thin films and in

granular materials, we believe that the detailed interpretation of V-I characteristics is still too

complicated to draw any convincing conclusion conceming possible transitions in the vortex

lattice. This is because of the influence of the microstructure. It is also likely that the

interpretation of the data is made very unclear because of the fact that the measured current

generally includes various contributions of different origins (see the discussion in the

introduction and Fig, I) the respective weights of which depend on many different factors (T,
H, the microstructure, the geometrical shape of the specimen, the experimental technique
etc.).

The qualitative consideration above show that the usual transport criterion

(E 10~ ~ Vcm~ ~) can be quite appropriate for some applications such as transport of electric

energy at long distances but is generally not sufficient for the production of high perrnanent
fields (such as permanent magnets). This is for instance the case in NMR applications in the

persistent mode where a relative stability (for J~ of the order of 10~~ (and better) is required

over a long period of time (several weeks or months). Clearly, the magnetic criterion is more

suitable for this last example. Finally, we must emphasize that the above comparison is not

very rigorous from the applications point of view since the creep resistivity is not very

significant by itself from the economic aspect : Economic factors such as the cost of liquid
N~ compared to that of liquid helium (among many other economic considerations) have to be

taken into account. Here we are only interested in a qualitative discussion to illustrate the

notion of critical current.

In this section we showed that the apparent J depends on the experimental method because

of the different time scales involved (Fig, 17). Presented in the following section are some

striking examples demonstrating that the apparent J can also depend differently on the shape
of the sample through the self-fields.

6. Interplay between the apparent critical current density, the size of the sample and the self

field.

In the precedent two sections, it was assumed that J was approximately independent of H and

uniform within the specimen. However, we have seen that in real situations the measured

critical current depends on the time scale of the experiment and represents some spatial

average of the actual one. As a consequence, for the same applied field the measured critical

current will depend on the exact shape of the sample, on the experimental technique
employed and on the exact J(H) relationship. In other words, one has in general
J(H) # J~(H) # J~~~(H), even in the limit T

=
0 where norrnal relaxation effects are zero.

Among other causes of this discrepancy is the fact that even for perfectly homogeneous and

isotropic materials, J will vary through the sample because of the self-field (I,e. the field

induced by the currents circulating within the sample). As we shall see later this phenomenon
is particularly important for intergranular currents in ceramic samples. It also depends
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strongly on the demagnetizing field, though it exists even for very long cylinders with no usual

such field. For this reason we wish to pay some attention to this point now.

To illustrate the various influences of the size of the sample and the associated self-field on

the apparent critical current we first calculate numerically and compare the transport and

magnetic currents in the simplest example of a long wire (thus without ordinary demagnetizing
field) of radius R submitted to its own induced field (I,e, applied field H

=

0) and with

homogeneous pinning forces. We also assume that H(r) (equal to the the self-field since the

applied field is zero) and J(r) have axial symmetry and neglect the equilibrium magnetization
and the associated shielding current. To illustrate further the shape effects in magnetic data

we also calculate the field H~ of complete flux penetration for various J(H) models. Finally, in

the last paragraph we shall discuss briefly the effects of usual demagnetizing effects in the

extreme limit of thin films where it is shown that H~ is approximately proportional to the

thickness of the film but depends only logarithmically on its radius (demagnetizing field will

be reexamined in more detail in section 15). The main idea of this section is the introduction

of a characteristic length Ro below which self-fields are negligible.

6,I LINEAR DECREASE oF THE CRITICAL CURRENT DENSITY WITH H. To point out the

physical origin of the size effect we first consider the ansatz first used by Kopp6 [199] where J

(in A/cm2) varies with B as :

J( B )
=

Jo(I B j/Bo)
,

(0
~

B
~

B o) (15)

J(B)
=

0
,

( jB
m B o)

5 Bo
Ro

" fi (16)

Here Bo, expressed in gauss (Bo ~B~~), is some characteristic field controlling the field

dependence of J(B). Note also the introduction of a characteristic length Ro (in cm) the role of

which will become clear later. Let us now calculate the apparent magnetic and transport

currents corresponding to this linear law.

6,I,I Transport current in zero applied field (Koppd model). The relation between the

transport critical current J~ and the real one J can be defined quite generally by the equation
below, valid for axial symmetry (the simplest configuration) :

~ R

J~(B)
= z J(r) r dr (17)

R
o

with R being the radius of the cylindre. The spatial variations of J and B are related by
Maxwell's equation which, for cylindrical symmetry with J parallel to the cylinder axis, takes

the form :

aB~ B~ 4
~r

$ ~
r lo

~~~~~' ~~~~

Here B~ is the azimuthal self-field generated by the transport current flowing along the wire

axis. After resolving this equation for zero applied field and putting in equation (17) we

obtain the transport current density (in A/cm2)
:

J~(H
=

0)
=

~ ~°
(l

~°
(l

~~'~°)j
(19)

"R R

with the characteristic length Ro defined by equation (16). A Taylor expansion of this
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equation as a function of R (recall that R is the sample radius) shows that at small R

(R « R o) we have J~ wJ(H
=

0)
w

Jo while at large R (R » R o) J~ becomes independent of

the initial Jo and inversely proportional to R :

J~
=

Jo (R « R o) (20a)

J~(H
=

0)
=

~ ~°
(R » R o) (20b)

Let us tum back to the Maxwell relation in equation (18) and discuss its consequences for

the transport currents. Because of the term B~/r which goes to infinity as r approaches zero

(I,e, the centre of the wire), no stable critical state can occur if B~(r) does not reach zero at

any point of the specimen. According to Campbell and Evetts [19] and to Kopp£ [199] this

condition introduces a characteristic radius R' below which the vortex rings around the

current are unstable and collapse. This threshold radius is reached when the radial tension

(which varies as I/r) tending to collapse the ring is just equal to the pinning force. What is

important for the present discussion is the fact that this seems to imply also that for very large
specimens the apparent transport current density

J~~
should drop as I/R whatever the initial

J(B) law [199]. As we shall see below, this makes a big difference with the magnetic current

which sometimes decreases more slowly with R.

It is interesting to note that measurements of transport critical current in zero field can

provide a much more accurate determination of H~~if the radius of the sample is smaller than

R' [19, 199]. This is because the pinning forces and the associated irreversibilities (which

make an accurate determination of H~~very difficult) are balanced by the radial tension in this

limit. In practice, the limit R' is very low to allow the deterrnination of H~~ by means of

presently realizable HTSC wires.

We now consider the persistent magnetic critical current in zero applied field, associated

with the remanent magnetization M~(B
=

0) in the hysteresis cycle (this is the right quantity to

be compared with J~ in zero applied field).

6.1.2 Remanent magnetic current J~~~ (Koppd model). It can be shown that the magnetic
critical current as defined by the critical state forrnula J~~~ =

30 MJR can be rewritten in the

following way (for cylindrical symmetry with B
=

Bz now parallel to the axis of the wire) :

J~~~(H)
=

~ i~ J(r) r~ dr (21)
R

o

with

I
=

~
" J(Bz) (22)

After resolving Maxwell's equation (22) for the function J(B) given by equation (15) and

putting in equation (21) we obtain for the remanent magnetic current (at applied field
=

0

and for the cyclic critical state)

J~~~(H
=

0)
=

~~ ~°
(l

2~°
2

~° ~

(l
~~'~°)j

(23a)
2 "R R R

H~
=

Ho [I e~~'~°] (23b)

We recall that H~ is the field of complete flux penetration within the sample. Again we can

easily see that at small R (R « R
o

given by Eq. (16)), Jz~~~ reduces to the real Jo (at H
=

0) but
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varies as Bo/R at large R, that is :

J~~~ w
Jo (R « R o) (24a)

15 Bo
J~~~(H

=

0)
=

(R » R o) (24b)

We can also see from equation (23b) that for R « R
o

the field H~ of full flux penetration
reduces to the Bean field H~

=

2 grJ(0) R/5, proportional to R, whereas at large R it is equal

to Ho, and hence independent of R. Comparing equations (15), (20) and (24) we can make the

following remarks :

I) The variation of the apparent current with R can be very complex and different for

transport and magnetic measurements.

2) In the limit where R is much smaller than the characteristic field Ro (R « R
o

defined by
Eq. (16)) the two methods give the same critical current J(H

=

0)
=

Jo.

3) In the opposite limit R » R
o,

the apparent critical current depends strongly on the size of

the sample and decreases with R as I/R in both cases. More strikingly, in this limit it is

independent of the real Jo for both cases (transport and magnetic) as well.

4) In the limit R » Ro, Jm~~ is larger than J~ by a factor 3/2 for the present example.

However, it is not clear whether or not for large R the apparent current always behave as

Bo/R and become independent of Jo (regardless of the particular J(B) law). It seems that this is

probably the case for the transport current. However, it tums out that the I/R asymptotic law

is not always followed in the case of magnetic data. To answer this question we further

calculated the hysteresis cycle and the associated magnetic remanent currents for two other

models at zero applied field: (I) in the approximation where the actual J varies as

Joexp(-B/Bo) and (2) for the Kim model in which the actual J(B) drops with B as

Jo/(I + B/Bo). The results are summarized below.

6.2 EXPONENTIAL DECREASE oF THE CRITICAL CURRENT WITH H. Now we assume that

the critical current drops exponentially with H :

J( jB )
m

Jo e~ '~ '~° (25)

6.2,I Magnetic current (exponential law). The whole hysteresis cycle is calculated

analytically in reference [77] in the approximation where J drops exponentially with H. In

particular, the remanent magnetic current (I,e, for zero applied field) is given by for-

mula (26a), valid for all R. The field of complete penetration is given by equation (26b)

l5Boj
3 Ro Ro 2 R

Jm~~(H
=

0)
=

+ (1 + In (1 + (26a)
2 "R 2 R R Ro

H~
=

Ho In (I + R/R o) (26b)

We can again expand equation (26a) in a Taylor series as a function of R and show that at

small R it reduces to Jm~~ =

Jo whereas at very large R it becomes independent of

Jo and decreases as I/R. The result is :

Jm~~ w
Jo (R « R o) (27a)

15 Bo R 3
Jm~~(H

=

0)
w

In
(R » R o) (27b)

2 "R Ro 2

Here too, it is clear that for R » Ro (where Ro is still defined by Eq. (16)) the apparent
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current drops as Bo/R (if one neglects the additional logarithmic variation). We can make the

same remarks as above conceming H~ which varies from HB(R«Ro) to Ho for

R » R
o.

It is possible to make a rapid estimation of the apparent current at large R if one remembers

that because of the very rapid drop of J(H), the current density, across any section of the

sample, can be considered as constant within a shell of thickness Ro and vanishingly small for

r ~
Ro. Then, putting this spatial variation of J(r) in the general forrnula (21) with the limits of

integration R R
o

and R, one obtains Jm~~ w
3 Jr~ dr /R ~

m
3 Jo R/R

o =
15 Bo/(2 grR)

(after making use of the relation Bo
=

2 gr Jo Ro/5 of Eq. (16)). This is to be compared with

the factor in the right band side of equation (27). The above simple physical argument shows

why when R»Ro, the apparent current density is almost independent of the initial

Jo and drops rapidly with R.

6.3 KIM MODEL. A frequently used J(B) relationship was introduced a long time ago by
Kim [200] :

Jo
J( [B

w
(28)

~
B

Bo

6.3.I Magnetic current (Kim model). Using equations (21) and (22) together with Kim's

model (Eq. (28)) yields a persistent magnetic current (in the remanent cyclic state) of the

forrn :

2 Ro 3 R s12 Ro 2 Ro
Jm~~(H =

0)
=

Jo l + 2
)

2 3 (29a)
5 R Ro R R

JR
H~

=

Ho + 2 2 lj (29b)
~

Here too we can easily develop Jm~~ in powers of I/R and test that for R «Ro, we have

J~~~ =

Jo whereas at large R we have :

j~Bo i12

J~~~(H
=

0)
w

8 (R » R o) (30a)
5 "R

J~~~ w
Jo (R « R o) (30b)

What is new with respect to the two precedent examples is that now J~~~ is proportional to

the square root of JoBo and drops as II li
at large R. Also H~ increases with R asli in the Kim model. Shown in figure19a are the calculated variations with R of the

reduced transport current J~/Jo corresponding to equation (19) and the three different

magnetic currents J~~~/Jo corresponding to equations (22, 26, 29) in semi-logarithmic scales.

Also shown for comparison is J~ of equation (19); the corresponding J~~~ is noted

~mag 3.

We shall learn later that intragranular current can not be described by a single characteristic

lengh Ro but at least two different Ro are needed. One is associated with the rapid variation of

J at low H (low-H peak in the hysteresis cycle) and the other one with high-H variation of J.

The corresponding size effect is sketched in figure19b (a more rigorous calculation will be

reported elsewhere, see also section lo). Comparing the curves of figure19a we see that at
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Fig. 19. a) The reduced transport (J~/Jo) and magnetic (J~~/Jo) currents as a function of the reduced

radius r=R/Ro (note the semi-logarithmic scale). J~,j~ corresponds to equation (19), J~~~~ to

equation (23a), J~~
Rn

to equation (26a) and J~~~ ~~n
to equation (29a). These curves are qualitatively

valid for the intergrain currents, b) Expected behaviour for intergrain currents.

large R the transport current (J~, Kopp6 [199]) deviates more rapidly from Jo (the real current

in zero field) than the associated magnetic term J~~~~ (Eq. (15)). However, it is possible that

the difference between the two methods of measurement (transport and magnetic) would

become less dramatic in the presence of an applied field much larger than the self-field. This is

because in this limit the vortex structure would be imposed principally by the applied field and

would therefore be approximately the same in the two situations (eventhough a definitive
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conclusion requires more investigations, we find that the self-field effects disappear for

H » Ho in magnetic data). Note that the curves of figure 19a would be valid (especially the

exponential law) for intergranular currents in HTSC.

6.4 FIELD PENETRATION IN THIN FILMS. In all of the above examples we have assumed that

the sample was a long cylinder with negligible demagnetizing field. In this case the field

H~ of complete flux penetration was easily calculated in all the three models considered above

and found to tend towards the Bean's (H~
=

2 grJR/5) for R «Ro. However, this result is

completely wrong when the usual demagnetizing field becomes nonnegligible, particularly in

thin films. A useful forrnula approximately valid in the case of thin films in the limit where J is

independent of H is as follows :

H~
=

I eJ In (R/r*) (30c)

Here 2 e is the thickness of the film of radius R whereas r* defines the border circle inside

which the sample is still in the virgin state (B(r)
=

0, r ~
r*). It is related approximately to the

virgin magnetization by M~~ = M~y~[I (r*/R)~] with r
* necessarly greater than e. Assuming

r* =R/10 in the above equation shows that for thin films (with J
=

Const.) H~ is given
roughly by the same expression as for H~ (of long cylindrical samples) but with R (and this is

very important) replaced by e. Demagnetizing effects are the object of section 15 where the

above expression (30c) will be demonstrated rigorously.
Another point which is important to emphasize as well is that transport and magnetic

currents can appear very different because of the anisotropy. This point is considered in

section 14.

6.5 DIscussIoN AND coNcLusIoN. To conclude this section, it seems that if J depends
only on the reduced variable BIB

o,
then regardless of the exact relationship J(B/Bo) (among

those considered in this section), it is always possible to define a characteristic dimension

Ro (Eq. (16)) below which the measured critical current (in applied field much smaller than

Ho) reflects the real critical current whereas for larger R it depends on the experimental
technique used and decreases according to some power law of I/R. It tums out that

intragranular current of high T~ materials cannot be described by a single scaling law

J(B/Bo) of the sort studied before and we need two different terrns Bo corresponding to very
different field domains. We found that YBa~Cu307 at 4.2K, the characteristic length

Ro associated with the high field regime H » H~~ is of the order of 2 to 5 mm for intragranular

current density single crystals at T « T~ (and probably larger at high T~, but only 20 to 50 ~m

for intergrain currents [77]. This shows clearly that in the last case we are practically always in

the I/R regime. Thus, intragranular currents are characterised in fact by two different

Ro. It is of interest to add that because the relative influences of Jo(T~ and Ho(T~ on the

measured current depend on R, it is expected that the J versus T law of the experimental

current should depend on R, particularly in granular materials. At large R it would reflect the

T-dependence of Ho(T~ whereas for very thin specimens it would correspond to Jo(T~ (see also

8.3). Finally it is important to emphasize that when the applied field is very large compared

to Ho we recover the Bean model in which M scales with R and the apparent critical current

density (obtained by the Bean model) represents really the local one. In other terrns, if one

tries to generalize this idea of a characteristic Ro to the high field domain it seems that

Ro varies more or less inversly to J(H). Then, since J(ll~ decreases with H this implies that

Ro(H) increases with H and should exceed the radius R of the sample at some field value.

Because of the size effect emphasized in this section, it seems that the experimental critical

current density in zero applied field is not a sufficient means to judge of the quality of the
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material. For this purpose, it would be better to measure the critical current in some fixed

field much higher than any self-field. As far as granular, no textured, HTSC superconductors

are concemed an applied field of about 50m would be quite sufficient. Clearly more

investigations are needed to clarify this point.

7. Critical current in single crystals, oriented grains and highly textured thin rums.

This section concems the investigation of intragrain critical current densities in single crystals,
decoupled grains and highly textured epitaxial thin films of HTSC. We wish to emphasize the

most characteristic features common to these systems. In particular, we shall consider the

influence of field, temperature, the microstructure (chemical and physical defects) as well as

the macroscopic shape of the sample on the
«

experimental
»

critical current densities.

We know that direct transport measurements of critical currents in single crystals
(intragranular current) are very difficult to realize and are rather scarce in the literature at

present. Therefore, this section will principally focus on the deterrnination of J from magnetic
measurements (we recall that for notational simplicity we call the critical current density J

instead of J~). We have seen in section 4 conceming the experimental criteria defining J that

because of the difference in the time scales involved, the transport critical current is expected

to be somewhat larger than the magnetic one. We have also seen that, on the opposite, spatial
averaging favours J~~~ if R»Ro (with R being the radius of the sample whereas

Ro, given by Eq. (16), is a characteristic dimension of order I to 4 mm for YBaCUO single
crystals and for H » H~~). Indeed, we shall see that except in a narrow field domain of about

lo x H~~ around the origin (defined by the low-H peak region of the hysteresis cycle ; see

below) the magnetization scales with R and hence represents (to a good approximation) the

local critical current density J. This claim is valid for single crystals as well as highly textured

epitaxial films, when the radius of the specimen is less than a few millimetres (a condition

generally satisfied in most experiments ; see Fig, 19). Therefore, we believe that as far as

these systems are concemed most of the quantitative data deduced from magnetic

measurements are either very close to the transport critical current or represent a lower limit

of this current, particularly at low temperatures when flux creep is negligible. Nevertheless,

this conclusion is certainly less justified very close to the irreversibility (or depinning) lines

where relaxation effects are often very strong and favours J~~ rather than J~~~. Again, for the

sake of notational simplicity we shall assume in this section that J, J~~~, and J~ are identical

(unless otherwise specified). Also, to avoid complications from anisotropy effects (which will

be discussed separately later in Sect, 14) we shall equally assume that the applied field is

directed along a symmetry direction (c-axis or a-b plane) and that the vectors H, B and M are

aligned along the same direction. Finally, we shall see in section 14 about anisotropy effects

that J~~,~~ (i.e. the current in the a-b planes with the Lorentz force perpendicular to these

planes) is hardly accessible by means of usual magnetic measurements so that for the

experimental results considered here the measured critical current is J~~,~ (for Hfc)
or

J~, ~~
(for H I c).

Some of the most characteristic features of intragrain currents have been already
mentioned but it is of interest for the present discussion to recall the following results :

I) J is generally as high as
106 to 10? Acq~~, at low temperatures and fields. Such very

large current values have been first observed in Lai,~ssro.iscuo~ by Oussena et al. [13]
before the discovery of YBa2CU~O~ by Chu et al. [3] and then confirrned for other high

T~ families in particular by direct transport measurements in Y(123) thin films by Chaudhary

et al. [14].

2) In general the magnetic critical current drops very sharply with temperature (exponen-
tially for T w 2 Tj3 in the case of Y(123)), as well as with field at high T. For instance, in the
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case of Y(123) J is reduced by two orders of magnitude when T varies from 4.2 to 77 K [20-25,

201, 202]. Close to T~ it follows a power law. The situation is generally much more dramatic in

the case of the Bi [60, 203-205] and Tl cuprates [206, 207].

7,I THE HYSTERESIS CYCLE AND THE FIELD DEPENDENCE OF THE ASSOCIATED CURRENT

DENSITY J~~~. YBa~CU~07, Some representative examples of the hysteresis cycles of melt

textured samples and single crystals of YBa2Cu~07 are displayed in figures 20 and 21

(respectively) for H parallel to the c-axis and in figure 22 for H perpendicular to that axis. The

same kind of plots are presented in figures 23 and 24 for oriented grains of YBa2Cu207 125,

154]. It is seen that whatever the experimental conditions the cycle exhibits a well defined

peak close to H
=

0 (« central peak »). It is also seen that for H parallel to the c-axis the

M(T~ curve (butterfly like shape) of the single crystal exhibits a minimum, in some

temperature region (~ 50-80 K here) but it is to be emphasized that no minimum is seen for H

parallel to the a-b basal planes whatever the temperature. More puzzling, to the best of our
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Fig. 20. Evolution with temperature of the hysteresis cycle of a highly melt textured specimen of

YBa2Cu307 for H parallel to the c-axis (from Aguillon [25, 154j).
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Fig. 21. Same experiment as in figure 20, but for a single crystal of YBa2Cu~07 of almost spherical
shape (R

mz
0.3 mm, T~

=
85 K) (after Ouss6na [380]).

knowledge no pronounced minimum of this kind is seen in the hysteresis cycle of oriented

(well oxygenated) grains prepared in the usual conditions (r~w20 m~ typically) for any
orientation of the applied field. Conceming M~~(H) (I,e. the magnetization for H in the a-b

planes) it is to be stressed that because the shape and the amplitude of the cycle are both

extremely sensitive to any deviation of the H-direction from the a-b plane, the measured cycle
with H assumed in the

«
basal planes

»
seldom represents the true magnetization for H strictly

within these planes. It is indeed often dominated by the magnetization induced by the

projection of H on the c-axis. More or less similar field behaviours are exhibited by other

HTSC families, as illustrated below.

Bi and Tl based high l~ materials : From figure 25a, [314] it is seen that at very low

temperature Bi (2212)-oxide exhibits very much the same M(H) curves as YBa2CU~O~ (for H

parallel to the c-axis) but as the temperature is increased the magnetization drops much more

rapidly with both T and H than that of Y (123) compound. Because of the large anisotropy of

Bi cuprates the magnetization M~~ for H strictly parallel to the basal planes is found to be

practically zero in high quality single crystals. In fact, we recall that we find it extremely
difficult to obtain H strictly parallel to the a-b planes. Most of the

«
a-b

»
magnetizations
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Fig. 22. Evolution with T of the hysteresis cycle of a single crystal of YBa2Cu307 for H
«

parallel
»

to the a-b basal plane [154].

reported in the literature may probably be explained by this qualitative projection model (see
Sect. 14) which means that the measured magnetization is due principally to that induced by
the projection Hz of H on the c-axis. In fact this component can be increased considerably by
the demagnetizing field : H~, ~r~ m

H~/(I Nz) at low field and low flux penetration and where

N~ is the demagnetizing factor for H parallel to the c direction (see [50, 358] and 15.2 for

more details). A necessary but not sufficient condition for H to be in the a-b planes is to make

the transverse magnetization (I.e, the component M~
w

M~ along the c-axis in this case) equal

to zero. Unfortunately, for this purpose we need a two-axis-magnemeter to measure

M~ and M~ simultaneously. After correcting approximately for such misorientation errors we

estimate that at very low T and H (I,e. not very close to the depinning line) J~,~jJ~~,~ is

probably less than 10~~ to 10~~ in Bi-systems (see anisotropy Sect. 14 for more details). It is
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Fig. 24. Examples of temperature dependence of the hysteresis cycle of oriented grains sample of

YBa2Cu307 for H parallel to the c-axis [154].
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Fig. 25. a) Temperature dependence of the hysteresis cycle of a single crystal of BiCaSrCUO (2212)
for H parallel to the c-axis. b) H is

«
perpendicular

» to the c-axis it is likely that in most experimental
results the magnetization for H parallel to the a-b planes is principally due to the extreme difficulties to

make H strictly parallel to the a-b plane everywhere in the specimen and is in fact due to small in planes

currents, J~~~ produced by the residual projection AHz of H on the c-axis. At low-H

AH~
=

H~. Ab/(I N ~) where N~ is the demagnetizing factor for H#c.
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now of interest to note the following two points :

(I) No minima of the sort exhibited by YBa~CU~O~ cycles (Fig. 21) are seen here in our Bi

single crystals from different sources and of different dimensions. However, there are many
examples in the recent literature where Bi oxides show butterfly shaped cycles of roughly the

same forrn as in in the case of YBa2Cu307 single crystals but this is not as general as in the

latter system. In fact we still do not know for the moment the reasons why Bi oxides

sometimes exhibit such a butterfly effect and sometimes not. It seems that the presence of the

butterfly shape is accompanied by a very low apparent critical current density J~~~. However it

is not clear whether this low J value is due to very bad quality single crystals (containing a lot

of weak links) or on the contrary to high quality single crystals with very little defects to pin
the vortices. We believe that a very systematic study of the hysteresis cycle of Bi oxydes as a

function of T and H will help answering this question, in particular in the region
HWH~~ for the search of possible weak links.

(2) We emphasize again that if for any reason the field is not strictly parallel to the a-b

planes everywhere in the material the apparent magnetization M~~ could be quite large even

though the real M~b is zero. This is because of the combination of demagnetization and

anisotropy effects mentioned above which can give rise to a large component Mz along the c-

axis. To prove this claim we consider two limits : (I) At sufficiently low field such that

Hz « H~ one has Hz,
~~~ w

H cos o/(I N z) and 4 grmz
=

H cos o/(I Nz). Therefore, in

this limit the measured longitudinal magnetization reads

M~
=

M H/H
=

M~ cos o
w

H cos~ RN gr(I N~)

(we recall that o is the angle of H with the c-axis, Sects. 12 and 15). (ii) In the opposite limit

Hz » H~ we have Mz
w J~~,

~

R/30 (Bean's model) and M~
=

M H/H
m

J~~,
~

R cos o/30.

Very often, Bi single crystals have the shape of a very thin slab, hence with Nz close to one.

For example the sample reported in figure 25 is about 30 ~ thick and I mm diameter. We

believe that the
« M~~ »

magnetization reported in figure 25b is consistent with the above

projection picture if one accepts a misorientation of a few degrees. Such an error in o is always

present due to various unavoidable imperfections. In summary, this yields a finite projection
AHz of H on the c axis and hence to some in-plane current and thus to some magnetization
AM~ along the c-axis. These considerations apply also to Tl based compounds. Due to

technical difficulties the latter have recieved less attention than Bi systems up to now, but

recent results on the critical current density of Tl based HTSC [208-210] are encouraging.
Note that in the above qualitative analysis we assumed that the in-plane current was equel

to J~~,~. The true current probably includes some contribution from the
«

intrinsic
» terra

J~~,~~ and is therefore expected to be slightly larger than J~~,~ (since the inequality

J~~
~~

~J~~
~

is always true ; see section14 for more explanations).

La~_~Sr~CuO~. The development with temperature of the hysteresis loop of some

La~ ~Sr~CUO~ single crystals is presented in figure 26 and figure 27 for applied fields H either

perpendicular or parallel to the a-b planes [50, 154, 213]. Other examples of M(H) curves can

be found in references [214, 215]. Obviously, the cycles shown in the above figures have

globally very similar shapes as those of the two preceding examples, especially YBa~CU~O~.
In particular one observes roughly the same low-H peak and the same butterfly-shaped cycle
in a limited temperature domain for H parallel to the c-axis. However, the variation with T is

somewhat slower here, in particular for H oriented along the basal planes. Note also that for

La~ ~Sr~CUO~ the anisotropy ratio J~~, jJ~,
~~

is at present estimated to be about 200. This is an

interrnediate value between that of YBa2Cu307 which is about 20 to 40 and that of Bi-based

systems which is probably larger than 000. We shall equally see that the other anisotropy
ratio J~~, ~jJ~,

~~
is even higher than these values). The same remarks as for Y and Bi cuprates
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Fig. 26. Evolution of the hysteresis cycle with temperature of La~_~Sr~CUO~ single crystal for H

parallel to the c-axis (Aguillon [154], Khishiol et al. [216]).

is valid conceming the sensitivity of the measured M~~ to small disorientations of H with

respect to the basal planes.

7.2 TEMPERATURE VARIATION OF INTRAGRANULAR CURRENT DENSITIES.

YBa~CU~07_s. Shown in figure 28 is the temperature dependence of the magnetic critical

current density for various YBa~CU~O~ samples with H parallel to the c-axis. Also shown as

a dashed line is the temperature dependence of the critical current density of a thin film. It is

clear that the critical current of thin films is larger than that of single crystals and, more

interestingly, varies more slowly with T (for zero applied field). However, we know from

previous discussions that for a number of reasons (for example demagnetizing fields,

anisotropy, time dependent effects, contribution of surface London-Abrikosov's currents,

etc.) it is much more difficult to interpret critical current data in thin films than in single
crystals. In addition, we shall see later in section14 on anisotropy and section15.2 about
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Fig. 27. Evolution of the hysteresis cycle of La~_~Sr~CUO~ single crystal with temperature for H

perpendicular to the c-axis (the same as in Fig. 26).

demagnetization effects that the experimental transport and magnetic critical currents

(J~ and J~~~ respectively) in thin films can include a large intrinsic contribution J~~, ~~
generally

not significant in J~~~ for thick single crystals.
It is found that J~~,

~

drops exponentially with T for T « T~ from the hysteresis cycles of

single crystals or decoupled grains. The critical current density in the c-direction

(J~, ~~) is also found to decrease very rapidly with T. However, in this case a marked change in

the slope in the log (J~ T curve is observed at about 15 K. This
«

accident
»

is observed in

millimeter size single crystals as well as in oriented decoupled grains of radii as low as I ~m

[208-210]. This anomaly is also present in other HTSC families (La~ ~Sr~CUO ~) [208, 216]. Its

physical origin is still unclear at present. Similar temperature variations as described just
above are exhibted by intragranular currents of sintered and textured YBa2CU307 materials.

It is interesting to note in figure 28 that the depairing current J~ is about two orders of

magnitudes higher than the highest critical current density shown on the same figure (I.e, that

of thin films). This difference between the two currents is discussed in appendix A. Here we

only recall that the depairing current is defined forrnally as the limit wheere the kinetic energy
(e~) of such a current is approximately equal to that of the condensation energy (see
appendix A). Again forrnally speacking, this implies that a material which would carry a

current density of about J~ will have an effective energy gap of about zero (A~~~ =
A e~ w

0)
and thus a transition temperature approaching zero too. This is to be compared with the usual

assumption that the critical current density J and the associated pinning centres do not

perturbe the superconducting state to a first approximation, in particular T~.

Bi and Tl based families : We have seen that the influence of H and T on the critical

current are much more dramatic in Bi and Tl cuprates than in Y(123). The temperature
variation of the critical current density of Bi(2212) single crystals [203, 204] and of Tl oxides

[206, 207] is illustrated in figure 29. Here too, it is found that the critical current density of
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Fig. 28. The evolution of the critical current density of a single crystal, an oriented granular sample
and a melt textured sample of YBa2Cu307 (deduced from the hysteresis cycle) are compared as a

function of temperature. The dashed curve corresponds to a thin film [25]. In this latter case the field

and its direction with respect to the crystalline axes is not rigorously defined because of both

demagnetizing effects and vortex bendings. Also depicted schematically is the depairing current.

thin films drops less sharply with T than in single crystals at least for zero applied fields. The

situation is less clear at «relatively» high fields (on the order of I T~ where J drops
dramatically with T in both cases. We believe that this is consistent with the idea that the

experimental critical current density of thin films reflects several contributions including
reversible London-AbRkosov's currents as well as intrinsic cRtical currents J~~, ~~,

The cTitical

current density in highly anisotropic oxides such as Bi-systems will be reconsidered in

connection with anisotropy effects in section 14. It is not possible to decide whether the low J

value at high T given in the literature and discussed above has some fundamental origin
(thermal fluctuations and anisotropy in particular) or is simply due to our inability at present
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Fig. 29. Evolution of the critical current density for a single crystal of Bi (2212) compound (deduced

from the hysteresis cycle) as a function of temperature. The field is perpendicular to the a-b planes [206].

to optimize the microstructure of Bi single crystals and films (very recent data on textured

Bi(2212) are in favour of the last hypothesis [211, 212], see section 9).

Laz_~Sr~CuO~. Due to the difficulty to prepare single crystals of La~_~Sr~Cu04 of

sufficient quality, there is at present much less data on the critical current densities of these

compounds than in the two preceeding HTSC (Y and Bi) compounds. The temperature
dependence of the magnetic critical current density of some single crystals of La~ ~Sr~Cu04 is

displayed in figure 30 for J~~
~

(i,e. H parallel to the c-axis) [208-210, 216]. Here as well,
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Fig. 30. -Evolution of the magnetic critical current density for a single crystal of La~_~Sr~CUO~
(dimensions of about 4 x 2 x

mm3)
as a function of temperature. The field is perpendicular to the a-b

planes [216].
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J~~,
~

falls rather sharply with temperature even though less rapidly than for the case of Y or Bi

compounds. It is to be emphasized however that the variation of J~,~~ (i.e. J along the c-

direction) is found to differ markedly from one single crystal to another [208, 216]. In some

cases, especially at high enough field (far from the peak region of M(H)), J~
~~

is almost

independent of T from 1.2 K to 10 K and then decreases rapidly with T. It is not
ilear whether

this distinctive behaviour has an intrinsic origin or is due to a difference between the

microstructural defects responsible of flux pinnings.

The J versus T relationship : For Y and Bi single crystals with H parallel to the c-axis, the

critical current J~~
~

varies (in a first approximation) as :

_j

j (B, T)
=

Jo(B)(I (T/T~))~ e
~° (31)

with in many cases T~
=

20 K for Y(123 ) [20, 139] and To
=

5 to 6 K for Bi(2212). As we shall

see later we find that n is of the order of I to 1.5 (for T not very close to

T~ and for laboratory available fields). We emphasize that the above expression is not

intended to be rigorous espetially very close to the irreversibility lines for which we have

almost no expeTimental data.

We have already mentioned (Sect. 4) that the above expression for J(T) can be interpreted
in different ways : Firstly, it can always be described by a distribution of the strengths of the

pinning barriers [135, 136]. Secondly it is also consistent with a pinning potential
U(r) which varies logarithmically with r at large distances [139-141]. Thirdly we have also

seen in section 4 that other mechanisms (more typical of HTSC) based on collective pinning
and collective thermal fluctuations [172-175] have been suggested to account for temperature,
field and time dependences of the magnetization. However, it tums out that none of these

models can explain the anomalous drop of J with T for all of the three HTSC families

considered above, in particular for H oriented along other directions than the c-axis. In fact,

at the microscopic level the interpretation of the temperature dependence of J is closely
related to the question conceming the origin of flux creep in HTSC as well as to the physical
meaning of the irreversibility lines. This important point will be further discussed when

examining this line in section17.

In any case, it is clear that the identification and the control of the pinning mechanisms

which are at the origin of J should help resolve this question. Therefore, the next two sections

deal with the dependence of J on physical and chemical defects particularly in Y(123).

7.3 EXTRINSIC PINNINGS INFLUENCE OF CHEMICAL AND PHYSICAL DEFECTS ON J~b,
~

AND

J~,~~. The most classical route to improve the critical current is to add to the

superconducting matrix an appropriate amount of pinning centres, with dimensions compar-

able to the coherence length I. The concentration of pinning centres must be high enough to

anchor a maximum number of flux lines but not too high to avoid perturbing significantly

T~ and other fundamental parameters such as Sand A. In conventional materials this is often

achieved by the addition of some ordinary metals and then applying some appropriate heat

treatments and mechanical work. Unfortunately, the situation is more complicated in HTSC,

the superconducting properties of which are strongly sensitive to small deviations from the

stoichiometric composition of oxygen and copper and cannot be plastically deformed.

Conceming deviation from stoichiometry, it is important to keep in mind that very small

deviations can increase the critical current density. However, to our knowledge there is not

yet systematic investigations to determine the threshold limit below which this deviation will

cease to improve J and becomes to deteriore it. This threshold value is not an intrinsic

quantity but would depend on the local distribution of the defects and thus on heat treatments
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and other factors affecting this distribution. This is because J depends strongly both on the

chemical nature of the defect and on the shape and the dimension of the clusters formed by
such defects. It tums out that clusters of dimension 2 to 6 I (the coherence length) provide the

most favourable critical current density. Defects of this size would indeed allow the vortices to

lower significantly both their core and their electromagnetic energies [139] without perturbing

very much the superconducting state (at least for isolated clusters). Clearly, this is a very

important topic which needs more experimental as well as theoretical investigations.

7.3. I Substitution of CM, Bi, Tl, Nd by other metallic elements. It tums out that at the

present state of the art, direct substitution of Cu by other ordinary elements (such as silver,

gold, aluminium [217-224], zinc [225-228]) or by transition metals (Fe, Co, Ni [229-231]) is

either practically impossible (immiscibility of Ag, Au, Al in HTSC) or yields no encouraging
improvement of the critical current and often has even negative effects on J (iron, zinc, at

least for the usual range of nominal concentration above I fb). Of course this is when the

substitution is possible. However from a number of works it is found that in appropriate
conditions silver improves mechanical properties (ductibility, casting) as well as intergrain

currents for granular or textured materials especially for Bi compounds [232-234], but also for

YBaCUO systems [235-237]. It is however of interest to note that partial substitution of

Bi[238] or Tl[206] by Pb and Y by Ca in Y2Ba~Cu40g (denoted 124) [101] improves J

significantly in the corresponding oxides. A very promising technique for the improvement of

J is via the use of dispersive fine precipitates of secondary phases [239-234]. As emphasized
just above, the dependence of J on these defects would be very sensitive to the concentration,

the shape and the dimension of the clusters formed by such defects.

7.3.2 NEUTRON, ioN AND ELECTRON IRRADIATIONS. Another encouraging technique for

the improvement of J is neutron bombardments [244-25 II at small and moderate fluences.

The results are very positive not only for Y-compounds but also for Bi and other oxides and

concems single crystals, textured epitaxial thin films as well as intragrain currents in sintered

and textured materials. It is indeed found that J can be increased significantly (more than one

order of magnitude) by means of neutron irradiation. What is very interesting from the point
of view of technical applications is that the enhancement of J is much more efficient at high

temperature (T m 60 K ) than at 4.2 K, as illustrated in figure 31 of references [244, 250]. The

influence of electron [252-255] and ion [256-258] irradiations is less clear (in many examples)
and seem to be rather damaging for J in the case of electrons and somewhat more positive in

the case of ions. However, recent bombardment of YBaCUO single crystals by 500-MeV Sn-

ions [258] revealed strong increase of J at all temperatures together with a large displacement
of the irreversibility line towards high T and high H values. The results depend also on the

fluence and the kinetic energy of the incident particles and their nature. The effects of both

neutrons and ions as well as ectrons are discussed extensively in two complementary papers by
Kirk [259a]. In fact, the idea which emerges from theses papers is that the variation of the

critical current as a function of both the nature of the incident particles, their fluences and

their energies can be described by a unique function (related to the critical current density)
and a unique variable called

«
recoil parameter e ». In the case of electrons, this function is

very narrow, sharp and centered at relatively low
e. It is broader and centred at higher

e
for

ions. Finally, it is much more smoother and rather weak for neutrons. The recoil notion is

very useful as it tells us how to optimize the «extrinsic
»

critical current in irradiation

experiments. The physical factors relevant for the improvement of J in irradiation

experiments have been also extensively investigated and clarified very recently by Hardy et al.

[259b].

7.3.3 Influenc,> of ruin boundaries and stacking faults. Twin boundaries are also found to
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Fig. 31. Change of the hysteresis cycle at the indicated temperatures as a result of neutron irradiation

according to Wisniewski et al. [244] (a), and to Sauerzopf et al. [250] (b).

improve the intragranular critical current density more efficiently at high T, especially at T of

the order of 70 K and above [63, 261-263]. Direct counting of the vortex density around twin

boundaries in decoration experiments [264] shows no detectable influence of the twin

boundaries at low temperatures (decoration performed at helium temperature). The vortex

gradient is not imposed by twin boundaries but rather by smaller defects, invisible to SEM, in

normal resolution mode. Theoretical models [261, 265] also predict enhancement of the

critical current density by twins. There are however some contradicting claims in the literature

that J is either enhanced [266] or very strongly decreased [267] in untwinned materials. We

believe that twin boundaries do not behave like weak links and have quite a positive influence

on J at least at high temperature. This will be justified in section 9.4 concemed with weak

links. This is also in agreement with the effect of other extended defects such as stacking faults

[268, 269]. For a review paper on twins see Hoff et al. [265]. It is likely that other defects
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abundantly present in the sample (small inclusions, small voids of dimension
=

I, stacking
faults [270] etc.) will also contribute to the pinning forces and hence to J. It was shown

recently by Aguillon et al. [154] that dislocations lying in the a-b basal planes enhance

J~, ~~,
that is the pinning forces parallel to these planes acting on the vortices parallel to the

same planes.
More quantitative conclusions on the influence of these kinds of defects require systematic

investigations of the microstructure by transmission electron microscopy and subsequent
correlations of the microstructure with macroscopic measurements of J. There are several

groups attempting to carry out such kinds of investigations at present, but the results are

rather slow due to the extreme difficulties to carry out correct analysis of the experimental
data.

7.4 INFLUENCE oF INTRINSIC PINNINGS oN J. It is to be recalled that due to their layered

structures, high T~ materials also exhibit strong intrinsic pinning barriers (these forces have

been introduced briefly in 2. I and will be defined more precisely in 14.2). However, these

barriers and the associated critical current density J~~,~~ are hardly detected by means of

conventional magnetic measurements. J~~,~~ is also difficult to probe by transport current

measurements as the latter can be severely reduced by the presence of any kind of weak links

in the material (see Sect, 10 conceming textured samples for a more detailed discussion of this

point). As a consequence, the temperature dependence of J~~, ~~
is still completely unknown at

present. In fact, it is not impossible that the intrinsic pinning force remains very large up to

higher temperatures (that is to say 77 K), even for Bi and other HTSC families. This is

inferred from equations (9a) and (I16). One argument in favour of this claim is that, since the

spatial variation of the intrinsic pinning barriers is periodic in the c-direction (U;(r + c)
=

U~ (r) where c is the lattice spacing vector in the c-direction), its spatial dependence would be

closer to a sinusoidal pinning potential of the kind considered by Beasley et al. [129] and by
Xu et al. [130] than to the logarithmic potential of Zeldov et al. [140, 14 II and Manuel et al.

[139]. We have seen in section 4 that the latter leads to an exponential drop of J with T

whereas the former yields a simple power law for J(T). It is certainly of great interest to

calculate the expected temperature behaviour of the intrinsic current and the associated

U(J) of Beasley-like curve in the flux creep model. Chakravarty et al. [271] have investigated
thermally activated flux creep (across the intrinsic barriers) in strongly layered HTSC, using
collective pinning and thermal fluctuations theory. At this point we would like to add the

following remark: thermal fluctuations of the vortices through the intrinsic barriers are

expected to be much lower (probably by a factor of the order of the mass anisotropy ratio

m~jm~) than when the vortices are parallel to the c-direction. Therefore, this is a second

argument supporting our idea that J~~,~~ remains very large up to 77 K. A third proof in

favour of this claim will be given in sub-sections 15.5 and 15.6 conceming the critical current

of thin films.

The above discussion about intrinsic pinning assumes tacitly that the material has no defects

(or equivalently J~~,
~

=

0). We believe that the presence of imperfections, especially weak

links, reduces the intrinsic current J~~,~~. This can be proved in several limiting examples.
The first problem is how to get Rd of weak links the effect of which is probably more

dramatic (on ihe basis of the topological arguments below) in the case of intRnsic pinning than

in that of extrinsic pinnings. To see the physical origin of this effect, let us consider a linear

defect of transverse dimension greater than or of the order of f (such as a dislocation) lying in

an a-b plane. If the uniaxial anisotropy is low the currents circulating in this a-b plane can pass

round the defect and are thus not seriously affected by such a defect. On the contrary, for

highly anisotropic materials the currents are forced to pass through the linear defect. Since the

latter has a diameter larger than I it behaves like a weak link and hence imposes a severe
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reduction of the contribution of the considered a-b plane to the critical current density (this
point is discussed further in Sect. 9.4). To end with this matter, we would like to add the

following remarks valid whatever the shape of the defect : (I) At first, assuming that axis c is

parallel to the z-direction we note that intrinsic pinning is expected to be proportional to

[max (1l'(z)(2 min (1l'(z)(~] where 1l'(z) is the z-dependent order parameter. (ii) For

highly anisotropic layered materials, we have min (1l'(z)( =0. (iii) We also expect that

max
(1l'(z)(~ is in general decreased by defects. (iv) As a consequence, we can conclude

that, contrary to J~~,
~,

J~~, ~~
should be lowered by defects at any concentration. (See Sect. 14

for other details conceming intrinsic pinnings.)
We know that there are essentially three conventional techniques to probe the intrinsic

forces in single crystals and in thin films with no weak links. These are :

(I) Transport measurements with J and H perpendicular and both lying in the ab-planes.
We have seen that the main problem in this case is how to correct for surface London-

Abrikosov currents, especially in thin films.

(2) Torque measurements performed during tilting the direction of the applied field (of

constant amplitude) up and down around the a-b planes. This experimental technique is

generally very powerful. The major problem in this case concems the interpretation of the

data as it is likely that the vortices do not follow rigidly the rotating field (kink effects). Other

serious problems appear at low tilting angles (or fields) as the critical state can break down in

some conditions. See section13 for more development on this point.
(3) A third method for the determination of the intrinsic energy barriers is by means of

conventional magnetic measurements. As will be discussed later in section14 about

anisotropy effects, this method works only for extremely thin samples in the c-direction, with

an aspect ratio (width to thickness of the sample) of the order of or larger than the current

anisotropy ratio J~~, ~jJ~,
~~.

This is
=

200 for Y(123), probably about 000 for La~ _~Sr~Cu04
and 10 000 for Bi families. Nevertheless, if by some means the above conditions were fulfilled

(not impossible for Y(123)), then magnetic measurements would become extremely

interesting. In this case we know how to correct for the London-Abrikosov current (see

Sect. 10). In addition, in such direct magnetic measurements the vortices do not need to be

inclined with respect to the a-b planes and therefore the analysis is not complicated by kink

effects.

8. Intergranular critical current in sintered materials.

This section is devoted to experimental intergrain critical current densities (J~j) in granular
materials in the limit where the degree of alignment between grains is negligible (random
distribution of the crystalline axes) and the Josephson coupling weak, but not zero. We shall,

in particular, consider the experimental variation of J~j with T, H, R and r~. We shall also

examine the influence of metallic alloying as well as ion, electron, and neutron bombardments

on this current. Contrary to the case of intragranular currents (in single crystals and isolated

grains) considered just above most of our knowledge on intergranular currents is obtained by

means of transport measurements. There are essentially two reasons for this. Firstly, we know

that in general intergranular current densities are rather low and hence relatively easy to

measure directly because of the moderate Joule heating. Secondly, until very recently, due to

the complexity of the weak links problem, there have been no quantitative models relating the

hysteresis cycle of granular materials to the macroscopic critical currents. The same is equally

true conceming the a.c. -susceptibility. However, we shall present in the following sections a

quantitative model developed by Senoussi et al. [77, 104] which allows us to relate the

magnetic critical current density (J~~~) to the low field structure of the magnetization of

polycrystalline materials (see Figs. 32a-c) as well as to the imaginary part of the ac-
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Fig. 32. Experimental magnetization loops of granular YB2CU~07 at increasing field scales (a, b, c,

d) extending from H~H( to H~. (e) Schematic variation of M in the depinning line region. This

example is typical of sintered granular superconductors. At very low-H M is linear, reversible and

exhibits perfect screening.

susceptibility (the latter will be deferred to Sect.12). Very often indeed, the M versus H

relationship exhibits two well separated loops as a function of H the low field of which is

connected with the weak link network [96-98, 104] whereas the high field one corresponds to

intragrain currents flowing in independent grains. The physical interpretation of these

hysteresis cycles is presented schematically in figure 33 which are based on the model

developed in section I1.
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Fig. 33. Qualitative illustration of the way magnetic flux and currents penetrate and develop through
the sample as a function of the applied field (see Fig. 32 for the correspondence with the hysteresis loops

a, b, c, d, e). In (a) the current is restricted to the depth A in the grains and to Aj in the junctions
between grains. (e) : Above the deplaning line the current is restricted to a surface region of depth A as

for H
~ H~~.

Figure 33a shows that for H smaller than H(, the first critical field of the weak links, the

currents and fields are restricted to the Josephson penetration depth Aj in the junction and to

the London penetration depth A around the grains (A is determined by different techniques in

[275-280]). As H is further increased above the characteristic field H( (Fig. 33b), flux lines

together with the associated currents penetrate the sample via the weakest links. This gives
rise to macroscopic current loops (extending over the whole sample) as well as to microscopic
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loops of London currents circulating around individual grains (note that these London

currents are not present in the measured intergranular transport critical current). At fields

larger than the weak link decoupling field (H ~H(, Fig. 33c) the macroscopic current (or

intergranular current) vanishes and the magnetic behaviour is govemed solely by the London

currents surrounding decoupled grains (H w H~, ). Finally, at still higher fields, exceeding the

first critical field
H~~

of the grains, vortex lines and the associated intragrain currents

propagate into the interior of the grains (Fig. 33d). Above the depinning line the current is

restricted to the London-Abrikosov's surface current J~ (Fig. 33e) and becomes zero only
above H~~. The hysteresis cycles corresponding to the five situations of figure 33 are illustrated

in figure 32 for granular YBa2Cu~07 at 4.2K. A more systematic investigation of the

hysteresis cycle of YBa~CU~07 as a function of field and temperature is reported in

references [13, 96, 97].

8.I FIELD DEPENDENCE oF INTERGRANULAR CURRENT DENSITY J~,,, A vast amount of

data reported in the literature indicate that J~,
~,

decreases severely with the applied field.

This is illustrated in figure 34 from Evetts and Gloacki [73] where it is seen that the current

drops practically to zero in less than 60 G. This abrupt drop of J with H seems to be very
general (whatever the material and the method of preparation employed) when the degree of

texturing is negligible and whatever the temperature.
From numerous examples reported in the literature on HTSC it is found that at slightly

higher fields such that H
~

H( (see Figs. 32, 33 for the definition of H() the macroscopic

current varies as I/H~ with n generally ranging from I to 2 [41]. Sometimes, the field variation

of J~ is even more rapid and approaches an exponential law for junctions of highly metallic

character (SNS). Of course, the field dependence is faster at high temperatures near

T~. Also, the J~j,
~

versus H relationship is often very different from sample to sample even for

specimens prepared exactly in the same conditions. As discussed in section 5 and section 6

this is probably because of irreversibility effects in the current [39, 40, 73] and because of the

self-field (see also discussion below) which depends on the shape (but in particular the

diameter D) of the sample.
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Fig. 34. -Field dependence of the transport critical current of granular YBa2Cu~07 Prepared in

different conditions (--.) sintered at 940°C; (------) sintered at 910°C; (--) YBa~CU~07

+ 0.1wt9b Si02 sintered at 910 °C ; (... ) YBa2Cu307 + 1wt9b Si02 sintered at 910 °C ; after Evetts

and Gloacki [73].
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8.2 ON THE ABSENCE oF VARIATION OF J,~ wiTH THE DIRECTION oF H. Another very
unusual feature typical of granular materials as well is the fact that J~j, ~(H) is found to be

generally independent of the angle between the applied field and the direction of the

macroscopic current. In other terms, for granular materials (with no texturing) one has

J~j, ~~(Hjj =
J~j, ~(Hi where Hjj and Hi indicate parallel and perpendicular to the average

direction on the transport current. This apparent isotropy of the granular transport current

has often been interpreted as a proof for the absence of a Lorentz force in these materials.

This affirmation is probably wrong and a more realistic interpretation ascribes the

«
macroscopic isotropy

»
of J~j,~(H) to the fact that the directions of the local currents

(contributing to the macroscopic current) are to a first approximation randomly distributed

within some solid angle probably of about 180°. The angular distribution of the directions of

the local current density is produced by the combination of the granular structure and the

strong anisotropy of the Josephson current [282, 283] which make the current paths very
complicated. Consequently, the Lorentz force in granular materials is not zero locally but its

average strength would be, to a first approximation, independent of the direction of H with

respect to the direction of the global transport current.

)
~i

~

,

,

,

'

~'~ ~'~ ~'~ ~'~ T/T~

Fig. 35. Temperature dependence of the transport critical current at zero applied field of a granular
YBa2Cu307 Prepared in different conditions (Kormann et al., private communication).

8.3 INFLUENCE OF THE RADIUS R OF THE WIRE ON THE CURRENT, MACROSCOPIC SIZE

EFFECT. There are at present many experimental studies [285, 286] proving that the

macroscopic current of sintered materials decreases with the radius R of the wire as

I/R. This is illustrated in figure 36 from references [281, 285, 286]. The physical origin of this

behaviour has already been extensively discussed in section 6. It is likely that this size effect is

due to the self-field of the current circulating along the wire. At first sight, these experimental
results suggest that the transport current can be increased illimitedly (or at least very largely)

for arbitrary thin wires. Unfortunately, we know from the results of section 6 that the

I/R behaviour is a characteristic feature of thick samples and that both J~j,~ and

J~j
~~~

must reach a saturation value Jo
=

J(B
=

0) as soon as the radius R becomes smaller

than some characteristic length R~ given by equation (16). To get an order of magnitude
estimate of Ro in sintered HTSC we take Bo

-
10~ ~ T and Jo

=

2 to 5 x
lli A/cm~. This yields

Ro
=

20 to 50 ~Lm. We have seen that the experimental J~j ~(B ) law depends on the radius of
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Fig. 36. Variation of the transport critical current density of sintered YBa2Cu307 as a function of

the radius R of the wire from various sources of the literature (particularly from [285] and [286]). We

observe an I/R behaviour of the critical current, presumably connected with the self-field discussed in

section 6.

the wire. We shall show later using numerical calculations for J as a function of both H and R

that the increase of J due to the reduction of R has some drawback as well : it leads to more

sensitivity (I.e. a more rapid decrease) of the experimental current to the applied field H.

Figure 35 (from R. Kormann, private communication) shows that the temperature
dependences of the critical current densities of two ceramic samples of very different

thicknesses extracted from the same batch, are quite different. This is probably connected

with the results of section 6 which showed that for very thin specimens (R w R o) the measured

intergrain current should reflect the real current Jo(T) of the junction network whereas for

thick specimen it would be more related to the characteristic field H~(T) and thus would

reflect the temperature dependence of this parameter. This is an interesting effect which

needs more experimental studies.

8.4 INFLUENCE OF THE DIMENSION OF THE GRAINS ON THE CURRENT, MICROSCOPIC SIZE

EFFECT. There are a number of indications from magnetic measurements [287, 288] that

the critical current of granular YBaCUO is approximately proportional to the inverse

I/r~ of the radius of the grains composing the sample. This is illustrated in figures 37 and 38

from [287]. However, to our knowledge there is not yet any direct confirmation of such size

effect by transport measurements. This interesting point will be reexamined in more detail

later in relation to the interpretation of magnetic data at low fields. At this point it is of

interest to add that the critical current density of some conventional materials is also found to

vary as I/r~ [289].

8.5 TEMPERATURE VARIATION OF J~j,, Figure 39 shows the variation of J~ as a function

of temperature for different YBa~Cu307 specimens reploted from different sources [189,
290, 292]. It is to be emphasized that this kind of curves does not seem to follow any general

or universal law even for samples prepared in the same conditions (I.e. extracted from the

same batch). This is presumably connected with the nature of the weak links (metallic.
insulating, semiconducting,. ) as well as with the shape of the sample via the self-field
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Fig. 37. Evolution of the low-H hysteresis cycle as a function of the average radius r~ of the grains
[287]. Note that the smaller the grains the larger the hysteresis. The quantitative relation with

J~~~ is given in section lo.

(depending on the ratio R/R~ where R~ is defined by Eq. (16)). Of course Ro is expected to

vary with T making the interpretations more complicated. This shows that it is in fact

nonsense to compare the experimental results with classical theories on weak links unless the

condition R~RO is well satisfied (we have seen that for present HTSC polycrystals
Ro is generally smaller than 50 ~cm at low T~.

Indeed, according to equations (20b, 24b, 27b, 30a) which correspond to different model

calculations in zero applied field we are in general measuring not the local J~j(T ) but the field

Bo(T) (which controls the variation of J~j with H) since for sintered materials the condition

R/Ro » I is generally realized.

8.6 EFFECTS ON J~i OF IRRADIATIONS AND ALLOYING WITH ORDINARY METALS. By
analogy with ordinary superconductors, there are at first sight three classical routes to

enhance intergranular currents. (I) The most natural method is texturing in order to reduce

the number of incoherent Josephson junctions between grains with different crystalline
orientations [107, 282, 283] ((see next Sect. 9) on textured samples for details). (2) The other

classical possibility to increase intergranular current is to introduce an appropriate amount of

defects at the interface between grains and therefore increase the pinning forces acting on the

vortices within these junctions (as we shall see later there are probably more defects naturally
in the junction than necessary to pin the vortices). (3) The third method is to improve the

quality of the junction as measured, for instance, by its normal state conductivity. These three

ways of improving J~j are in fact not independent and seem even contradictory in the case of

the last two (it is in principle not possible to increase the density of pinning defects and reduce
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Fig. 38. -Micrographs corresponding to the material the hysteresis cycles of which are shown in

figure 37.

the resistivity at the same time). It is indeed known that the most familiar procedure to

increase the critical current in conventional superconductors is by the creation of a optimum
density of defects with the right dimensions and distributions within the material. This fact led

several groups to the conclusion that the transport current of bulk materials can be enhanced

by increasing the density of defects within the junctions by means of ion, electron or neutron

bombardments. However, the results of these bombardments were generally revealed

unsuccessful and rather resulted in a deterioration of the intergrain current J~j,, This is to be

compared with the case of intragrain current which is found to be strongly improved by the

same bombardment (at small fluence, [244-25 II ). Since the defects induced by irradiation are

expected to increase the local resisitivity p everywhere, in particular in the junctions
themselves, it seems that the diminution of inter-grain current is directly correlated with the

growth of the electrical resistivity due to irradiations.
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elationship is universal but epends on the sample preparation and
dimension [189, 290].

Some studies [293, 294] indicate that intergranular current can be slightly improved,
typically by a factor of 2 to 3, by the introduction of a small amount of silver in the grain

boundaries. In addition, this is generally accompanied by a sharp drop of the electrical

resistivity p of the mateTial suggesting that the improvement in J~j,
~~

is not due to the increase

of the pinning forces but is rather connected with the drop of the resistivity, in agreement with

theoretical predictions (see below the Ambegaokar-Baratoff formula). However, to our

knowledge there are not yet many systematic observations (by transmission electron

microscopy or by other microscopy techniques) investigating the distribution of Ag within the

junctions and thus to clarify the correlation between J~j~
~

of granular ceramics, p and such a

distribution of Ag. It is indeed likely that the current pathways are drastically disrupted by
segregation of silver the resistivity of which is generally much lower than the normal resistivity

of the granular material under consideration. Then, the silver rich regions should act as short

circuits for the current and lower the apparent resistivity of the sample making quantitative
comparisons with theory not very meaningful.

8.7 DISCUSSION AND CONCLUSION CONCERNING EXPERIMENTAL DATA IN GRANULAR MA-

TERIALs. The most important conclusions of this paragraph are that J~j,~ of sintered

materials is generally very low and decreases rapidly with field. The field dependence of the

transport current has often been interpreted phenomenologically [295-298] in terms of an

average over a statistical distribution of the dimensions (- r~) of the Josephson barriers

assuming that the current threading each individual junction is given by a Fraunhofer-like

formula (see below Sect. 9).

As a matter of fact, these procedures for the calculation of J~j,
~

were discussed by several

authors, in particular by Evetts and Gloacki [73] who pointed out that a number of additional

factors make a quantitative fit with the experimental data of doubtful value. From the analysis
of the most common experimental conditions, it seems that none of these hypotheses is

satisfied in real materials. This point was also discussed in several papers by Senoussi et al.

[97, 98, 104] some time ago from the point of view of magnetic measurements and from the

systematic comparisons between magnetic and transport currents J~j,
~~~

and J~j,
~

respectively.
The main conclusions drawn from these investigations were :

I) First of all, magnetic measurements show without any doubt that the intergrain current

is related to irreversibility effects and thus to flux traping within the junction network.
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2) The junctions are highly ramified, not independent and extend over the whole sample.

As a result magnetic flux enter the sample not uniformly but gradually starting from the

surface and moving [299, 300, 30 II continuously through the weakest barriers to the centre of

the specimen.
3) Since J~j,~ is found to depend strongly on H, the self-field (neglected in the above

models) should play a crucial role and must be taken into account in the calculation of

J~j,
~

=
(J~j(H + H~~)) averaged over the sample.

4) If the weak links are of SNS rather than SIS type, as it is probably the case for most

sintered YBaCUO materials [73, 192, 193], their critical current will vary more or less

exponentially with H instead of the I/H law predicted by the Fraunhofer-like models.

5) Finally, since the Josephson penetration depth diverges when J~, approaches zero, in

particular when T approaches T~, the condition A
j

» r~ is always satisfied near J~j
=

0 and the

Fraunhofer picture could be justified in this particular limit. However, it seems that in this

temperature region the physical properties controlling the V(I) relationship are very

different from that of the flux creep domain and involve percolation problems [302],
dimensionality effects as well as spin-glass like effects and so on [304, 305]. We have seen that

for the same granular materials prepared in the same conditions the variation of

J~j,
~

with T, H and time t can differ considerably depending on the diameter of the sample
because of the self-fields.

From the above data and discussion it tums out that with the methods of preparation
available at present the most efficiency way to increase J is to improve the quality of the

Josephson junctions as measured for example by resistivity. It tums out that this can be

achieved through texturing, which is the object of the next section.

9. Textured HTSC materials.

In the previous sections (7, 8) we investigated the critical currents in single crystals and in

sintered granular materials prepared by standard techniques. We have seen that intragrain

current density was in general extremely large in crystalline materials at low T. Unfortunately,
the dimensions of these materials were very small, of the order of few millimeters in the best

cases. Obviously, in view of large scale applications of HTSC, we need long lengths of wires

and tapes with sufficiently high J at high enough temperature and field;

J(T
=

77 K, B
=

3 T ) m
IlJ'A/cm~ is a reasonable goal. At present, it seems that among the

known HTSC oxides only YBa~CU~07 exhibits the desired J(T, B value. Unfortunately, the

mechanical properties of this material and the conditions of preparation of long wires and

tapes are raising great difficulties in this case. On the other hand, it tums out that Bi oxides

(BSCCO, BPSCCO, especially the (2223) and 2212 phases) present appreciable deformation

when cooled and a nonnegligible critical current in zero field at liquid nitrogen temperature.
However, we know that the latter decreases dramatically with the applied field at 77 K and

becomes practically of no use at B
~

0.2 T. Consequently, it appears that for the near future,

it would be interesting and realistic to envisage the development of Bi oxides for applications

at 4.2 K hoping for more favourable conditions for solving the present difficulties at 77 K or

discovering new HTSC which would satisfy all the required conditions (but see subsection 9.3

for very recent and encouraging data). However, even at 4.2 K much development work is

still needed, though very encouraging results on Bi systems have been accumulated by a

number of groups throughout the world.

Considerable efforts are made presently to overcome the weak link problem and produce
highly textured bulk materials. We wish here to emphasize three popular techniques among

others.
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9.I MELT TEXTURED GROWTH AND DIRECTIONAL SOLIDIFICATION TECHNIQUES. The

melt textured growth procedure was first introduced by Jin et al. [306-308] and further

developed by other workers [309-314]. In this technique the grain growth is controlled by the

temperature gradient and by the growth rate of the crystallites. Zone melting has also been

used with some success to develop texture in Y and Bi based oxides [315-319]. In this

procedure a molten zone is moved along the sample at a controlled rate. These two methods

can be considered as a variant of the directional solidification technique. Both have the

advantage of minimizing the amount of unreacted materials at the grain boundaries, therefore

improving the qualities of the Josephson junctions. Critical current density as high as

7.5 x
IlJ'A/cm~ at 77 K was first obtained by Jin et al. [306-308] along the easy current

direction (I.e. in the a-b planes) of textured samples of YBaCUO. On the other hand, more

recently Chaffron et al. [313] and Aguillon et al. [25, 314] were able to obtain critical current

densities of about 7 x
l~i A/cm~ along the hard current direction (c-direction) of YBaCUO

prepared by the directional solidification method. This value was derived from both transport
and magnetic measurements as illustrated in figure 40 below. It can also be deduced from

figure 40 that J might be as high as 2 x
106 A/cm2 at 4.2 K which is the same value as in

standard single crystals. Note that the transport point is slightly above the magnetic one. This

can be explained by relaxation effects which, as we know (Sect. 4), are more important in

magnetic measurements.
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Fig. 40. Critical current density of a YBaCUO prepared by the directional solidification technique

(after Aguillon et al. [25]) for H parallel to the c direction and H lying in the a-b planes. The cross point

corresponds to transport measurements at 77 K whereas the other data are deduced from hysteresis

cycle recordings using the macroscopic radius (= I mm) of the sample in Bean formula.

Even though the above techniques mark a considerable progress with respect to the

standard sintefIng samples, so far the dimensions produced in this way have been of the order

of few centemetres, thus still very small for suitable applications. From the practical point of

view one of the problems of these methods is the excessively long time (several weeks)
required for the obtention of these highly textured but relatively short samples.

9.2 MAGNETIC FIELD INDUCED TEXTURING. A second texturing method which is begining

to be explored is through the application of a magnetic field in the melted phase [320-325]. In
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this case the alignment of grains in the solid state is very poor (virtually zero). Therefore, high
degree of texturing by magnetic methods requires : (I) the existence of a sufficiently large
anisotropy (AX ) in the paramagnetic susceptibility near the melting temperature and (2) the

coexistence of a liquid phase with crystallites of large enough dimensions so that the

anisotropy ordering energy VH~AX/2 is larger than the thermal disordering energy kT. Here

v is the average volume of the crystallites.
Detailed analysis of the mechanisms goveming the dynamics of the alignment of

paramagnetic grains in a viscous medium can be found in references [322-325]. The case

where yttrium is substituted with other rare earth ions (ReBaCUO) has been investigated by
Ferreira et al. [324]. The major interest of magnetic alignment lies in the fact that it can be

relatively rapid. For instance, according to the calculation of Regnier et al. [321], in realistic

experimental conditions (grains embedded in epoxy resin at room temperature, but the same

calculation can be applied in other experimental conditions) only a few minutes should be

sufficient to obtain 90 fb alignment at I Tesla. By combining the calculations of Regnier et al.

[321] and those of Ferreira et al. [324] we can show that the time t required to get a given fixed

degree of alignment (90 fb for instance) varies as the factor :

~~P~- '~PVH ~/T~) (32)

Here
1~

is the viscosity coefficient in the liquid state and p is a numerical factor proportional

to the paramagnetic anisotropy at T
=

300 K (AX (300 K) ). We see from this formula that the

time of alignment can be made relatively short (a few minutes to a few hours probably) even

at very high temperatures, using the highest available magnetic fields (10 to 15 T typically).
This is to be compared with the annealing time of several weaks involved in the melt textured

growth procedure. Since the degree of alignment increases exponentially with the volume of

the crystallites it is clear that the magnetic method is not efficient before the crystallites have

reached some critical size. The drawback is then in the possible formation of agglomerates of

polycristalline particles before attaining this critical size.

To date the degree of texturing as well as the length of the specimens obtained by the

magnetic method are notably smaller than in the directional solidification procedures recalled

above. It is probably possible and recommended to combine the two methods to obtain the

associated advantages.

9.3 THE SILVER SHEATHED OR THE POWDER TUBE TECHNIQUES. We have seen that in the

two techniques described just above the dimensions of the textured material were, up to now,

limited to few centimetres. It is likely that much longer specimens will be achieved soon using
these techniques. However, the main problem in these cases is the difficulty to control the

shape of the specimen, thus reducing the possibilities of industrial applications based on these

techniques. Perhaps a more promising route, at least for Bi based oxides, is the so called

powder tube or silver sheated method, This technique seems to be very promising for Bi

based oxides especially at 4.2 K where values of J up to 2 x
IlJ'A/cm~ in B

=
30 Tesla were

achieved first by Mimura et al. [324]. This method is extensively investigated at present [325-

338]. Magnetic critical current densities of order 104 A/cm2 to 4 x 104 A/cm2
are obtained in

Bi oxides at 77 K in zero field [332, 337]. Unfortunately, in this case J drops severely with B

becoming negligible at less than one Tesla at 77 K. However, very encouraging results have

been reported recently by Sumitomo Electric group in Osaka [211] who found critical currents

J~ (Bi compounds) as high as J(T
=

4.2 K, B
=

23 T )
=

1.3 x
10~ A/cm~, J(77 K, 0 T)

=

4.7 x
l0'A/cm~, J(77 K, 0,1T)

=

3.I x
l0'A/cm~, J(77 K, I T)

=
I.I x

IlJ'A/cm~. We

would like to note that these transport values probably represent what we have termed

intrinsic current density J~~,~~ which is, as discussed previously, expected to be much less
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sensitive to thermal fluctuations than J~~,
~.

We recall that J~~, ~~
is extremely difficult to probe

by magnetic measurements especially for Bi and Tl based cuprates.
Figure 41 (inspired from Jin et al. [306]) compares qualitatively the values and the field

dependences at 4.2 K of the various J obtained by the different techniques just discussed and

by the more usual procedures investigated in the preceding sections (7, 8) (note that the

recent data of Sato et al. [211] are not included in this figure).

cv ~
HIGHLY TEXTURED FILMS

lo
~~~~~~~~ ~~~~~~

lJ,~jJ~~~)
~

~$
~~

CRYSTALS

~~l TEXTURED
~~~'°9

qi lo

~
t©

,

~ io ,

'

,

,

POWDER IN TUBE

~~tr I
~

lo
SINTERING

(Jjrj

2 3 4 5
lo lo lo lo lo

Applied Field (Gaussl

Fig. 41. Qualitative diagram (note the logarithmic scales) of the critical current densities in the basal

a-b planes of YBaCUO achieved by the various preparation techniques discussed so far. From the top to

the bottom of the figure we have successively : thin films, fine oriented grains, single crystals, directional

solidifications and melt textured samples, powder in tube and standard sintering methods.

At present we do not readily know the physical origin of the fast drop of Jj~,
~

with H and T

in Bi cuprates. In particular, it is not yet clear whether this dramatic fall off is due to weak

links or to the lack of appropriate pinning defects or to a more fundamental mechanism such

as the melting of the vortex lattice (assisted by anisotropy). However, the results of [21II

mean that the density of weak links is very low in their systems (see next section for more

quantitative estimates of this density). This implies that it is now possible to decide whether

the dramatic exponential drop of the magnetic current, (= J~~, ~) with T and H is due to weak

links or to one of the two other mechanisms just mentioned. We believe that in any case,
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weak links should play a major role in textured materials. This is why we wish to discuss this

point briefly now from a semi-microscopic point of view.

We know from the previous section that one of the easist way to detect the presence of

weak links is by means of low field measurements (low-H cycle). This point will be further

clarified in the next section.

9.4 THE CRITICAL CURRENT IN THE PRESENCE OF WEAK LINKS. To help Clarifying the

physical situation we first recall the magnetic and transport behaviours of a single Josephson
junction as a function of its width (w) relative to its penetration depth Aj (Fig. 42). We know

from early theoretical works by Ambegaokar-Baratoff [339] that at finite temperature the

current density of a given ideal Josephson junction (in zero effective field) is inversely
proportional to its normal state resistivity pj and is given by :

JJ
"

) ~~~~
tanh

~~~~

~ PJ kT
(33)

w < A~

@

~s
'~ l

~ ~~~'~~~J~

'~----

A A~

§ Jwj

Fig. 42. Schematic repartition of intergrain currents within various kinds of Josephson junctions.
a) The junction is ideal (no defects) having a width w much smaller than the associated Josephson
penetration depth (Aj»w). b) The junction is still ideal but now Aj «w. Here, like in type II

superconductors there is no bulk current except in the edge region within a depth Aj. c) The junction is

very large (Aj « w) but inhomogeneous with holes and voids allowing for vortex pinnings and thus

giving rise to a non zero bulk current.
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where A(T) is the energy gap in the grain and e the electric charge of the electron. We

emphasize again that this expression is only valid when the effective field, including the self-

field, is negligible compared to the Josephson first critical field Hj defined below (in Gauss

units) :

Hj
=

8 arJj Aj/c
=

al jar (2 A + d) A j] (34)

with the Josephson penetration depth given by

A~ ~

ICIPQ 1'2
8 ar2Jj (2 A + d)

(35)

Here, c and ~Po have their usual meanings (I.e. velocity of light and the flux quantum
respectively) and we have used Gauss units for Jj.

It is of interest to note that we can use equation (33) to decide when a tunneling Josephson
junction can be considered as a weak link. Obviously, a necessary condition is Jj « J~ where

we recall that J~ is the depairing current of the perfect material, As a typical example we can

consider the case of twin boundaries in YBa2Cu~07 single crystals the resistivity of which can

be estimated approximately from the extrapolation of the normal state resistivity of the

sample to T
=

0 and by assuming that this resistivity is imposed principally by the twin

boundaries within the single crystal (see [97, 98] for more details). We find that the critical

current of the twin boundaries calculated this way is of the order of 5 x 10~ A/cm~. This is

quite comparable to the estimated depairing current J~=HjA =lClA/cm~ at T=O

(H~ is the usual thermodynamic field ; see also 2.I and Appendix A).

According to Ferrell and Prange [340], to Josephson [341] and to Clem et al. [342, 343] (see

also [105] by Likharev) a weak link of thickness d (Fig. 42) would behave like a type II

superconductor with its own Josephson (I.e. London-like) penetration depth, Aj, its own first

critical field Hj, (= Hi), a decoupling field H( and finally its own edge or surface current

(equivalent to the London current) given by Ambegaokar Baratoff equation (33) above.

Knowing the characteristic dimensions (w, d and Aj) of the junction we can consider three

physical limits and determine qualitatively the transport and magnetic behaviours in these

special cases.

I) The junction is ideal and small compared to Aj (Aj » w, Fig. 42a). This is the best

known case for which the transport current density (in H
=

0) should be of the order of

Jj (Eq. (33)) whereas the field dependence of the maximum of the total current that can

thread the junction should be given by the Fraunhofer diffraction pattem of equation (36)

below

sin jar ~P (H, w)/~Po]
~~~~' ~~ ~~~~~

ar~P (H, w)/~P~
~~~~

Here, H is the applied field and ~P the magnetic flux threading the whole barrier of thickness

w (w r~ in the remaining of this paragraph). At this point it is important to recall that as

developed originally by Josephson [341] the Fraunhofer description assumes tacitly that the

junction is ideal, isolated (no percolation with other junctions), insulating (tunnel barriers)

and, more importantly, of dimension w much smaller than the Josephson penetration depth
Aj given by equation (35). It is important to keep in mind that it is only under these

circumstances that the response of a given fixed junction to an applied field parallel to its

barrier would be given by the Fraunhofer like function,

Many of the present models on weakly coupled granular materials consider the junctions as
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ideal, neglect percolation problems and assume that the junctions behave independently and

have lateral dimensions of the order of the average diameter 2 r~ of the adjacent grains.
Taking J~

=
2 x

l~i A/cm~ and 2 A + d
=

I ~Lm in equation (35), we find that Aj is typically of

the order of 2 to 4 ~Lm, whereas we know from the literature that r~ varies widely from sample

to sample (I to lo ~Lm typically).
However, this kind of ideal junction considered in many examples of the literature is not

consistent with experimental data and is easily ruled out by magnetic measurements which

show unambiguously that the transport current has the same origin as the magnetic one and

that the latter is related to irreversibility effects [97, 98] and therefore to some kind of

pinnings of the vortices by defects. It is also inconsistent with the fact that in granular

materials the junctions form a percolating network of dimension comparable to the

macroscopic diameter of the sample, hence much greater than Aj.
2) Secondly, the junction is very large compared to Aj but still ideal with no in-

homogeneities (Fig. 42b). This situation is very similar [97, 98] to that of a perfect type II

superconductor except that the current within the junction is restricted to the penetration

depth Aj while it is restricted to the London depth A in the crystallites (see Refs. [18, 202]).

For such large but ideal junctions the average critical current would drop towards zero very

rapidly with increasing thickness w.

3) Thirdly, the Josephson barriers are very large and inhomogeneous with vortex trapping
regions. It is possible now for the current to be carried by the interior of the junction just as in

dirty superconductors of the second kind. This case is schematized in figure 42c showing both

the edge or «
reversible Josephson current »

and the bulk non equilibrium current associated

with the pinning forces within and near the junction. Moreover, it appears now quite natural

to assume that this kind of junction is closer to the real situation and to identify the critical

fields H(, H( deduced from low field magnetic measurements as the averaged first and second

critical fields of the weak link network. In the following section we shall use this description to

calculate the hysteresis cycle of granular superconductors.

In the above examples it was assumed that all the junctions are roughly identical (I.e. the

distributions in Jo and in Aj are not very large). Because of the strong anisotropy of high

T~ oxides the situation is probably more complicated in these systems and we must represent

HTSC granular materials by at least two kinds of very different junctions, parallel and

perpendicular to the a-b planes respectively, as illustrated in figure 43a. From the inspection
of figure 43 it is seen that in this example the transport current is not well defined because of

the presence of weak links. The transport critical current is determined by the current

conservation condition which imposes that the maximum possible current is smaller than or

equal to the lowest of the two currents w-u- J~~,~~ and w.v. J~,~~. (Note that u,

v and w are the average thickness, width and length of the grains composing the material ; see

Fig. 43a.) This means that the apparent current density is given roughly by :

J
=

inf (J~~
~~ ; (v/u ) J~ ~b) (37)

To derive this expression we assumed that the small (vertical) junctions of the figure carry

negligible current while the large horizontal ones are quasi perfect and have little influence on

J~, ~~.
We know that for Bi oxides the ratio J~~ ~jJ~,

~~
is very large, probably of the order of

10~. This suggests that the critical current density would be generally limited by the current

density in the c-direction unless the aspect ratio v/u is of the same order of magnitude as the

anisotropy ratio J~~ ~~/J~,~~, This implies that, even in highly textured materials the local

directions of the current within the sample should be to some extent distributed with respect

to the macroscopic direction. This is because weak links of the sort sketched just above are

difficult to eliminate completely over a very large areas even in highly textured materials.
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Fig. 43. -a) Schematic representation of the current pathways in a highly textured anisotropic
sample. u and v are respectively the average thickness and the average length of the elongated
crystallites. b) and d) Lorentz forces in the

«
orthogonal

»
configurations. (H

=
H~, I-e- perpendicular

to the average direction of the current). c)
«

longitudinal
»

configuration in which the applied field is

parallel to the direction of the macroscopic current (H
=

H, ), but this not true locally in the presence of

weak links. Note that this kind of weak links will lower considerably the apparent anisotropy of the

current.

This weak link effect would be easy to detect by looking at the variation of

J,~ with Hjj (I.e. in a «
longitudinal field

»
H, parallel to the mean direction of the excitation

current). It is indeed known for conventional materials that if the vector J~i is strictly parallel

to the field Hi everywhere in the sample then the total critical current I~
= ar. R ~J~ should

be rather independent of or slightly increasing with Hjj. Therefore, if J~ decreases with the

strength of Hjj we can safely say that the direction of the local current is not constant. We

believe that such an anisotropy effect should exist in epitaxial thin films and perhaps even in

single crystals as the vortices can be distorted by the combination of defects and anisotropy. It

is also of interest to note that the same kind of effect is observed in the resistive transition of

most HTSC which is broadened by
«

longitudinal
»

fields. This is contrary to expectations for

straight current lines. The physical origin of this broadening (in a longitudinal field) is

probably the same as at low T though in the last case some of the broadening can be due to

vortex distortions by thermal fluctuations. In summary, the vortices and the associated

currents can be distorted locally either by weak links or by defects assisted by anisotropy or

(due to the high temperatures involved in HTSC) by thermal excitations assisted by
anisotropy.

9.5 DiscussIoN AND coNcLusIoN oF THis SECTION. In the preceding section we have seen

that the conductivity in the normal state of sintered materials is decreased by irradiation-

induced defects. Therefore, it seems that the claim according to which J~i would be improved
by introducing a desired amount of defects in the junction seems at first sight in contradiction

with the predictions of equation (33) of Ambegaokar-Baratoff which shows that Jj decreases
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with the resistivity pj (or p~j) of the junction and hence with the density of imperfections in

this junction. However, according to the usual flux creep theory the improvement of the

critical current density by defects is valid only in the limit where the vortex structure and

dimensions (A and ~ are not changed by such defects. Of course, this is not the case inside the

junctions where the perturbation is generally very strong. There are general arguments which

show that the pinning forces acting on the vortices should decrease in the same way as the

transverse dimensions of the vortex. As far as the Josephson junctions are concemed, these

dimensions are very large compared to the unperturbed ones and are measured either by
Aj or by fj (the Josephson penetration depth and the Josephson coherence length
respectively). These latter lengths are increasing functions of the normal state resistivity

p~, of the weak link structure. To compare with experimental data we use the notation

p~, rather than pj introduced for an ideal junction. Consequently, the two contradicting
effects above are in fact not independent and must be considered simultaneously in order to

find out the best trade-off between the two requirements (which state that to have large
I~ we need large pinnings and low pj at the same time). It is interesting to recall that the same

situation can exist in bulk materials where A and f depend in fact on p. This is particularly the

case in the so called dirty limit in which the electron mean free path of the conduction

electrons in the normal state is smaller than to.
From the microscopic point of view it is not clear how to realize the best compromise

between the need for strong pinning centres and the need for clean junctions with the lowest

possible p~j as required by equation (33). Nonetheless, we can argue that p~j is sensitive to all

kinds of defects whereas the pinning forces should only depend on inclusions of dimension

comparable to fj. At this point, it is important to remark that voids at the intersection

between several grains probably provide the most natural pinning centres which satisfy
reasonably well the above requirements. Therefore, it seems that the first necessary condition

for the enhancement of J~, is to improve the quality of the junction and as a rule to reduce the

normal state resistivity of the weak link network at the working temperature. The problem is

then how to relate the measured resistivity (which also includes intragrain electron scattering)

to p~j. We assume that in most practical cases it is reasonable to accept that : (I) this resistivity
is approximately proportional to the residual resistivity of the granular sample, extrapolated
from above T~ to T=0 as illustrated in figure 44a; (it) the residual resistivity is largely

o-

,

,'
,'

/

,'
,'

~$p ,'
WI

T T (arb. units)

Fig. 44. Resistivity as a function of T. The dashed curve is an extrapolation of the high temperature

resistivity to obtain the normal state resistivity entering equation (33).

JOURNAL DE PHYSIQUE Ill T 2. N'7. JULY 19Q2 41



l134 JOURNAL DE PHYSIQUE III N° 7

dominated by that of the grain boundaries. It is clear that when trying to make quantitative
correlations between the total resistivity p and J~j it is not p which is the most relevant

parameter but some resistivity p~j of the weak link. The latter would be (to a first

approximation) obtained by dividing p (of the whole sample) by the number of junctions per

unit length. This number is of order I/r~. Thus, to a first approximation we expect that

p~j would be proportional to p/n
= pr~ (for a sample of length unity).

After the above discussion, the next fundamental question is then to what extent it is

possible to reduce the normal state resistivity of the junction and therefore to enhance

Jj via equation (33). It is obvious that as far as the adjacent grains have their crystallographic

axes strictly parallel, it is theoretically possible (but practically difficult) to reduce the

resistivity of the junction infinitely (I.e. theoretically to zero) leading ultimately to a single
crystal. One way to achieve or at least to approach this ideal limit is through texturing as

discussed before. This conclusion is also in agreement with the experimental results discussed

in the previous section which showed that Jwj can be improved by making the junction more

metallic (thus reducing their p~), while the same intergrain current is drastically deteriored

by ion, electron and neutron irradiations even at vary low doses.

The question conceming the possibility of reducing the resistivity of the junctions between

disoriented grains (for instance a-b and c-a (or c-b) boundaries) is more difficult to answer. It

is indeed possible that in this case the junction could behave like an insulating region with a

rather large resistivity (though depending on the superconducting material) even in the best

possible conditions. This is not only because of the unavoidable discontinuity of the periodic
potential seen by the conduction electrons (which results in some resistivity), but more

seriously, it is believed that the mismach between the crystalline directions of adjacent grains

can be accompanied by a diminution of oxygen concentration either side of the junction
leading probably to a much larger perturbation than in the coherent case.

10. Interpretation of the hysteresis cycle and determination of the real J(r H) relationships in

single crystals.

We have already mentioned that most of our knowledge on the intragranular critical currents

of high T~ single crystals are inferred from magnetic measurements the interpretation of which

is often not straightforward. This is especially true for the low-H peak region (seen in all of

the preceding figures of sections 7, 8 from Fig. 20 to Fig. 32) where the Bean model (as given
by Eq. (4)) breaks down. We shall also see that at very low temperature the

«
reversible

»

magnetization given by formula 5 of Fietz and Webb is generally very different from the

actual M~(T, H) of the ideal material. Naturally, the relationship between the intergranular

current J~j and the low-H cycle (Fig. 32b) is even more complicated. Getting quantitative
information on the critical current, the microscopic and macroscopic structures from

susceptibility data is another hard problem. In an attemp to clarify these points, we now

concentrate on the interpretation of the hysteresis cycle as a function of both H and T and

then try to go back to the actual variation of the local J with T and H. We have already seen

that such a relation is made very complicated by size effects (Sect. 6), especially those arising
from the spatial variation of J induced by self-fields. As a consequence, the very useful Bean

model gives an apparent current (J~~~(H)) which is sometimes quite different from the actual

one (J(H)) at the measuring field. For instance, it was shown recently by Senoussi et al. [77]

that the low-H peak exhibited by the hysteresis cycles of HTCS (Figs. 21-32) cannot be

understood in the framework of current J(H) models (as those considered in Sect. 6) but is

probably due to a competition between long range and short range vortex interactions

obeying very different laws as a function of H (this point was discussed briefly in Sect. 3 and

will be discussed further later in this section). A further complication (also discussed before)
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comes from the equilibrium magnetization which, in addition to its own direct contribution to

the cycle, changes the effective field seen by the local current J even in the absence of any
conventional demagnetizing field as in a very long cylinder (such a field can be viewed as the

contribution of M~~ to the screening of the applied field). This effect was already illustrated in

the inset to figure 2 and in figure 5 where it was seen that for a long cylinder with no usual

demagnetizing factor (N
=

0) the effective field seen by the vortices at the surface of the

specimen is 4 arM~(lo + H. The influence of this additional induced field on the shape of the

hysteresis loop can be very important for samples of small size, in particular at high
temperature [77] where the irreversible magnetization is generally dominated by the peak
contribution. The anomalous behaviour of this low-H peak of the hysteresis cycle as a

function of H, T and R are considered below.

10.I THE RELATION BETWEEN THE LOW-H PEAK OF THE HYSTERESIS CYCLE AND THE

INTRAGRAIN CRITICAL CURRENT DENSITY. Let us again Consider the hysteresis Cycles of

figures 21-29. We have seen that all of them exhibit a marked hump near the origin. As far as

we know, such a peak exists for all high T~ materials and had recieved no explanation up to

very recently [77, 344] (in fact, this kind of peak seems to exist in conventional

superconductors as well [344, 345]). It exhibits the following characteristic features.

I) For a given material such as (Y(123) or Bi(2212)), the peak is generally more

pronounced for small grains, in particular for decoupled oriented grains, than for large single
crystals. More explicitly, it does not scale with R (the radius of the sample) and its amplitude

increases rather slowly with R. As a rule, it differs by a factor of only 3 to lo between oriented

grains (where r~ =
few ~Lm) and single crystals (where R

=
few mm). This is to be compared

with the high field signals (I.e. far away from the peak region, H » H~~) of the same materials

which scale with R and can differ by as much as three orders of magnitudes between fine grain
samples and large single crystals.

2) For a given crystal the low-H peak is sharper for H parallel to the a-b plane than for

perpendicular. This is observed whatever may be the shape of the sample. This property
together with the fact that the peak depends only weakly on R implies that it cannot be due to

demagnetizing effects.

3) Its relative contribution to the total magnetization and its sharpness both increase with

T.

4) It is never centred at H
=

0. This simple fact rules out the possibility that the peak could

be induced by some kind of surface pinning.
5) Its position on the H-axis depends on the magnetic history of the sample and it is always

sharper for the cyclic curve of the hysteresis loop than for the virgin (or initial) cycle. This is

also not consistent with surface pinning since this would depend mainly on the value of H at

the surface but not on the magnetic history.
To bring out the physical origin of this peak we retum back to figure 19 of section 6 where it

is seen that the variation of J with R (recall that here J is connected with Mi~ by Eq. (4)) tends

towards saturation (or becomes almost independent of R) when the radius R of the specimen
exceeds some characteristic length Ro defined by equation (16). Since Ro is proportional to the

characteristic field Bo (Eq. (16)) which controls the field dependence of J, this suggests that

the low-H peak could be associated with a small characteristic field Bo,
j~

(we recall that the

subscripts
«

lr
»

and
« sr »

stand for long range and short range interactions between vortex

lines respectively). In other terms, such a peak would correspond to some long range
interactions which drop very rapidly with B. Therefore, it is likely that the hump is connected

with some interaction mechanism that varies much more rapidly with H than that controlling
the high field magnetization (H » Ho, i~). The latter is more probably connected with the core

and the kinetic energy of the currents in the surrounding region of the vortex lines II 39]. The
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former is probably connected with long range interactions between the vortex lines. In fact,

we shall see that the low-H peak has essentially the same physical origin as the peak which

arises in some conditions near H~~. Namely : the possibility for the vortex lines to minimize

locally their energy independently of their neighbours in the region B wB~~ where the

interaction between lines vanishes exponentially. This is indeed accompanied by the vanishing
of the elastic constants C;~ of the VLL except for the line tension. As a consequence, an

isolated vortex lines will tend to go through its neighbouring defects to minimize its energy.
This effect is limited only by the induced elastic energy associated with the line tension. On

the contrary, for a very rigid vortex lattice (strong vortex-vortex interaction) the vortices have

no intemal degree of freedom to modify their shape and minimize their energy locally so that

the resulting pinning is generally very low. It is interesting to emphasize that the pinning
mechanism is the same as in weakly anisotropic ferromagnets where a given domain wall

tends to rearrange its spatial shape to pass through a maximum number of defects.

10.2 A THREE CURRENT MODEL FOR THE CALCULATION OF THE HYSTERESIS CYCLE. In

order to calculate the hysteresis cycle and give some support to the above hypothesis
conceming the physical origin of the low-H peak we assume that the total current density
varies as :

J~~~ =
J~~(B/B ~~) + Jj~(B/B j~) + J~(T, H, r) (38a)

where the first term on the right hand side would describe the high field behaviour

(B~~(T
=

0)
=

B
o, ~~

=
200 to 400 kG) whereas the second one would correspond the low-H

domain (B,~(T
=

0)
=

Bo,,~
=

2 to 5 kG, peak region). The third current is the equilibrium
London-Abrikosov's term which depends explicitly on both H and T as well as r. For concrete

calculations we are using exponential laws (but the same calculation can be performed with

other models such as those considered in Sect. 6, but see section 13 for the limit of validity of

the critical state concept assumed implicitly here) :

1 1

Jtot(B(r))
=

J~r(n e
~~~"

+ Jjr(n e
~*~~

+ J~(T, B, r) (38)

The field seen by the vortices at the surface is given by :

H~~~R A
=

H + 4 arM ~~(H) (39)

To reproduce the experimental cycle the only important required condition is the coexistence

of long and short range forces with B~~ MB
j~.

We note that B(r) in equation (38) includes a contribution to the effective field from the

surface current J~(T, H, r). The model reported in reference [77] takes into account this effect

and assumes that the coupling between the irreversible magnetization and the London-

Abrikosov equilibrium magnetization can be accounted for as follows : the vortices closest to

the surface are not in equilibrium with the extemal applied field H, but rather with an

effective field including the applied field and the field induced by the equilibrium currents

flowing near the surface in the London depth A. Then, for a cylindrical sample of length
L » R » A the effective field seen by the vortices at the surface is given by equation (39). For

the numerical calculations, we have taken

M~~(T, H)
=

~

,

(H
~

H
~~)

(40)/
In (H~~/H)

~~~~~ ~
4 H In (A If) '

~~ " ~
~'~ ~~~~
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This was already illustrated schematically in figures 2 (inset), 13 and 14 in which we assumed

that M~~(lo was induced by London-Abrikosov's currents flowing in the London penetration
depth A.

10.2.I A possible origin of the critical current Jj~ responsible for the low-H peak in

M(H). We expect that a peak like that discussed above can be connected either with a

pinning potential U(r) of very long range (~ A) or with the vanishing of long range

interactions between the vortex lines (see discussion in Sect. 10.I). It tums out that it is very

difficult to picture physically plausible potentiel barriers with the required very long range

interaction on a scale of the order of A, especially for H parallel to the a-b planes where

A (T
=

0)
=

A
o

is as large as 8 000 I (see Refs. [275-280] for A measurements). Therefore, as

already discussed in section 3 we suggest an explanation based on the second mechanism, I.e.

related to the weakness of the repulsion between vortex lines in this field region.
Indeed, we have seen in section 3 that in the field region where the condition

aH~lar=aBlar is not satisfied the critical current density (and the associated apparent
pinning force) is multiplied by a factor + 4 ar am~~laH~ (see Eq. (7) of Sect. 3) which is

notably greater than unity close to and slightly above H~~=H~~ and tends to I for

B
=

H
~~

» H~~. Then, the comparison with the critical current component

J(T, B)
=

J~~(B/B~~) + Ji~(B/Bj~) (formula 38) suggests the following identification :

fi @

J(T, B)
=

J~~(T~ e
~~~"

+ 4 ar

~
J~~(T~ e

~"~" (42)
?~eq

In other words, we propose that Ji~ is related to J~~ by :

(~(B/Bj~)
=

4 ar[am~~laH~~] J~~(B/B~~). We also recall that M~, H~~ and B are related by
equations (1-3) as explained in section 3. Experimentally, it is found that as far as

YBaCUO (123) is concemed the two currents J~~(B/B~~) and Jj~(B/B,~) in equation 38 follow

approximately the same exponential variation with T, in agreement with formula 42. This is

not true in the case of Bi and Tl based systems. The reason of this is connected with the fact

that in the case of YBaCUO (123) the pinning disorder can be considered as very strong (in

ordinary conditions of preparation of the material) both at high and low fields. This is not the

case for Bi and Tl compounds where it is thought that at high H the pinning is generally very

low (at least in ordinary conditions of preparation of the material) and due to oxygen

vacancies, but always strong in the peak region of the cycle. Other arguments are developed
briefly below and more extensively in [344],

In this model the physical origin of the second current term on the fight hand side of

equation (42) lies in the fact that for H slightly above H~~ the repulsion between lines are very

weak (they vary like e~ ~?~ where d~ is the vortex spacing) and as a consequence the lines can

sustain more current than in the region H~~«H«H~~ (or equivalently in the limit

A » d~) where the interaction between lines is much stronger and varies approximately like

A/r. A rigorous treatment of this point requires quantitative computation of M~~ of HTSC in

the presence of pinning forces and anisotropy, but this is beyond the scope of the present

paper. It is probable that the rather qualitative Abrikosov formula [78] magnetization

M~~ (used here) needs to be improved in the case of HTCS [80-83] for quantitative
comparison with experiments.

Finally, it is to be added that it can be shown that other suggested explanations (for the low

H-peak) based on demagnetizing field effects [346], time relaxation effects [347] or surface

pinnings [348] are not consistent with experimental data as already mentioned before. Of

course, all of these effects, particularly the demagnetizing field, certainly influence the
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experimental data whichever the physical mechanism readily responsible for the observed

peak in M(H), but these effects are difficult to account for rigorously in concrete calculations.

10.3 CALCULATION OF THE HYSTERESIS CYCLE. For the numerical calculations of

M~~(T, H) we have taken H~~(T =

0)
=

H
~~~ =

150 oa, H~~(T =

0)
=

H
~~~

=

10~ oa, A If
=

200

and BCS laws for the temperature variation of H~~ and H~~. Note also that the interpolation

between the two above limiting behaviours (Eqs. (40, 41)) was chosen so as to give a sharp
positive slope in M~~ at H just above H~~.

To compare the calculated magnetizations with the temperature dependence of the

measured cycles we need the exact temperature dependences of both (~ and B~,
~~

entering
equation (38) (recall that ij

= «
sl

» =
short range or «

lr
» =

long range). At present, it is

extremely difficult to get these relationships exactly. In addition, it is not certain that the same

laws will work for all samples because of the possibility that different samples with different

defects will exhibit different T and H dependences even for the same HTSC oxide.

Nonetheless, we know that J(T~ for YBaCUO and other high T~ families vary exponentially
with temperature over a large T domain [20-25] and follow a power law as T approaches

T~. The T dependences of the fields Bo, ;~(T~ are more difficult to determine correctly, both

because of the complexity of the M(H) curves and because of their very high values compared
to available fields. However, to compare the theoretical loops semi-quantitatively with

experimental data we do not need the exact J(T, H) relationships. Here, as suggested by
formula 39 for the currents (and also for the sake of simplicity) we take the same temperature
variation for J~~ and Jj~ on the one hand and for Bj~ and B~~ on the other hand. We also neglect

for the moment other possible current terms such as that responsible for the butterfly shaped
cycles (Sect. 7) which only exists in very special conditions and in a limited region of the (T-H)
plane

T Ben

Jjj(B~~~, T~
=

Jo ~j(I T/T~)~ e
~"

e
~~" (43)

Bii(T~
=

B o>i(' (T/Tc)~) (44)

Here
T~~

is some characteristic temperature of the order of 15 to 25 K for YBa~CU~07 and

about 5 to 6 K for Bi (2212) (we recall that the exponential decay with T is not valid for thin

films). What is important to recall too is that at the surface of the specimen B~~~ is equal to the

extemal applied field plus the field induced by the London-Abrikosov currents circulating in a

shell of depth A. A reasonable fit with experimental data in YBa~CU~07 is obtained for n =
I

to n =

1.5, m =
2 and J~j~ =

2 J~~~ =
2 x

10~ to 7 x
10~ A/cm2, whichever the sample radius

and the method of preparation. In the present calculation we take n =
I. For the sake of

simplicity we shall not consider other choices for the fitting parameters here.

10.4 COMPARISON WITH EXPERIMENTAL DATA. Shown in figure 45 are the calculated

cycles (for the parameters given in the caption of this figure see [77] for the details of the

calculation) using the various equations above. We observe a strong similarity with the cycles
of oriented grains samples of figure 23 except that the calculated cycles present a small

discontinuity at H
= H~~. It is to be noted, however, that in the experimental data this

discontinuity is smoothed out because of both demagnetizing effects and unavoidable

inhomogeneities in the sample. The shape of the calculated cycle depends on the maximum

applied field and on the ratio J~/Jj~. This is illustrated in figure 46 for r~=6~Lm,
Jj~

= J~~ =

7 x
llf A/cm2 and for J~~ =

4 x
10~ A/cm~, Jj~

=
7 x

10~ A/cm~. As can be seen the

loop of figure 46 (for which Jj~ =
2 J~~) is more cofisistent with the experimental cycles.
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Fig. 46. -Calculated cycles at two different field scales and for the following parameters a, b)
J,,

=
J~,

=
7 x

llf A/cm~ c) J~I
=

4 x
l~f A/cm~ and J~

=

7 x
l~f A/cm~

r~ =
6 ~m, Bo~,

m
400 kG,

Boi,
=

2 kG, n =
I and m =

2, T
=

4 K.

The evolution with the maximun applied field of the calculated cycle is presented in

figure 47 for J~~ =
Ji~

=

10~ A/cm~ and r~ =

500 ~cm (single crystal, see figure caption for the

values of the other parameters).
Very close to the irreversibility line, in particular near T~, the shape of the hysteresis cycle is

expected to be very sensitive to the exact variation with T and H of all the currents

(J,~, J,~ and J~ in formula 38) contributing to the hysteresis loop. A typical example is shown in

figure 48 which compares calculated (a) and measured (b) cycles for T approaching

T~. Other shapes observed experimentally can be easily reproduced using different parameters
in the calculations. In fact we find that at high enough temperatures the shape of the cycle
depends significantly on the relative rapidity of the variations with T of J(T~ on the one hand

and of B~~(T~ and Bi~(T~ on the other hand.

The above results confirm that to describe the most characteristic features of the hysteresis
cycle we need at least the three different currents given in equation (38). This description is

probably valid very close to the irreversibility lines but since the variation with T and H are

much more rapid in this region, it is necessary to know the various J(T, H) relationships with
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Fig. 47. Development of the calculated cycle (T
=

4 K) as a function of the maximum cycling field

for J,~
=

J~,
=

10~ A/cm~,
r~ m

0.5 mm, Bo~~ =
400 kG, Bo~,

m
3 kG (a). Measured hysteresis cycle of a

granular YBaCUO for T very close to T~ ; T/T~
=

0.95 (b).

more precision there than in equation (38) to reproduce the fine details of the curves. Other

hysteresis cycle calculations can be found in references [351, 352].

10.5 BUTTERFLY SHAPED CYCLE AND OTHER UNUSAL HYSTERESIS LOOPS FOR HTSC SINGLE

CRYSTALS.

10.5. I Anomalous hysteresis cycles. In some conditions high T~ oxides exhibit the very

unusual magnetic cycles displayed in figure 49 (lower loop, o
=

0°) for H oriented very close

to the c-axis and in figure 49 (upper loop, o
=

83°) for H almost (but not exactly) parallel to

the a-b planes. The two effects have very different physical origins. The latter (Fig. 49b) has

been invoked in section 7 and is an anisotropy effect which exists only when H is not

rigorously parallel to the a-b planes. If the anisotropy is very high it can be explained quite
satisfactorily by means of the projection model discussed briefly in section 7. This model will
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Fig. 48. a, b, c) Calculated cycle at T/T~
=

O.96 (very close to TJ at different field scales with

J~
= J~~ =

l~f A/cm~, Bo
~~

ma
200 kG, Boi,

"
5 kG, r~ =

I mm, d) a measured cycle [13].
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Fig. 49. In some experimental conditions HTSC exhibit these kinds of hysteresis loops. Lower loop :

the field is parallel or close to the c-axis upper cycle : the field is very close to but not parallel to the a-b

planes.

be developed later (Sect. 15) in more detail. The butterfly like cycle of the lower figure 49 is

generally observed only for large single crystals of some HTCS, for H oriented far from the a-

b planes and in a limited T, H domain (*). This unusual cycle can also be reproduced by the

model discussed above if one adds to the right hand side of equation (38) (I.e. to

J~~ +Jjr +Js) a fourth current term of the form J~~[H -H~~/H~~] where J~~ is some field

dependent function presenting two symmetrical maxima at H
=

± H~~. Its physical origin is

still unknown. According to Aguillon (private communication), it could be due to the

resonance of the vortex lattice with some periodic structure of the defects. We can also invoke

some anomalous softening of the elastic coefficients c~~, c« of the vortex lattice for some

unknown reason. It is indeed well known that this kind of softening effect occurs in

conventional superconductors close to H~~ and is termed as the
«

peak effect
»

[127]. Other

explanations were discussed by different authors [109, 350] : the idea here is based on the

experimental fact that single crystals are generally badly oxygenated and would for this reason

present statistically poorly oxygenated regions where supraconductivity is weak. Then,

increasing the field would gradually destroy supraconductivity in these regions, thus providing
extra pinning centres to the vortex lattice, but this is without affecting significantly the other

parameters goveming J. A third possibility proposed by Senoussi et al. iri reference [20] is the

possibility of thermally activated Frank-Read sources of dislocations in the vortex lattice at

sufficiently high temperature. However, whichever the final explanation it should, also

account for the disapearance of the butterfly shaped cycle for H parallel to the a-b planes as

well as for its non observance in granular samples prepared following standard methods. A

further tempting mechanism could be a local rearrangement of oxygen vacancies (or other

possible light defects such as traces of hydrogen) to stabilize the spatial structure of the vortex

lines in some T-H region. The absence of this effect in granular systems may be due to the fact

(*) However, recent results from Mosbah, private communication, show that highly oxygenated
oriented grains exhibit a small butterfly cycle, but at much higher field (about 60 kG) than in the case of

single crystals.
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that the latter are generally well oxygenated compared to large single crystals. We suggest this

possibility by analogy with ferromagnetic materials where it is known that domain walls are

stabilized by migration of nonmagnetic defects towards the domain wall location to lower the

domain wall energy. Here, these phenomena may be favourable for two distinct reasons : the

oxygen vacancies are rather light and the diffusion distances involved are very short (varying
between two extreme limits : the vortex spacing d~ at most and fat least). With this idea in

mind, it would be interesting to test the evolution of the cycle as a function of oxygen content

in oriented grains specimens. The mechanism we are suggesting here is developed in the next

subsection.

10.5.2 A possible explanation of the butterfly shaped cycle, This model allows the

interpretation of other anomalous effects which are generally observed at the same time as the

butterfly-shaped cycle : in particular, the retuming branch of the magnetic loop sometimes

presents a very extended linear field region (M~j proportional to (H~~~ H)) which is usually
typical of surface pinnings. This can be understood as follows : if the single crystal is

insufficiently oxygenated (this is generally the case for large crystals as the time required for

oxygen diffusion increases like R ~, implying that the time required for single crystals in 104 to

105 longer than for usual decoupled grain samples) it will present a gradient in oxygen
concentration which can be defined by YBa~CU~O~

~ ~~~~
with 3(r)

=
I in some spatial region

near the surface defined by (R Arm r < R) and 3(r)
m

0 for r < R Ar (Ar is the oxygen
diffusion distance). Consequently :

(I If AR « R this will simulate surface effects since there will be no critical current in the

region r ~
R AR (see Sect, 16 on surface currents for more details).

(2) Secondly, with this simple picture, in the transition region between 3~r)=0 and

3(r)
=

I the transition temperature T~(r) will vary continuously from zero (presumably from

some low but not zero value in real systems) to T~
=

92K near the surface. Then, since

H~~ will also go to zero in these regions of T and r we would expect that the pinning potential,

U(r, T, H), will go to a maximum in the sample regions where H is very close to r (due to the

local softening of the VLL which must occurs just below H~~). This can explain the appearance

of the butterfly peak in the magnetic loop as well as surface like pinning (if Arm R).

10.6 DISCUSSION AND CONCLUSION CONCERNING INTRAGRANULAR CURRENTS IN SINGLE

CRYSTALS, The calculated hysteresis cycles exhibit many of the characteristic features of

the experimental data. The characteristic radii R~j~ and R~~~ (defined by Eq. (16), and ascribed

to long and short range vortex interactions respectively) associated with J~i~ and J~~~ (Eq. (38))

are of the order of 5 to 20 ~cm and 2 to 5 mm respectively at 4.2 K. This means that Bean's

formula (Eq. (4)) relating M and these currents become incorrect at larger radii. In particular,
this implies that the critical current density J~~~ deduced from the magnetization of single
crystals at low H (peak region) is systematically lower than that of intragranular current of

granular systems by a factor of about two to three. This size effect has already been sketched

in figure 19b of section 6.

Another important condition for the validity of the calculation of the hysteresis cycle

concems the way the contribution of M~ to the total magnetization is taken into account i we

have already emphasized that in addition to its direct contribution, M~(H) changes the

effective field seen by the bulk of the sample and as a consequence changes the apparent field

dependence of J. This result exists independently of any usual demagnetizing field (neglected

here). The present model can probably be improved by choosing a more suitable

J(T, H) relationship especially close to the irreversibility lines where the phenomena vary

strongly with T and H. This is also true for a better description of the low-H peak region
which requires a more exact calculation of M~~ of HTSC in the H~~ region. We are presently
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carrying out further calculations using a Kim-like model [200]. We stress that by comparing

many different samples with different demagnetizing factors we found that the main effect of

the demagnetizing field is to move the centre of the peak towards the origin. Lastly, it is

important from both practical and fundamental point of views to identify the microscopic
mechanisms (either intrinsic or extrinsic and defect-dependent) which govem the H and T

dependences of J. To achieve this goal, it is necessary to carry out both microscopic
observations (for instance, using transmission electron microscopy) and macroscopic investi-

gations as those described above. It is also of fundamental interest to know how to correct the

experimental data for size and other spurious effects in order to deduce the right J entering
the flux creep equations. Finally, it is also important to recall that the reversible

magnetization given by equation (5) coincides with the equilibrium magnetization only in the

limit where M~~ (in Eq. (4)) is not very large compared to M~~ which is generally not the case

for single crystals at low T. For the same reasons the error in the derivation of the first critical

field H~~ is often gigantic at low temperatures. This is illustrated in figure 50 (for various

sample sizes r~) which shows the effective H((7l obtained by computer simulation using the

present model and the experimental constraints and conditions encountered in real

experiments (more explanations on these computer simulated experiments are presented in

[358]). It is clear that the result of the simulated experiment differs considerably from the

actual (BCS) H~~(7l used in the starting calculations. The simulated H~~(T~ is very similar to

those reported in the literature. To plot these curves we neglected the low-H peak effect and

we only used the
«

short range current » J~~ in the calculations. The fit with experimental
effective field can be further improved if we take into account J,~.

a b

lim"t (;mit

T la rb. units) T (a rb. units Tc

Fig. 50. H((7~ calculated from the simulated magnetization curves (M versus Io with several values

of the grain radius (I, lo, 100, 500 ~m) and J~ : a) J~
=

2 x
10f A/cm~ b) J~

=
5 x

10f A/cm~ for I and

2 ; J~
=

2 x
10f A/cm~ for 3 and J~

=
8 x

10~ A/cm~ for 4 (from Aguillon and Senoussi [358]). The same

discrepancy is found for the calculated
«

reversible magnetization
».

11. Calculation of the low-H hysteresis cycle of weakly coupled grains.

Since the discovery of high T~ ceramics, the magnetization of granular materials has been the

object of many theoretical and experimental studies [285-298, 303-305, 353-356]. However,

up to very recently there has been no quantitative model relating the magnetization to the

intergrain critical current and to the microstructure of sintered materials. Here, we would like

to recall briefly the results of a recent calculation of the hysteresis cycle of granular
superconductors (weakly coupled grains through Josephson interactions) [77, 104]. Since the

hysteresis cyan induced by intragrain currents has been treated in the previous paragraph, we
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shall restrict the present investigation to the low field domain where the applied field is

smaller than the first critical field H~~ of the grains of mean radius r~. In particular, we shall

compare the calculated and the measured hysteresis cycles and emphasize their connection

with the intergrains critical current as well as the influence of both the radius R of the bulk

sample and the radius r~ of the grains.
As discussed previously, the intergrains magnetic current J~j,~~~ is related to the

magnetization M~i,, However, M~i,
i~

cannot be probed directly by classical measurements

and must be extracted from the total magnetization M~~~ which is the only measurable

quantity. The relationship between J~j,~~~ and the low-H cycle of the weak links will be

clarified later.

We wish now to use the same kind of model as above to calculate the low field magnetic
loop exhibited by weakly coupled granular systems. At first, by analogy with the procedure

outlined previously for single rystals, we consider the contribution of the reversible Josephson

currents associated with the magnetization M~j,~~ of the weak links [18, 341] (I.e. the

analogous of the London-Abrikosov magnetization in homogeneous materials) to the total

magnetization (see Ref. [97] for more details on this point). This magnetization is induced by

currents flowing at the edge of the junction iri the penetration depth Aj (as depicted
schematically in Figs. 42b and 42c). Apart from this equilibrium Josephson term, the

measured magnetization also includes two extra contributions M~j,i~ and M~ associated

respectively with the macroscopic current loops threading the weak links and extending over

the whole sample and the
«

microscopic
» current loops circulating inside the individual

grains. Here, for simplicity we shall assume that H
~ H~~ so that the intragranular currents are

restricted to the London penetration depth A, though the calculation can be easily performed
without this restriction (note that these small loops do not contribute to the measured

transport currents). The currents associated with these various magnetizations are displayed
in figure 33.

To calculate the hysteresis cycle we shall again neglect demagnetizing fields (which are

deferred to Sect.16) and assume that the total magnetization is the sum of the three

contributions, M~~~ =
M~j,

~~
+ M~j,

~~
+ M~ just introduced. For axial symmetry we can write

the total magnetization (in practical units in which J is in A/cm2 and M in emu/cm3) (*)

R
l~lot

~
l~wl,

eq
~ l~wl,

in
~ l~gr

~ fi (~wl, eq(~) + ~wl, irr(~) + ~gr(~)) ~~ d~ (45)

and calculate the associated apparent magnetic current related directly to M~j, i~(H) (but not

related directly to M~~~) by :

J~j (H)
=

15
~$i,

in
M ii

in

mag R
(46)

For the numerical calculation below we will take for J~j(B/Bo) the same exponential
relationship as in equation (25). Moreover, from magnetic measurements on samples with

different grain sizes, it is found that the hysteresis cycle depends strongly on r~ not only for

HTSC [287, 288] but also for classical superconductors [289]. Comparison with theoretical

(*) However, this formula does not mean that all of the three contributions are independent. This is

because the effective field seen by a given filament includes both the extemal applied field H and the

field generated by the surrounding macroscopic current loops. The influence of the intrafilament

currents on the macroscopic current loops is less important if the length of the filament is much larger
than the sample radius R (as assumed to be the case here).
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calculations shows [77, 104] that this is consistent with the fact that Bo varies as the inverse of

r~:

~y l~P~~°
2 (2 A + d~ r~

~~~~

Here a is a prefactor of order unity at TM T~. Comparison between calculated and

experimental cycles are presented below for the following numerical values of the microscopic
parameters of the junctions and the grains: (A(T= 0))=0.5~Lm in average and

J~j(H
=

0)
=

Jo
=

2 000 A/cm~, d
=

0 and
a =

2.

II-I THE HYSTERESIS CYCLE, THE INTERGRANULAR CRITICAL CURRENT AND THE CONNEC-

TION VITH THE MICRO AND MACRO STRUCTURES.

11. I.I Comparison with experimental data. Shown in figure 5 la and figure sib are the

evolutions of the measured and the calculated [77, 104] hysteresis loops as a function of the

maximum cycling applied field H~~~. In this example, we took R
=

3 mm, and r~ =

1.5 ~Lm.

We note a strong similarity between the calculated and the measured cycles. We also find that

changing either R, r~ or Jo
=

J~j(H
=

0) only changes the amplitude of the cycle but not its

shape.

T=k2K Mlemu/cm~l
g 4

H161

-200

Mlemu/cm~)

@

H161

-Lo 50

Fig. 51. Development of the low H cycle of a sintered pellet of YBa2Cu307 as a function of the

maximum applied field H~ for R =3 mm, r~=1.5 ~m, a) experimental; b) calculated taking
Jo

=

2 000 A/cni and H(
=

1.5 G.
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It is to be stressed that the linear and reversible region of the initial curves seems to extend

over nearly lo oa. This is much more than the value H(
=

1.5 oa used in the initial equations as

the Josephson first critical field of the weak links. In other words, this shows that it is

extremely difficult to determine the exact H( from the measured hysteresis cycle because of

irreversibility effects which hinder the propagation of Josephson vortices within the interior of

the weak links and increase the apparent Hj. The same source of errors has been discussed

before (in Sect. lo) for H~ and M~~ of decoupled grains and single crystals (see Fig. 50).

11.1.2 Evolution of the intergranular hysteresis cycle with R. The influence of the

macroscopic radius (R) on the low-H cycle is illustrated in figure 52a (measured) and 52b

(calculated). It is clear that in the two cases the hysteresis cycles are quite similar and stay
almost the same upon increasing R by a factor of 2.5. From these figures we conclude that : (I)
Near H=0, M~~~ increases only very slowly (= logarithmically) with R. This is in

contradiction with the usual Bean model which states that the irreversible magnetization is

proportional to R, but in agreement with the conclusion of section 6 and figure 19 conceming
size effects in the limit H

=
O. (ii) The initial branch of the total magnetization exhibits almost

perfect shielding in the limit where H tends to 0 (I.e. M
=

H/4 ar), in agreement with

experimental data, assuming R » A
~~~.

Here A~~ is an effective penetration depth (estimated
in Ref. [357]) which is a combination of both A and Aj ; see also figure 33a. (iii) At high

emu/cm~l

@
H161

-50 -25 25 50

-1

2

H161

-40 -20 20 40

-1

-2

Fig. 52. Influence of the radius R of the pellet on the low-H cycle, a) experimental [198],
b) calculated. Inner cycle R

=
2 mm, outer cycle R

=
5 mm.
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enough fields, M~j,
i~

vanishes and the total magnetization reduces to that of a collection of

independent grains or filaments ; see also figure 33c. In addition, in this field domain the

magnetization becomes again linear and reversible and scales with the inverse of the grain
radii, again in good agreement with experiments [198, 287].

ii.1.3 Variation of M~~, with r~, microscopic size effect. The influence of the size of the

grains ( (r~)
=

1, 3.5 and 5 ~cm) is presented in figure 53a for the experimental cycles [198,
287] and in figure 53b for the calculated ones. The agreement is still very good except for the

persistence (Fig. 53a) of some hysteresis at relatively high field in the experimental case. This

effect can be easily accounted for by adding a further but small current term to equation (45).
In addition, since this term persists at higher fields it should be slowly varying with H. Again,
the exact shape of the loops depends on both R (the radius of the macroscopic pellet) and

r~ but the agreement between the experimental and the calculated cycles (Figs. 53a, 53b) is

once again excellent. This is especially true if one remembers that the cycle does not in fact

depend on
I/(r~) but rather on the average (I/r~) of the inverse (the averaging of

r~ is more complicated when A/r~ is not very small), which is larger (Jenssen inequality).
Lastly, we observe that the slope of the linear domain for H » Ho (or H

~
H~) decreases as

I/r~.

lemu/cm~l
T =~,2

~~
=i ~m

H161

@
=5

Mlemu/cm~l

r~= =2.5
um

rq =
0.5 ~m

H161

Fig. 53. Influence of the radius r~ of the grains on the low-H cycle for different macroscopic radii R,
a) experimental [198] b) calculated. Note that the radii r~ are not the same in the two cases. The

agreement should be improved if we took into account the fact that ( (I/r~))~~ is necessarily smaller

than (r~) ; Jo
=

2 000 A/cm~.
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ii.1.4 Variation of the apparent magnetic critical current with R. The critical current

density deduced from formula 40 is plotted in figure 54a for H
=

0 and in figure 54b for

H
=

lo G as a function of the radius R of the specimen for different fixed r~. In agreement
with experimental data in figure 36 we see that the apparent current density decreases

approximately as I/R at large R (R » Ro where we recall that Ro is a characteristic length
related to B~ by Eq.(16)) and approaches a maximum value as R tends towards

Ro (R w R o). This is to be compared with the measured transport critical current as a function

of R for H
=

0 which is found [284-286, 291, 328] to decrease as I/R. (Compare also with

Fig. 36 and with Fig. 19 of Sect. 6 valid for zero applied field, I.e. in the remanent state). It is

clear that the agreement between the experimental and the computed currents is again
reasonable. It is also interesting to emphasize that the size effect (I.e. the fact that the

effective experimental currents decrease as I/R for R w R o) reported in figure 19 at H
=

0 and

ascribed to the self-field H~~ disappears when the applied field is much higher than

lfsf.

if @ __j~~~ @

==-=-l H=io6

=:.-::=.j~

,

H=06

Fig. 54. Calculated critical current density as a function of the radius R of the pellet at H
=

0 and

H
=

low and for the indicated grain radius r~.

11.1.5 Variation of the apparent magnetic current with r~. We have seen that the

experimental data of Maury II 98] suggest that the characteristic field Bo controlling the field

variation of J~j is inversely proportional to r~. To illustrate this effect we show in figure 55a the

calculated variation of J~j,~~~ with r~ for four different but fixed radii R (10~~, lo ~,

lo ~, and I cm) and for H
=

0. As we can see the current is considerably enhanced as

r~ is decreased. Moreover, here too the influence of H is very strong for H
=

lo G and

R
=

10~~, 10~', and I cm.

11.1.6 Discussion. We expect that Bean's model should be severely modified by the weak

link network. Moreover, the Bean model assumes implicitly that J is independent of the

radius R of the specimen. However, we have seen that this assumption is not always realized

particularly in granular materials. The various limits are summarized below.

From equations (16) and (47), it tums out that for the present examples the characteristic

length Ro (for the intergrain currents) is related to r~ and to Jo by Ro (cm)
= a

~Pj(2 AJO. r~)
with a -

I. This implies that for r~ -
0.5 ~Lm and Jo

=
2 000 A/cm~ Ro

m
50 ~cm. In general

r~ ~
l ~cm and J~ m

2 000 A/cm~
so that Ro is expected to be lower than this value in most
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Fig. 55. -a) Shows the variation of J~~~ with r~ for the different but fixed radius R (10~~,
10~~, lo~~, I cm) and for H =0 and Jot 20o0A/cm~. It is seen that the current is enhanced

considerably as r~ is decreased. The influence of H is illustrated in figure b for the same parameters as in

a.

cases. We recall however that Ro depends in fact on H and increases notably for

H » Ho,
For H

~
Ho the real Jo would be proportional to the maximum critical current density of the

Josephson junction and would probably be given by the Ambegaokar-Baratoff formula [33].
Finally, it is found that as T increases the characteristic field Bo decreases roughly linearly
with temperature and this is not quite consistent with BCS temperature variation of A if one

accepts the validity of Fraunhofer's equation (47).

II. 2 GENERALIZATION OF THE BEAN MODEL.

11. 2. I The relationship benveen the intergranular current density and the hysteresis cycle.
We have seen that in the case of YBaCUO intragranular current density depends rather slowly

on H. Then, for homogenous superconductors having a critical current density obeying a

single exponential law as given by equation (25) we find the following results between the

hysteresis cycle on the one hand and J~~~(H) and M~~(lo on the other hand

_B~~~

M~(H)
=

M~~~(H) + M~~(H)
~

e
~° (49)

4 RQ
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We recall that M~~ and M~~~ are defined from the hysteresis loop by equations (4, 5) whereas

B~~~ which depends on M~~(H) is given by equation (39). It is interesting to note that the Bean

model is always more easily satisfied at high fields such that B
~~~

» B
o,

in particular close to the

irreversibility line. The same remark is valid for the relation between M~~ and M~~~.

Conceming this relation, however, we can easily see that at very low T and H we have

exp( B~~~/Bo)
-

I. Then assuming J~
=

6 x 10~ A cm~~,
H~~ =

250 G, R
=

I mm and

R/Ro
=

I, putting in equations (48, 49) and taking (M~~ w H~~/4 ar yields

M~~/M~~~ =
5 x

10~~ and consequently two orders of magnitude errors in equation (5) which

is often applied to derive M~~(T,H) from the experimental hysteresis cycle assuming

M~~ =
M~~~. The situation is even more dramatic if one takes into account of the low-H peak

(in the cycle) the effect of which is to lower the apparent R~ to be put in equation (49).

Nevertheless, the error diminishes very rapidly with T, H and R, particularly for Bi oxides,

because of the exponential drop with T and H entering M~~ and equation (49). This is in fact

reflected indirectly in figure 50 which compares the apparent critical field H( (obtained by

numerical simulation of the experiment) and the theoretical BCS value of H~~ used in the

calculation (represented by the lowest curves of the figure). See also references [77, 358]. The

same kind of curves are encountered when H~~ is extracted directly from the experimental

curves. Consequently, we conclude that the higher the irreversible magnetization the larger
the uncertainties in the equilibrium quantities H~~ and M~~. Note that we have performed the

same calculations as above using other J(H) models (Kopp6 and Kim models, Sect. 6) and

found very similar results as equations (48) and (49).

11.2.2 The relationship benveen the intergranular current and the low-H cycle. Quite

generally we find [77, l04] that the irreversible magnetization M~j,
~~

induced by intergrain

currents is proportional to the total magnetization M~~~ and that the relationship between the

low field hysteresis cycle and the apparent current is given (to a good approximation) by :

M~(~ MQ~ X (H
~

H ( ) ~ ~J~j
~~~ =

15
=

15 (50)
R X(H

~
H ~) X(H

~
H () R Ap

Here X(H<HQ
=

[amlaH]R_o is the slope of the initial or virgin magnetization in the

linear region near H
~u

0 whereas X(H m
H() is the slope of the magnetization in the linear

region above H( (but below H~~). The quantities AM, AP and p in equation (50) are defined in

figure 56. In addition, the proportionality factor p/Ap is related to the microstructure of the

sample and has been calculated [77, 104] in various approximations. In the limit of a long
cylinder where demagnetizing effects are negligible and the grains sufficiently large

(r~ WA ) we have the approximate formula :

P
=

((2 A + d~/r~) (r~ » A ~) (51)
AP

Putting this equation in equation (50) gives :

~~"
~~~

~~
R ((2

~
d~/r~) '

~~ ~ ~ ~~ ~ ~~ ~~~~

We wish now to recall that the apparent current density (whether magnetic or transport)

represents a certain spatial average of the current density over the specimen and that the

resulting apparent current depends on the exact J~j(H) relaiionship as well as on the
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Fig. 56. Definition of the parameters AP and P used in equation (50) relating the magnetic critical

current density of the weak link network to the associated low field hysteresis loop. Note that equivalent

parameters will be defined from susceptibility curves in figure 71.

dimension of the sample via the self-field (see Sect. 6 and Fig.19 in this section). It also

depends on r~ via the characteristic field Bo (Eq. (47)). It is equally important to remember

that because of the variation of the self-field through the sample, the apparent current can

have almost no thing to do with the real J~j(H) at low H if R » R
o.

Using equation (47) and

assuming H
=

0. In the present exponential model we find :

15 Bo R 3 15 4~ 8 «Jo Rr~ A 3
~~~'°~~~ 2 arR

~~
Ro 2 8 arr~ RA

~~
5 40 2 '

~~ " ~ °~

(53)

What is very interesting to emphasize is the fact that there is no time dependent quantity in

this expression. This probably explains why no significant time effect has been seen in the low-

H hysteresis cycle of the weak links. The physical meaning of equation (53) is interesting. It

means that for a given fixed current the total irreversible magnetization (M(~ MQ~)/2 tends

to zero as I/r~ or as the number of weak links by unit length which is proportional to

I/r~. In other words, (M~(~ MQ~)/2 is proportional not only to the intergrain current but also

to the density of weak links. Conceming the above expressions, it is of interest to emphasize
again that : (I) The mean value of the ratio ((2 A + d~/r~) is directly related to the slopes
X(H

=

0) and X(H » Ho) of the total magnetization in the reversible field domains of the low

H cycle (see Fig. 56). (2) The mean value (I/r~) is always smaller than the mean radius

(r~) (Jensen inequality). Owing to the comparison between experimental and theoretical

data we find it often reasonable to take (I/r~)
=

(r~)/2 (or a =
2 in Eq. (47)). (3) It is also

important to keep in mind that the London penetration depth A must in principle be averaged

over the crystallographic axes of the grains. In addition, this averaging depends on the exact

shape of the grains and is in fact extremely difficult to carry out correctly. (4) The physical
thickness d of the weak link (I.e. the region where the order parameter is strongly depressed)

is difficult to determine as well but it is expected to be much lower than 2 A (which is equal to
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the electromagnetic thickness of the junction) and can be neglected in compact specimens
(I.e, d « 2 A).

12. Magnetic susceptibility of superconducting materials.

12.I INTRODUCTION. Magnetic susceptibility measurements represent probably the most

common and the most popular technique for the characterization of superconducting
materials [84-95], coming perhaps just after resistivity measurements. They can provide very

important and very valuable information on the superconducting properties but, contrary to a

naive and a wide spread opinion the obtention of quantitative and correct information

requires much analysis and a great deal of effort for their interpretation. This interpretation is

relatively simple only when we compare samples of the same family with the same shapes, the

same dimensions, in the same applied field, and measured at the same temperature with the

same time scale.

Usually, one has to distinguish between ac (altemating current) and dc (constant current)

susceptibilities. The ac-susceptibility itself includes an in phase (or real) component

x~ and an imaginary out of phase component X". Both components depend strongly on the

microstructure of the specimen. For this reason and for the sake of simplicity we shall discuss

separately the case of single crystals (including decoupled oriented grains) and that of fine

grains weakly coupled through Josephson interactions in the limit HWH~~ (we recall that

H~~ is the first critical field of the grains). It is interesting to note that the theoretical treatment

of the more general case (I.e. including both intragranular and intergranular critical currents

which appear for H~H~~) is time consuming but presents no difficulty with the present

model. Conceming dc-measurements (I.e. measurements in a given static field as a function of

temperature) one defines the so called zero field cooled susceptibility (Xzf~) and field cooled

susceptibility (Xfc). At this point it is to be emphasized that these terminologies are not

connected with any specific feature of HTSC and have been introduced by analogy with

experiments on spin glass (S-G) materials. As in these systems, Xzfc is by definition the

susceptibility measured just after cooling the sample in zero applied field down to the lowest

temperature, tuming on the dc-measuring field and then increasing the temperature in such

applied field. The other dc susceptibility, Xfc, is measured during cooling from above

T~ to the lowest temperature of interest in a static cooling field H~~~j. At a given field H, a

given temperature T and for a fixed experimental time scale these two susceptibilities are

different from each other whenever the critical current density is different from zero (or

equivalently whenever the vortices are subject to pinning forces different from zero). The

point of intersection or bifurcation (in the T-H plane) of Xfc(T,H) and Xzfc(T, H) is

sometime taken as defining the irreversibility line, but as we shall see it is not readily a

property of the material alone and depends on many experimental conditions in general (see

[359]). In addition it is to be noted that close to this line these different susceptibilities are no

longer independent of the amplitude H of the measuring field. We will try here to clarify these

points.
Considering ac susceptibilities it can be shown that if the time scale of the dc measurement

is comparable to the period of the ac field then X' and Xzfc are «
almost

»
identical except in a

narrow temperature region around the maximum of X"(T) where they are slightly different

(we are assuming that the measured sample is the same in both cases). See figure 57 which

displays x' and x~~~ calculated (see below) at the same temperatures and fields.

Magnetic and transport properties of conventional superconductors in the presence of

applied ac fields were extensively investigated during the sixties and seventies [19]. Bean [72b]

was the first to point out the advantages of ac-methods for the investigation of the critical
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Fig. 57. Compares the calculated ac-susceptibility x' (lower points) and dc-susceptibility xwc (upper
points, single crystals) as a function of temperature for several applied fields and for intragrain (upper
curve) and intergrain (lower curve) current densities. We do not know the origin of the small anomaly in

x" It is possibly due to the sharp peak in the calculated hysteresis cycle associated with

x" In experiments the sharpness of the peak and other anomalies are smoothed out by demagnetizing
effects and by inhomogeneities.

current density. The ac-susceptibility considered here is in principle deduced by means of a

lock-in amplifier which is assumed to detect only the voltage component at the fundamental

frequency v of measurement (band-pass mode) [360, 361]. In particular, ac-methods were

frequently used to determine the critical current density at and near the surface of the

specimen [362-364] in the presence of a superimposed constant field (H) much greater than

the amplitude ho of the variable field (H » hoi. The condition H » ho is intended to linearize



l156 JOURNAL DE PHYSIQUE III N° 7

the J versus ho function (or equivalently to minimize the dependence of the measured critical

current density on the ac-field h(t)= ho. sin (wt) (since it can be developed into

J(H + h (t ii
m

J(H) + h(t) (dJ/dH)~) for H » ho. In the ac-method proposed by Bean the

critical current can also be deduced from higher harmonics of the imposed frequency and

therefore provides more information on J than usual susceptibility measurements. In real

applications, this method neglects any effect associated with the equilibrium magnetization
M~. For the same arguments as those discussed for the hysteresis cycle, this is probably not

justified except in the limit where the total applied field is much larger than H~~
(H ± ho » H~ ).

Existing theoretical models for the calculation of the susceptibilities x' and X" can be

classified into three main categories related either to the conventional critical state model

[365-367] or to spin glass like models [303-305, 308-370], or else to the collective pinning
theory in the limit of very low field. The latter approach will be the object of the next

section 13 where we will try to find out the threshold field h~, ~
which delimits a line in the T-H

plane below which the critical state is no longer valid and where the use of collective pinning

treatment is necessary. Conceming the S-G like approach it tums out that it is somewhat

more general and more appropriate than the critical state to investigate cooperative and

transition effects in the vortex lattice [371-373]. However, it seems that the working
hypothesis used in S-G like models are generally rather restrictive and only valid in very

special conditions rarely satisfied in practice. We believe that the critical state like models as

those first developed by Clem [365] and then by Miiller [366, 367] are generally easier to

handle theoretically and more appropriate from the point of view of the derivation of the

critical current density from experimental data (see below). They are also simpler for the

investigation of the effects of other experimental parameters such as the size of the grains and

the macroscopic radius of the sample. It seems that the latter size effect is hard to investigate
in the framework of the S-G like picture. Nonetheless we must keep in mind that the critical

state model used in this section can break down either for very low amplitudes
ho of the altemating field or in the TAFF limit. In addition, other problems can arise because

of eddy currents (connected with viscous flux flow) especially at high frequencies and low J.

For the moment we shall ignore these extra effects and we wish now to generalize the above

fluw creep phenomenological approach and calculate the susceptibilities of both single
crystals and granular materials using the same models as those introduced previously for the

computation of the hysteresis cycles (Sect,10, iii-

Conceming high T~ materials, susceptibility data are currently used to determine the

superconducting transition temperature T~, the width AT of this transition, the fractional

volume V~ of superconducting material, the critical current density J(T) as well as the energy
barriers entering the flux creep theory via the frequency dependence of the temperature

T~ corresponding to the peak of x"(T,
w ) [86, 87, 91]. In addition, we have already

mentioned that ac-susceptibility has sometimes been used to derive either the apparent
irreversibility line (another spin glass terminology) frequently associated with the peak of

X " 126, 359, 374]. We shall see however that, apart from the determination of T~, the relation

of X " and X' with the other physical quantities just mentioned is as a rule very complex and

sometimes contrary to the most common opinions on the subject. This is why we find it

important to pay much attention to susceptibility measurements here.

We begin by considering the case of single crystals (§ 12.2) emphasizing successively the

influence of ho, the macrostructure and demagnetizing effects on x'. In order to help
understanding the physical meaning of the peak in x" and its relation to the critical current

density J on the one hand and to the so called irreversibility (or depinning) line on the other

hand we will also discuss in many details the influence of the radius of the sample. Granular
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superconductors are examined in section 12.3, where the influence of both the microstructure

and macrostructure are illustrated by several numerical examples. The relationship between

X" and the magnetic intergranular current density J~j
~~~

is investigated in detail and a

relationship of the same form as that derived in section'll from the low-H cycle (Eqs. (50)
and (52)) is established in certain conditions. Influence of anisotropy on the magnetization of

polycrystalline materials is examined in 12.4, dc-susceptibilities (x~~~ and x~~) are the subject
of section 12.5 where we will show that there is a striking analogy with the corresponding
quantities in reentrant-ferro-spin-glass materials. Frequency effects on single crystals and

polycrystals will be considered in section 12.6 and 12.7 respectively.
As in tile preceding sections, we shall again make extensive use of numerical calculations to

elucidate the dependence of x' and x" upon the various parameters R, r~, N (the
demagnetizing factor) as well as the J versus T law.

12.2 AC-SUSCEPTIBILITIES OF SINGLE CRYSTALS AND ORIENTED DECOUPLED GRAINS.

12.2.I Experimental results. Let us now consider the temperature variation of x' and

x" assuming that the applied field varies sinusoidally with time (h
=

h(t)
=

ho. sin (wt ii
and includes no steady field term. Figure 58 [376] shows the temperature variation of the ac-

53
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Fig. 58. Typical examples illustrating the temperature variation of the ac-susceptibilities x' (in phase
component) and x " (out of phase component) for a single crystal of YBa2CU~O~ 13761, at the indicated

amplitudes ho of the altemating field (in m) ; h in the a-b planes [376].
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susceptibility of a single crystal of YBa2Cu~07 at various amplitudes ho of the altemating
field, for h in the a-b planes.

In the extensive published literature on HTSC one encounters a large variety of shapes for

x'(T) and x"(T) curves but presenting no evident correlations with the microstructure nor

with the critical current density. In particular, the physical meaning of the peak
x((T~) in the x "(T) curve is at present controversial. We have already mentioned that such a

peak is sometimes ascribed to a melting transition in the vortex lattice. On the other hand, by
analogy with spin glass materials and following some theoretical models, the peak has also

been often considered as a manifestation of an Almeida-Thouless transition of the kind

observed in spin glasses. Finally, it seems that a majority of authors have a rather

«
conservative

»
point of view and believe that it is simply due to more classical pinning effects

at low enough frequencies (the physical meaning of the term low frequency will be explained
later). It is to be noted that in this last case the peak should depend both on the size of the

sample and on the measurement frequency. Unfortunately, despite the fundamental as well as

practical importance of this question, there is as yet (except in very few cases [377-379]) no

systematic investigation of such size effects in the literature on high T~ superconductors.
Likewise, it seems that there is not yet any clear cut analysis of the experimental data near the

irreversibility line in favour of or against a thermodynamic melting transition (at least in the

case of Bi and Tl based compounds). We hope that the following analysis based on the usual

critical state picture is sufficient to explain most of the experimental data described above

conceming ac-susceptibility.

12.2.2 A model for the calculation of the ac-sasceptibility of single crystals and decoupled
grains. For the present calculation we shall assume that the local critical current density
follows the expressions given below as a function of H and T. These equations are very similar

to equations (39-44) used for the calculation of the hysteresis cycle. For the sake of simplicity,

we shall only use here the short range current term J
= J~~ instead of J

= J~~ + Jj~ in equation
(43). The numerical calculation is based on the following equations (56, 57) the derivation of

which will be reported elsewhere :

J(T, b)
=

Jo(I T/T~)~ exp(
~

exp(
~

,~° ~°~~~
(54)

Bo(T)
=

II (T/T~)~]

We recall that b is the local magnetic induction and that the apparent field seen by the vortices

at the surface is given (for a long cylinder) not by h(t) alone but by :

h~~~(T, ti
=

h(ti + 4 wM~~(T, h (tit (551

,

4 ~°
jM + (h ) + M' (h ii

~ ~~
~~~~~ wh(

o
h~

,,

4 ~°
jM + (h ) M (h ii dh ~~~~X (

~

Equations (56) and (57) were derived assuming that the lock-in amplifier is programmed in

the narrow band mode, hence detecting only the fundamental frequency of the signal. The

functional forms (or the mathematical equations) of the magnetizations M~~ (the virgin

branch), M~j (the reversal branch) M+ and M~ (the cyclic branches), which are calculated in

reference [77] for the whole hysteresis cycle, depend on the relative value of ho with respect to

the full pendtration depth field H~ (defined in Fig. 2).
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It can be seen from the various equations of reference [77] and from equation (57) that

x" is related to some spatio-temporal average of the critical current density and gives
information on such a quantity (see below). This is because x " is proportional to the total area

of the hysteresis cycle induced by the applied oscillating field ho sin wt, divided by
4 h(. However, as already noticed the relationship between x" and J is in fact very complex
and these information are only qualitative and often restricted to a very small region of the T-

H plane (in particular for single crystals). The examination of equation (56) shows that the in-

phase susceptibility x'does not exactly represent the average slope of the (M+ +M~)/2

curve but our numerical calculations show that the difference is generally rather small (as
illustrated in Fig. 57). The small anomaly of x' in figure 57 is perhaps associated with the

sharp peak in the corresponding hysteresis loop and to the absence of smoothing effects due

to a demagnetizing field.

12.2.3 Evolution of the calculated x'(T) and x"(T) of single crystals with the amplitude
ho of the applied field; the physical meaning of the maximum in X"(T). Shown in

figure 59a, b, c are the calculated susceptibilities X'(T) and X"(T) curves for various

amplitudes ho. The same calculation has been repeated for three different exponents n

(n =1/2, and 3/2) entering equation (54) which defines the J versus T function (the

exponent m controlling Bo being kept constant and equal to 2.2 as in the calculation of the

hysteresis cycles). The values of the other parameters (Jo, Ao,...) are given in the figure
caption and are roughly the same as for the corresponding hysteresis cycles of section 8. At

first, it is clear that the calculated curves resemble strongly the experimental ones except that

the peak of X" is somewhat sharper and the transition region (x'(T) curve) narrower here

than in the experimental case, in particular for large radii. This however depends on the value

of the exponent n. Note also that the fields are larger in our calculations. It is seen that at very
low amplitude ho and for n =

1/2 the amplitude x~~~ (T~ ) of the peak is almost independent of

ho. On the other hand, it varies rather rapidly with ho for n =

I and n =

3/2. This reflects the

fact that the slope of J(T) at T
=

T~, as given by equation (54), is infinite in the first case but

zero in the last one. Obviously the value n =

I corresponds to intermediate behaviour. These

points will be considered later where we shall see that for fine grained samples such that

R/Ao~ I (we recall that Ao is the London depth at T= 0) most of the broadening of

x' reflects the temperature variation of the penetration depth A whereas for large samples
(R/A oh I, Ao

=
A (T

=

0)) this effect is negligible and most of the broadening in these

quantities is in general related to demagnetization effects and eventually to inhomogeneities
in T~ ( * *). Shown in figure 60 is the factor (h~~~ H~ (hoi )/H~ (ho ) where the effective field is

defined by equation (55) and where H~(ho) is the field of complete penetration of the

magnetic flux down to the centre of the sample assumed to be a long cyclinder with N
m

0, We

wish to make two important remarks.

Ii Since our calculation shows that the factor h~~i-H~(ho) crosses zero at T
=

T~ this

means that the maximum in x" occurs just when the first vortices arrive at the centre of the

specimen upon heating the sample. In other terms, as T increases the flux front (which is

generally very close to the surface at low temperature) moves towards the centre r =

0 at

which we have H~(ho)
= h~~~ =

ho + 4 w.M~~ (hoi. It is striking to find that this result is

(**) It is to be recalled that in the numerical calculations carried out in this paper we assumed that A

was independent of B. In reality, A varies as I BIB ~~)~
~'~ (Sect. § 2.4). Then, for very fine grains this

may lead to a broadening of the superconducting transition because of the factor A/r~ which controls M

in this T-H domain.
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Fig. 59. Calculated susceptibilities x'(ll~ and x"(ll~ for the indicated field amplitudes ho (varying
from 3 m to about 2 km) and for three distinct J(7~ laws, differing by the exponent n entering
equation (54), a) n =

1/2, R
=

100
~L, b) n =

I, R
=

10
~L, and c) n =

3/2, R
=

10
~L,

Jo
=

2 x 10~ A/cm~, Ao
=

0.5
~L, Bo

=

2 x 10~ G in all cases.

almost independent of the exponent n in equation (54) as well as of the exponential factor in

the same equation.
2) We can now easily interpret the line T~ (hoi in the T-H plane deduced experimentally

from the maximum x(~(T~, hoi of x ". It is indeed clear from the above discussion and from

figure 60 that this line is also defined by the implicit equation

h~~~ =
ho + 4

w
M~(ho)

=

H~(T~, hoi
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Since H~ depends on the dimension and the shape of the sample (see next sub-section) as well

as on the exact variation of the critical current density with T and H, it is obvious that this line

has no thing to do with the irreversibility line as has been often assumed in the literature on

HTSC. In fact, it is more correct to define the irreversibility line by the condition

x"
=

0 which implies J
=

0 at low frequencies of measurements.

12.2.4 Influence of the radius R of the single crystal on X'(T) and x"(T) curves : the

behaviour near the irreversibility line. Presented in figure 6 la, b, c are the evolutions of

x'(T ) and x "(T ) as a function of the radius R (R
=

1, 10, 100 and 500 ~m) of the crystal for

the same J(T) relationships as in the previous figure 59 (n
=

1/2, and 3/2). It is seen from

figure 61 that the dependence of the peak of x" on R is very weak especially for
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n =

3/2. For example in the case n =
I (and ho

=
40 G) we find that T~ varies only between

91.3 and 94.6 K when R increases from 1 ~ to 500 ~ (about 0.4 K per decade of RI. It is to be

stressed that the small shift of x(~ (T~) with R would be difficult to detect experimentally as

the J versus T relationship could be slightly different from one specimen to another because of

the possible differences in their microstructures and in the demagnetizing fields. Therefore,

the presence or the absence of any significant size effects in T~ has no evident implication
conceming the possible relationship between the apparent irreversibility line and Xlax(T~).
Moreover, since we have just seen that Xlax(T~) depends rather strongly on ho, we expect

that the position of the peak will be quite sensitive to demagnetizing effects which are very

difficult to correct for rigorously, particularly in the peak region of X" (see below).
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figure that this occurs at about T
=

T~.

A very subtle effect expected to arise near the irreversibility line is the following : in the

usual models for the calculation of the intragranular critical current density it is tacitly
assumed that the spatial distribution of the pinning barriers is homogeneous on some scale

probably smaller than A. This condition is always very difficult to satisfy very close to the

irreversibility line because in many experimental conditions there is a wide distribution in the

pinning energy. Then we expect that in these experimental conditions the number of effective

pinning centres (really contributing to the measured J~ decreases with increasing temperature
and tends to zero as one approaches the irreversibility line. It is then possible that very close

to this line the effective pinning barriers are so distant from each other that the current loops

can no longer be continuous on the scale of the sample. In other words, in this limit we expect

a granular-like behaviour for the critical current even for very good single crystals (the
granular-like behaviour also means that M;~ is no longer proportional to RI. This is a very
complicated percolation problem which would depend on the distribution of the pinning
barriers both in space and in energy (more on this question will be reported elsewhere).

12.2.5 The link benveen x"(T) and the intragranular critical current density, T
~

T
~.

In

this section we wish to search for a general relationship between x "(T) and the critical current

density J(T). For this purpose it is not interesting to compare the J versus T curve with the

x "(T) curve but rather with the product J(T) R/30 (by analogy with Bean's model). Here we

prefer the comparison between the «irreversible magnetization» ho x"(T, hoi (which

includes only measurable quantities) with the product «.J(T) R/30 where
«

is a fitting
parameter, This is done in figures 62 and 63 for three distinct J(T) laws differing by the
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exponent n in equation (54) : n =

1/2, n =

I and n =

3/2, We find that the best fit is achieved

by taking
« -

0.5 and assuming H
=

0 (I.e. for J
=

J(T, 0 ii.

The following remarks are of interest here.

(I) The proportionality factor « is found to depend only weakly on the parameters n, m

and R entering the various equations for the calculation of the susceptibility. Therefore, in the

simplest case the apparent current is given approximately by :

J~~~(T, Hoi
m

30 ho
~

~~~j/°~ (T
~

T~ (58a)

J~~~ (Ho, r m
R )

=

°'~°
(T « T~ ) (58b)

Rx " (HOI

Here T~ is the temperature of the peak of x ", Ho is a superimposed dc field whereas « and y

are numerical factors. It is to be stressed that the critical current density intervening in

equation (58a) doe8 not correspond to a fixed field and hence to a well defined critical state as

in the Bean formula and 18 averaged over the variable field h(t). A8 a consequence, the

critical current deduced from susceptibility measurements at a given temperature (larger than

T~) is expected to be a complicated function of ho. For this reason equation (58a) is valid only
sufficiently above the temperature T~. This is clearly reflected in figure 62 and more strikingly

in figure 63 which shows that for T slightly above T~ (the temperature of a given peak of the

figure defined by a fixed field ho of the same figure) the various branches of the curves

ho. x"(T, hoi which include only measurable quantities (left scale) coincide with the single

curve representing the function a.J(T, H
=

0 ) R/30 (fight scale).

(2) It is important to emphasize that despite the fact that the curves hoX"(T, hoi
correspond to various fields ho the best fit with the magnetic critical current J~ag is realized

when we assume H
=

0 (I,e. J~a~
=

J~a~(T, H
=

0 )). This is perhaps due to the fact that J

varies very rapidly with T in this high temperature domain. At much lower temperatures the
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Fig. 63. The same as figure 62 but the temperature scale is expanded close to T~.

maximum of the ho X " (T, ho ) curve is generally significantly below the a J (T, H
=

0 ) R/30

curve for all the cases considered here.

(3) From the examination of the envelope curve it is seen that it can be used to determine

the temperature dependence of J near T~ with a very high accuracy.

(4) It is also possible to perform the same calculation for X' and x" but with a dc-field
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Ho superimposed to the ac-field (H~~~= Ho +h(t)). Then the relationship between

X "(T) and the critical current density can be generalized to give the magnetic critical current

density at H
=

Ho, as is given in equation (58a). Moreover if H is high enough we can make J

vanishingly small and investigate the field and temperature dependences of the apparent
irreversibility line in the same way.

(5) In the opposite limit T « T~, the out of phase susceptibility is govemed by the critical

current density and the associated pinning bawlers at and near the surface of the specimen in a

thin shell of thickness (for Ho
=

0) :

[ho + 4 wM~~ (hoi
~ ~Ar

=

A +
,

(R » A,
o + 4 wM~~(ho) « H~, Ho

=
0) (59a)

~P

Ar
=

A +

~~° ~ ~
~

~~~~~~°~
~°~

R
,

(if Ho # 0)

P

In this case the relationship between X"(T) and the critical current density can be

generalized to give the magnetic critical current density near the surface and would be given
approximately by equation (58b). At this point it is to be emphasized that if Ho is not too large
compared to H~~ then Ho in equation (58b) should be replaced by the effective field given by

equation (55) for long cylinders.
We note that equation (59a) is equivalent to the condition T « T~ which is itself equivalent

to the condition h~ilH~
=

(ho + 4 wM~)/H~ « I as evidenced by figure 60 above. We also

recall that the effective field h(t) + 4 wM~~ seen by the vortices at the surface is equal to zero

as long as h(t) <H~~. Consequently, because of the smallness of Ar relatively to R the

information on J(T, Hi from x" is in this limit restricted to a surface region of depth
Ar and concem «

surface pinning
»

(Bean [72b]) if Ar « R. However, as we have already seen,

the Bean picture for ac-effects neglects the London-Abrikosov screening currents since

h(t) instead of h~~~(t) is used as well as the effect of the peak close to H~~ exhibited by the

hysteresis cycle reported in section 7 (as J is assumed independent of hoi. We recall that this

peak is also correlated with M~. Both effects can be safely neglected in the presence of a dc-

field Ho very large compared to H~~ or more correctly if (Ho ± hoi » H~~ everywhere in the

sample. In fact, from the above considerations we can see that for a cylindrical sample with

negligible surface imperfections and weak links (the existence of which could reduce the

effective field H~~) x" is rigorously equal to zero up to h~~i
=

H~~(T) and proportional to the

inverse of J averaged over the variable field above this value. For instance if Ho
=

0 we have :

with in rticular x" = 0 for how
H~~

since M~~ = - h/4 w in this

(6) ecause in
usual c-measurements

ho is as a rule very low, then T~ is
close to T~ so

that
J~ag is

generally extremely ypically,
single

crystals of YBaCUO (123), x " » 10~ ~ emu
cm~

~ G~ ' at ho

critical

urrent
ensity

is as low as IA cm~~, a alue to be

J = l~f A cm~~ enerally
deduced from other techniques (at

« T~).

12.2.6 Oher information that can be extracted from
curves

x'(T ). - In the previous sections,

we
have pointed out that x'(T) depends strongly on the amplitude ho of the ltemating

field

and to some extent on the effective size of the sample
(compare

x'
curves of Fig.
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spatial (physical or chemical) inhomogeneities and thus on any spatial distribution in the

transition temperature. The last two effects were ignored up to now. Because of these effects

it is very difficult in general to interpret X'(T) quantitatively and to characterize the material

from this curve alone.

Conceming demagnetizing effects it tums out that the situation is somewhat less

complicated in the following two limits (but see Sect. 16 for a more detailed discussion).

(I) The fractional volume V~ of superconducting material is sufficiently small so that both

Josephson coupling and multipolar coupling between grains are negligible. In this case one

has to a first approximation :

X'(T )
m

V
~

~~~~
(if rg » A, ho

~ H~~) (60a)

or

f(r/A )
x'(T)

m
V~ (if r~ « A, ho

~ H~~) (60b)

Note that we have neglected the influence of the demagnetizing factor N in the limit

r~ WA (Eq. (60b)). This will be justified later. The function f(r/A ) is in principle also

negligible in the limit r~ WA of equation (60a). We recall that this function has been

introduced before for the calculation of the hysteresis cycle and is defined whichever the value

of its argument r/A. It depends on the shape of the grains and can be estimated only if this

shape is known. This function is calculated in reference [77] in different approximations. It

can be neglected whenever the condition r~ » A (T) is satisfied (see Sect, 16 for the use of

experimental data to derive both N and V~).
(2) The second limit where demagnetizing effects can be estimated corresponds to a

fractional superconducting volume V~ close to one (highly compact pellets) in very low field.

It is to be stressed however that even in this case, there are physical situations where the

magnetic screening is very low (that is X'(T
m

0 ) very small) which can lead to the erronous

conclusion that V~ is small as well. Now, we wish to point out that in the later situation it is

possible to establish a qualitative criterion which could be of great help for the analysis of the

data and the characterization of the material.

12.2.7 Influence of the ratio A/r~ on X'(T) and on the width AT of the superconducting
transition. From the inspection of the preceding figures (corresponding to single crystals

and decoupled grains only) it is clear that most of the broadening of the X'(T) curves is

related to the size of the specimen via the factor A/r~. Therefore, the usual transition width

AT referred to in the literature as the point where the measured signal is reduced to half of its

maximum value is essentially related to the grain size and, to a lesser extent, to the

demagnetizing factor (see below). It is interesting to estimate qualitatively this width.

Let T' the temperature defining the transition width AT just invoked. Of course this

temperature is difficult to derive exactly. However, neglecting demagnetization effects for the

moment (see below) and any possible inhomogeneities (and hence possible distribution in

T~) it can be estimated qualitatively from the function f(r/A(T)) and the condition

f(r/A(T)) =1/2. We find that in the limit ho «H~~~ and R»Ao the temperature

T' is related to the ratio Ao/R (here Ao
=

A (T
=

0 ii and is of the order

T'm T~[I (aAo/R)~l"~ (fill

or

(aA~/R )~ IN

AT
=

T~ T
m

T~
1

~ ,

(R » A
o,

ho « H~~~) (62)
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Here a is a proportionality factor -4 for cyclindrical samples and m6 for spherical
samples. These qualitative equations were derived assuming BCS temperature variation for

A (T) and are not valid for small R/A ratio. Nevertheless they show that AT' increases

quadratically with the ratio Ao/R. Recall also that very close to H~~(T) A must be replaced by

the field dependent penetration depth A (I H/H~~)~ ~'~

12.2.8 Influence of demagnetization effects on the apparent transition width AT. To

interpret an ac-susceptibility measurement reliably it is necessary to estimate the influence of

the demagnetizing field. We feel that this is generally a formidable task which is made even

more complicated by anisotropy effects. In addition, contrary to the case of conventional

ferromagnets the demagnetizing effects depend here not only on the outer shape of the

specimen but they also depend explicitly on its dimensions. For instance, in the case of

spherical samples the influence of demagnetizing effects will vary with the radius R of the

sphere and will therefore be quite different for large single crystals and for finely dispersed
grains.

Here we wish to consider some limiting cases from a rather qualitative point of view.

. Case of decoupled grains bat such that r/Ao » I : Let us assume that the effective field

h~i~,~ (seen by the vortices at the surface of the specimen) is small compared to the full

penetration field H~ (it can be shown that this is approximately equivalent to the condition

(ho/(I N + 4 wM~(h~~i, ~)) « H~). It is then possible to estimate the demagnetizing field

over most of the X(T) curves. The principal arguments are as follows :

I) Firstly, as long as T is much lower than T~ the penetration distance Ar of magnetic flux

within the sample is small (Ar/R « I and AIR « I, Eq. (59a)). Tl1en the analogy with

conventional ferromagnetic materials is reasonably justified. Consequently, in this limit we

can correct for demagnetizing effects simply by replacing the applied field h(t) by the

effective field

h~~i
~

=
h~ + 4 wM~~(h~)

i~
=

h(t)/(I N

where N is the usual demagnetizing factor and h~ the associated demagnetizing field. We

recall that in the above equation the term 4 wM~ is induced by the London-Abrikosov

currents circulating in the penetration depth A. It is shown in section 16 that such a factor can

be determined from experiments in some conditions.

2) Secondly, for temperatures well above the temperature T~, in particular very close to

T~, the demagnetizing field h~ can be neglected compared to the applied field. This is because

the strength of h~ never exceeds 4 «NM (T, hoi
-

4 wNho X'(T, hoi and hence goes to zero

in the same way as x'(T, hoi when T tends to T~. The interesting point to be emphasized then

is that very close to the superconducting transition the shape of X'(T) curve is probably
independent (to a first approximation) of demagnetizing effects (I,e. once the condition

4 wN (X'(T, hoi « I is realized).

To illustrate the above points we compare in figure 64 the calculated diamagnetic re8ponses

x'(T, hoi of a cylindrical sample and a spherical sample respectively without correcting for

the demagnetizing field and neglecting the influence of the critical current density on

X'(T, ho ). As expected, we find that for R » A (T) the signal of the sphere is higher than that

of the cylinder by the correct factor I/(I N~~~)
=

3/2 (since N~~
=

1/3). However, it is also

found that this difference is reduced as the ratio AIR is increased. Qualitatively, the two

responses become comparable at about A(T)=pR/(I-N) with pm I to 2. Since

A (T) diverges as T approaches H~~(T) or T~, the condition (T)
m

2 RI ( I N ) can always

be realized above a certain temperature T". Since HTSC are frequently granular with grain
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Fig. 64. Calculated x' and x " (Per unit volume) of a spherical sample (empty triangles) and a cylinder

(full rectangles) as a function of temperature, in the London approximation and for four different grain

radii : R
=

1, 10, 100 and 500 ~. Note that the curves R
=

100 ~Lm (not labelled) and R
=

500 ~Lm

coincide at low temperatures.

radius comparable to Ao the condition T m T" can be satisfied over a significant temperature
interval. However for large samples and for large N this is achieved only very close to

T~. A more quantitative estimation of T" requires numerical calculations in this condition.

Tile situation can be considered in a different way as explained below in this case.

. Case of large single crystals : In the case of single crystals and very large grains the

influence of the demagnetizing field can be limited further by another factor when

how H~~, a situation always realized close enough to T~ :

Since very close to T~ the total magnetization is always dominated by the equilibrium term

(because J and hence M~~ go to zero rapidly there) and that the condition H~~m
4 w(M~ (hoi always holds for how H~~ the shape of the measured magnetization depends

essentially on the product [I f(r/A ii M~(ho) (that is the reduction of M~ due to A

effects). At this point it is important to keep in mind that as soon as how H~~ the function

M~ (ho) is no longer linear in ho which means that X'(T ) depends now on ho. This introduces a

third threshold temperature T"' related to H~~ by h~~,
~

=
H~~(T"'). Assuming a two fluid law

for the temperature variation of H~~ we obtain :

lh~ 1i4

~~ ~~
( l N ) H~~~

'

~ " ~ ~~~ ~~~~

Here H~ is the first critical field at T
=

0. For temperatures lower than T"' the effective field
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is given by the usual formula (55) but the demagnetizing field should become negligible at

temperatures higher than T"'.

12.3 AC-SUSCEPTIBILITY OF GRANULAR SUPERCONDUCTORS WITH WEAK JOSEPHSON COUP-

LING. The ac-susceptibility of weakly coupled and textured granular superconductors has

been the object of many theoretical and experimental investigations during the last few years.

Here we wish to calculate the ac-susceptibilities of weakly coupled Josephson grains in the

framework of the model used for the computation of the low-H hysteresis cycles in section I I

(Eq. (45)). This model assumes that the measured magnetization is the sum of four distinct

current contributions which are : the London-Abrikosov reversible currents, the Josephson
reversible current and the two irreversible magnetizations due to intergrain and intragrain

critical current densities (J~j and J respectively). Since in the case of granular materials the

intergranular current density J~j depends strongly on H, and as a consequence on the position

r inside the sample (see Sect. 6), this makes it more difficult to obtain a direct relationship

between x " and this critical current density than in the case of single crystals. However, one

of the most important results of the present model is to demonstrate that such a relation

readily exists and has approximately the same form (about the same dependence on R,

r~, A, Ho, ...) as that already deduced for the low H cycle (Eqs. (50, 52)) (this point will be

reconsidered later).

12.3.I Experimental x'(T) and x"(T) curves in granular superconductors. Typical
examples of experimental X'(T) and X"(T) curves of YBaCUO ceramics are presented in

figure 65 for different amplitudes ho of the altemating field [3761. The most characteristic

features of these curves can be summarized as follows :

Ii For very low ac-field (ho ml ~e typically) and for T«T~ the degree of magnetic
screening is essentially perfect (I.e. 4 wX'(T

m
0 )

m
I after correcting for the macroscopic

demagnetizing field). However, it is very important to recall that this property does not really
reflect the quality of the material but depends on the macroscopic radius R of the specimen

and holds only if the condition R/Aj » I (where Aj is the Josephson penetration depth, Eq.
(35)) is satisfied as discussed by Senoussi et al. in reference [299, 357]. Strictly speaking, this

means that in the limit where ho tends to zero (ho «H() it is always possible to achieve

perfect screening provided that the radius of the pellet is sufficiently large, even when the

fractional volume V~ of superconducting material is very low. In other terms, there is in

general no simple relationship between V~ and x'(T
m

0, how 0). As discussed in reference

[299, 357], the incomplete screening (in the limit ho « H~) is related to some phenomenologi-

cal penetration depth A~,~ii which depends on the microstructure of the surface of the

specimen (A~,~i~m Aj for very fine grains). According to [357], for large samples one has

x'(T
m

0, ho
m

0)
-

[ho/(I N )](I A~~/R) where N is the macroscopic demagnetizing
factor (compare with Eq. (60a)). However this point certainly requires more detailed

investigation than done in reference [299, 357].
2) As the temperature is further increased X'(T) stays almost constant over a large

temperature domain and then exhibits a step like increase at some temperature which we call

T~j by analogy with the characteristic field H( of the low-H cycle reported in sections 8 and

11. The temperature T~j represents some average value of the temperature of Josephson
decoupling between grains at the field ho (note that the smaller ho the larger T~i).

3) The width AT of the superconducting transition increases with h~ as in the case of single
crystals (Fig. 58).

4) X"(T) exhibits a pronounced peak at approximately the same temperature T~i as the

jump in X'(T).
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Fig. 65. -Typical experimental examples illustrating the temperature variation of the ac-suscepti-
bilities x' (in phase component) and x" (out of phase component) of sintered YBa2Cu~07 samples at

the indicated amplitudes ho of the altemating field [375].

5) The temperature T~ of this peak decreases while its width increases upon increasing

ho.
6) We shall see later that this width also increases as the inverse I/r~ of the grain radius.

7) More interestingly, we shall also see that for very low field ho, the sharpness of the peak
increases considerably with the average radius r~ of the grains.

8) A further important result that will be discussed too concems the fact that the amplitude
X"(T~) of the peak is related to the intergrain critical current density by the scaling function

f(r/A ) introduced before and used for the calculation of the hysteresis cycle (Sect. II and

Refs. [77, 104]).

12.3.2 A model for the calculation of the ac-susceptibility of weakly coupled granular
superconductors. We have computed the ac-susceptibilities X' and x " of granular materials

taking into account both intra- and inter-granular currents as written in equation (45). The

calculation is based on the integral equations (56, 57) in which the magnetization
M+ and M~ are the same as those used for the low-H hysteresis cycle [77, 104]. In addition,

we neglect frequency effects (for the moment) and assume now that the local intergranular
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current density varies as

J~i(T, b)
=

Jo(I T/T~)~ exp[- b/Bo(T)], Bo(T)
=

Boll (T/T~)~ ]. (64)

Here, h~i~ is given by formula (55) in which M~~ is replaced by the Josephson equilibrium
magnetization M~j,

~~
(defined in Ref. [77]) whereas Bo is assumed to be given by equation

(47). In all the numerical applications reported here we took Jo
=

2x10~A/cm~ and

m =

2.2 (as in the preceding examples of the low-H hysteresis cycles in Sect, iii- These

formulae are rather phenomenological but this is not a limitation since, according to the

literature, intergranular currents of sintered superconductors exhibit various kinds of

behaviours as a function of H and T depending on their microstructures. For the sake of

simplicity we shall neglect here the intragrain bulk currents J and keep only the reversible

London-currents circulating around the individual grains. These questions will be investigated
in more detail elsewhere.
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Fig. 66a, b. -Calculated x' and x" of a polycrystalline material at the indicated values of n,

r~ and the amplitudes ho of tile altemating field. R
=

I mm in both cases.

12.3.3 Behaviour of the calculated x'(T) and x"(T) as a Jknction of ho for polycrystalline
superconductors. Figures 66a, b shows the evolution of the calculated x' and x" for

different amplitudes ho of the altemating field (varying from 0.2 to 35 G). The comparison
with experimental curves shows that even though the results depend on the exact variation of

J with T via the exponent n (Eq. (66)) the agreement with experiments is good.
Shown in figure 67 is the function abs (ho + 4 wM~ (hoi H~)/ho where H~ is the threshold

field at which magnetic flux just penetrates at the centre of the specimen (see Fig. 2 and

Sect. 6 for more precision on H~). It is found that, to a very good approximation, this factor

goes to zero at the temperature T~ of the peak of x". We have tested that this behaviour is

obtained for other values of R, r~ and for different J~,(T) relationships differing by the

exponent n entering equation (64) (n
=

1/2, and 3/2). We recall that the same result was

obtained for intragranular currents in single crystals and decoupled grains (Figs. 58, 59).
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here.

12.3.4 Evolution of the calculated x' and x " with the macroscopic radius R of the granular
sample. Shown in figure 68 is the evolution of calculated X'(T) and X"(T) with the

macroscopic radius R of the granular sample over the range (R
=

lo ~ to I cm). The average

radius of the grains is assumed to be the same (r~
=

5 ~m) for the three examples. As in the

case of the low-H hysteresis cycle the effect of R on the calculated curves is rather small. We

observe that as for single crystals (see Fig. fill the effect of R on the shift of the temperature
T~ of the maximum of x " is rather small. Note that the numerical calculation was carried out

point by point using equations (56), (57) together with the analytical expressions of

M+ and M~ given in [77].



N° 7 REVIEW OF THE CRITICAL CURRENT DENSITIES 1177

o.05

n =
., ~~0.04 r~= 5 p

j
~

= ~8

E 0. 0 3
,.1

_,

,

) 0.02 '° ,'",'
o~ .,

~'
0 0

R= 1o~2c~ "°....
:

~4 ;. j;,,,
>;

0
"'~~~

-0.01

65 70 75 80 85 90 95 .0 10~

o

~°.2
r~=5p, h~=lie,n=I

§
-o 4 R=10~~,10~',1cm ."

q ;

~ ,i'j -o.6
~~~,,'i'

S~ -o .o '""'
"'

.'

-1.2

65 70 75 80 85 T(() 0 10~

Fig. 68. Compares the influence of the macroscopic radius R of the specimen on the calculated

x'(ll~ and x "(ll~ for R varying from 100
~L to I cm and for r~ =

5
~L
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I. The other parameters are

the same as in figure 67.

12.3.5 Variation of x' and x " as a Jknction of the radius r~ of the grains. The influence of

r~, the average radius of the grains, on x'(T) and x "(T) curves is illustrated in figure 69. The

effect of r~ is rather complex in general because it enters into the intergrain currents (at

H
~

H~) and in the reversible London magnetization (at higher Hi, but with very different

dependences.
Tuming back to the previous figures the most striking result is probably the evolution of the
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1.

peak of X" with the grain dimensions : it becomes very sharp for very large grains

(r~ WA ) and for very low values of ho. The second interesting result connected with

r~ concems the broadening of the superconducting transition (as measured by X'l with

decreasing r~.

12.3.6 Why the peak of X " does become so sharp as r~ is increased. Let us again consider

figures 66 and 69 and study the evolution of the peak of x " as a function of r~. We know from

the preceding discussions that x " is proportional to the total area of the low-H hysteresis cycle

which is itself proportional to the effective (transverse) surface S~j occupied by the whole

weak link network. We have also seen in sections 8 and 11 that for large grains

(r~ WA ) this surface is of the order of S~jm [2 A(7~/r~ls~ where S~ is the macroscopic

transverse area of the sample (see Fig. 33). Then, we can consider two limiting behaviours as

a function of r~. On the one hand, for very large grains the relative surface occupied by the

weak link network is negligible, that is the ratio (S~/S~)
m

(2 A (7~ + d )/r~ is negligible at low
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temperature (we recall that d is the physical thickness of the junction where the order

parameter is about zero and is generally negligible compared to the electromagnetic thickness

2 Al. However, this is only valid far enough below T~ since A(T, B) tends to diverge at

H~~ and T~ so that the whole surface of the sample will be unavoidably covered by the weak

link network (in other words S~/S~
-

Ii- This leads to a sharp change in X "(T~ and thus to a

sharp peak in this function if ho is sufficiently low (see below why). On the other hand, when

the number of weak links is very large (or equivalently when the ratio 2 A /r~ is already large at

low T, of the order of one) the relative change in the total area covered by the weak link

network will be small when T approaches T~ (since it cannot exceed S~ anyway) and as a

consequence the peak in X"(T~ which reflects this change would be not very sharp.
Conceming the influence of the amplitude ho of the altemating field on the sharpness of

the peak, it is obvious that the above arguments which are based on the divergence of A(T, B)

will stay valid only if the temperature T~ of the sharp peak of X" occurs in a temperature

region close enough to T~ where A(T, B) increases rapidly. This implies that ho must be very

small since we know that T~ decreases rapidly with ho (see Figs. 65, 66) and becomes zero for

ho larger than the Josephson decoupling field H(.

From the examination of the X'(T~ curves (Fig. 66) we also see that the width

AT of the superconducting transition is considerably enlarged as r~ is decreased. This is

consistent with the case of single crystals and decoupled grains (Fig. 52) and has the same

physical origin since it happens above the Josephson decoupling temperature T~j. In addition,

in agreement with experimental results we find that at very low T and H the magnetic
screening is quasi-perfect. As for the low-H hysteresis cycle (Figs. 32, 37) the stepe like

change in the X'(T~ curves reflects the transition (as T is increased) from a regime where this

function is to a large extent govemed by intergrain currents circulating around the whole

sample (ho
~

H~) towards a regime where the grains cease to be coupled through Josephson

junctions (ho
~

H~).

12.3.7 The relationship benveen x "(Tl, the intergranular critical current density and the micro

and macro structures. We wish now to concentrate on the relationship between

x"(T~ and the apparent intergrain critical current density. First, we recall again that the

apparent critical current density J~j,~a~ reflects some space-time average of the critical

currents induced by the time varying field h(t)
=

ho. sin wt. For this reason the situation is

expected to be extremely complicated here. Firstly, we know that the local current

J~j(h) varies strongly with the field h(t). As we have seen this invalidates the Bean model if

R/Ro~l where Ro is the characteristic field defined by equation (16) of equation (6).
Secondly, at a given fixed h(t) (or at a given instant t) the direction of the current within the

sample changes from positive to negative and vice versa (or from clockwise to anticlockwise

direction). In particular, we know from the study of the hysteresis loops (Section I Ii that if

the maximum applied field (equal to the amplitude ho here) is smaller than the full

penetration field H~ (ho w H~ see for instance Eqs. (6) and (8) of Ref. [77al and the coming
Sect,14 on anisotropy) the sample is always in the reversal magnetic state defined for

example in figure 3 by M(h(t))
=

M ~j(h(t)) of equation 24 of reference [77al. We recall that

the term «
reversal

»
refers to the portion of the retuming branch of the hysteresis cycle with

clockwise and anticlockwise currents within the sample (Fig. 3).
The examination of formulae (50) and (52) connecting the irreversible magnetization

(M+ -M~)/2 of the low-H cycle and the apparent magnetic critical current density
J~,,

~a~
suggests that the relationship relating this current and x" should be of the same form

but with (M+ -M~)/2 replaced by the irreversible magnetization defined by ho.X". In

addition, since in the reversal region of the cycle the sign of the local current J~j(h(t), r) varies
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with r we expect that the numerical factor entering formulae (50) and (52) should actually be

higher than 30. Figure 70 shows the irreversible magnetization x"(T~ ho (left scale) together
with the product pR II f(r/A)lJ~j,~a/T,h= 0)/30 (right scale) for three different

J~j(T~ relationships n =
1/2, 1, 3/2 in equation (64). Here, the function f(r/A) is again the

one used for the calculation of the low-H cycle [77b] whereas p is a numerical factor of the

order of one. The most remarkable result of figure 70 is that, after taking into account of the

scaling factor p (I f(r IA )), the envelope curve passing through the peak of ho X "(Tl is, to

a very good approximation, the same as that defined above from the magnetic current

J~j, ~a~(T~ curve at zero applied field (h
=

0).

Therefore, in all the above cases we find that the relationship between J~i,~a~ and

ho x "(Tl is the same (within a numerical normalization factor) as equation (50) (for the low-H

hysteresis cycle). The proportionality factor p is found to be approximately constant within a

few percent. We have tested that this factor depends only weakly on the other parameters

r~, R, Jo, Ho.
In summary, we can write the following relationship between J~j

~a~
and X"(T~) :

~~' ~~~~~ ~~ ~~
pR

l~~ ~~~~j~T~)) ~~
~~ ~~~~ )p ~~~~~

with the ratio p/AP completely defined from the X'(T~ curve alone as shown in figure 71 and

as follows

p x "(Tm, ho
~

Ho
) x'(Tm, h0

~
H() x'(Tm, h0

~
H()

~~~~~

For large grains (such as r~ WA (T
=

T~) (see also Sect. ll) we can rewrite (65a) as :

~~~'~~~~~ ~~ ~~
R~2~~~i~/r~)

'
~~~ ~ ~~~~~~ ~~~~~

Note that the scaling factor is related to the jump width of the x'(T~ curve at

T
=

T~ as illustrated qualitatively in figure 71. This figure is analogous to figure 56 relating
the same factor to the low-H hysteresis cycle. However, it is to be recalled that in the

R l>Ro limit (where Ro is the characteristic radius defined by Eq. (16) the critical current

density deduced from the envelope curve and from equations (65) above is essentially
connected with the characteristic field Bo(7~ (Eq. (64)) controlling the field variation of

intergrain current. Therefore, like the current deduced from the low field hysteresis cycle (see
Eqs. (24b, 27b, 30a) of Sect. 6) the critical current deduced from the envelope curves of

figure 70a, b has little thing to do with the local current itself.

12.3.8 The connection benveen the maximum of X"(Tl and the full penetration field

H~(7~. Let us tum back to figures 67 and 70 where it is seen that the maxima in

x"(7~ occurs just at ho
=

H~, that is just when the flux front produced by the maximum

applied field h(t)
=

ho reaches the centre of the specimen. Since the amplitude Xlax
= X "(T~)

of the peak of X "(Tl is proportional to the critical current density J~j, ~a~(T, 0) at h
=

0 (see

envelope curves of Fig. 70), this implies that H~ is also proportional to J~j, ~a~(T, 0). This can

be easily justified from the comparison bet,veen the formulae (23b) and (24b) (Koppd model)

or (26b) and (27b) (exponential model) or (29b) and (30a) (Kim model) of section 6 ; in the

limit R » Ro. Let us indeed expand any of the formulae (23b) or (26b) or (29b) in Taylor
series and assume that R»Ro. For example, in this limit equation(26b) gives

H~
m

Ho. ln (R/R o). Comparing with formula (50) of section I I which g ves J~~~(T, 0) in the
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and the peak of x". This figure is the analogous of

figure 56 defining the same factor from the low-H hysteresis loop of granular samples.

same limit we find that the two quantities H~(Tl and J~i,~~~(T, 0) obey approximately the

same law as a function of R, Jo and Ho. Again, this confirms that the occurrence of the peak of

x" has little connection with the irreversibility line, but depends primarily on Bo and

R/Ro.

12.4 INFLUENCE OF ANISOTROPY ON THE MAGNETIZATION OF POLYCRISTALLINE MA-

TERIALs. Up to now we ignored the influence of anisotropy on the ac-susceptibility.
Conceming single crystals this question will be treated in section14. This paragraph is

devoted to polycrystals. We would like to emphasize that the influence of anisotropy on

polycrystalline or granular materials is always important when the inequality r~ ~
A(B, Tl is

fulfilled. This is particularly true close enough to T~ or to H~~ since A (B, Tl diverges in these

limits. This leads to a further source of broadening of the superconducting transition.

The problem has first been investigated by Kogan and Clem [621 who considered a

polycrystal formed of randomly oriented anisotropic grains. They showed that each grain
(whose c-axis is not parallel to the field) has a transverse magnetic component (AM~ ).
However, when averaged over the macroscopic sample the transverse magnetization
vanishes. For large grains (r~ » A(H, 7~) this makes no significant difference with respect to

the isotropic case in the Meissner domain (H~H~~). However, for large anisotropy

(m~ » m~~) and large A (limit A (H, Tl » r ~) the magnetization is distributed almost uniformly
within a solid angle 2 w and it is only 1/3 (in the longitudinal direction) of that of a collection

of isotropic spheres. Another important limit investigated by Kogan and Clem is the

behaviour of the reversible magnetization in the mixed state at H » H~~. Here, it tums out

that the reduction in M~~~ of a polycrystal is always important (I.e. even when r~ ~
A (H, Tll.

In particular, this situation deserves more attention near H~~. The reason is that when H is
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increased the grains whose c-axes are nearest to the direction of the applied field are the rust

to undergo a transition to the normal state (this is because in the London approximation

H~~ = H~~(@ =

0)[cos~
+ (m~jm~) sin~ @]~~'~ where e is the angle between the effective

applied field and the c-axis). One direct consequence of this is that, contrary to the isotropic
materials where the slope dM~~~/dH is constant near H~~, this slope vanishes here. This means

that x' as well as x~i~ and xi~ are equal to zero (at H just below H~~) rather than to

(f/A )~/(8 «pi (p
=

1,16 for a triangular FLL) as it is the case for isotropic materials in the

London limit. Of course all of these anisotropic effects lead to further smearing of the

superconducting transition.

12.5 FIELD cooLED AND zERo FIELD cooLED SUSCEPTIBILITIES. At present, it is well

established that both single crystals and sintered granular pellets of the new high

T~ materials exhibit rattler reduced expulsion of magnetic flux as the sample is cooled in an

extemal field (H~~~i) through the superconducting transition.

The field cooled magnetization and the associated susceptibility xi~ have often been used to

estimate quantitatively the fractional superconducting volume (V~) which is thought to be of

the order of 4 wxi~. However, it tums out that the smallness of the Meissner signal might
have two different and opposite origins :

(ii At first, a poor Meissner effect could readily indicate that the proportion of

superconducting material is small. However, despite the case of x' measurements discussed

above, there is no reliable relationship between xi~ and the fractional superconducting
volume V~.

(iii Secondly and perhaps more importantly, a large departure from perfect Meissner effect

could also imply that the critical current density of the material is high. In other words, it

might mean that the pinnig forces acting on the vortex lines are exceptionnally large so that

the superconducting material is not able to expell the magnetic flux introduced at higher

temperatures : from this point of view it is expected that the higher the irreversibility line in

the T-H diagram the lower the absolute value of xi~. In fact, H~~i xi~(H~~i) is approximately
equal to the value of the equilibrium magnetization M~(T;~(H~~~i)) just at the point where the

irreversibility line is crossed during the field cooling process, assuming extremely rapid
cooling through this line. The departure from this value of M~~ decreases with the size of the

sample as sketched in section 4 (Fig, 13). It is then obvious that in this case the smallness of

the Meissner signal has nothing to do with the actual superconducting volume of the material

but reflects the apparent irreversibility line and to some extent the characteristic dimension of

the specimen as well (see 12.2.3 and 12.2.4).
It is now interesting to add that the field cooled susceptibility xi~ =

MijH~~~i, the zero field

cooled susceptibility x~i~ =
M~ijH~~~i as well as the remanent susceptibility x~ =

M/H~~~i are

not independent but indeed related by a remarkable relationship discussed below (recall that

M~ is obtained after field cooling and then immediately withdrawing the cooling field). It is

striking that this property relating the three susceptibilities above is also exhibited by
ferromagnetic-spin-glass alloys (also called reentrant-spin-glass-magnets) as established by
Senoussi [3831 and Senoussi and Oner [384]. This relationship (represented by the

experimental diagram of figure 73a [378, 382, 3861) can be understood as follows : since the

local magnetic induction B(r) is equal to the vortex density, then the statement that the

pinning forces (acting on the vortex structure) are very high means that B(r) (and hence the

total number of vortex lines inside the sample) will stay approximately constant after

removing the cooling field H~~i assumed to be much lower than the penetration field

H~. We recall that the conditions H~~~i « H~ and Ar « R are equivalent (Ar
m

H~~i/H~)/R and

are more easily satisfied for large critical currents. For the following discussion it is however
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important to emphasize that the condition B(r)
=

Cst is not true within the region of depth
Ar related to H~~~i and to J by equation (59) (see Fig. 13 for a qualitative illustration of this).
Therefore, we expect that in this limit (in particular for Ar « RI the total induction will stay

constant as the cooling field is removed, except within the thickness hr. This is exactly what is

observed for small cooling fields for both sintered materials (see Fig. 72 from [380]) and single
crystals [382]. Applying the above considerations (I.e. B remains constant inside the sample)
to the two limiting cases H

=
H~~~j and H

=

0 (H
=

0 means that H~~j is removed) and using
the usual Gauss equation (B =H+4 «Ml which relates these magnetic vectors in any
condition, we obtain :

Bfc(Hcooll
~

Bfc(01
~ HCODI + 4 "Mfc(Hcooll

~

0 + 4 "Mr (66aj

Moreover, in the field region where M~~~(H) is linear in H and assuming perfect screening
(I.e. Ar « RI we get H~~j

=
M~~jx~~~ and 4 w x~~~ =

1. Putting in the above equation gives
the experimentally verified relationships :

Mic(H~~~~) =

~Zfc(Hcool)

4 "Xzfc(H~~~~j
+ ~r

~
Mzfc(Hcooil + M

=

M
~ r

Mzfc (66bj
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Fig. 72. Displays several low field M(H) curves plotted after the sample had been cooled through

T~ in the indicated fields (from Oussena thesis [380J). The inset shows the variation of the remanent

magnetization (obtained after suppressing the cooling field) as a function of H~~~i.
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It is to be recalled that the assumption that B remains constant in fc experiments should be

valid only for large samples, for negligible relaxation effects and for J not significantly
dependent on H.

12.5. I The connection with usual spin- glasses and reentrant magnets. Magnetic irreversibili-

ties and the associated after-effects which characterize high T~ ceramics have been often

interpreted within the framework of a spin-glass formalism based on the Josephson
Hamiltonian (see for instance discussion in Ref. [13]). At this point, we emphasize that this

formalism has nothing to do with the
« vortex glass

» concept introduced in the collective

pinning theory and which will be discussed briefly in sections13 and 17.

It has been shown by Senoussi et al. [383-384] that ferromagnetic-spin-glass materials obey
exactly the same relationship as equation (66b) above which, in algebraic terms, reads :

Mll
=

Mltc(Hcooi) + Ml~ (66c)

This is shown in figure 73b. Formally, the physical origins of the two equations (66b) and

(66c) are very much the same and can be understood as follows :

(I) On the one hand the vortices created in the reversible region of the T-H phase diagram

are quenched-in by the pinning forces produced during cooling through the crossover

irreversibility line of that diagram. As we have already noted this line delimitates also the H-T

area where the bulk critical current density is not zero.

(ii) On the other hand, the domains in a ferro-spin-glass reentrant magnet existing
initially in the ferromagnetic reversible phase are quenched-in along their initial directions

[383] by the strong unidirectional Dzyaloshinsky-Morya anisotropy (pinning-like) forces

created during cooling through the ferromagnetic spin-glass transition (or the Almeida-

Thouless irreversibility line). Moreover, we know that in both cases the irreversible (I.e. the

non-equilibrium) magnetizations vary with time following a logarithmic law, to a first

approximation. This shows that the similarities between the above relationships (66b and 66c)
hold as a function of time as well. Nevertheless, we conclude from the present discussion and

from earlier data [13] that despite the strong analogy with conventional ferro-spin glasses the

observed superconducting irreversibilities can be explained very simply in the framework of

the critical state picture and the related flux creep mechanism.

The spin glass-like picture would be more appropriate only in the limit where the

dimensions of the grains composing the ceramic material are small compared both with the

London penetration depth A and the Josephson penetration depth Aj characterising the

junctions between adjacent grains (such conditions are in fact generally assumed in these

models). In addition, to resolve theoretically the very complex Josephson Hamiltonian of a

junction network it is generally assumed that the distance d between neighbouring grains is

much larger than their diameters 2 R (see Fig. 33c). The latter condition is equivalent to the

condition that the packing factor V~ of superconducting matter is very small (V~ « I).
At first sight there seems to be not much difference between the spin-glass and the critical

state approaches. However, we believe that for currently investigated ceramics the critical

state picture is not only much simpler to handle than the spin-glass one but it is also much

more reliable for quantitative analysis. Finally, the discussion confirms that the Meissner

effect (connected with MiJ considered alone has not much meaning in the irreversible region
of the T-H plane. Though not always easy to interpret too (see previous discussions of this

section), the zero field cooled magnetization is a good probe for characterizing the material

and determining the fractional superconducting volume.

12.6 FREQUENCY AND VISCOSITY EFFECTS. In the previous sections we ignored frequency
effects particularly conceming the position T~ of the peak of x " which is generally found to
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Fig. 73. The upper figure compares zero field cooled, field cooled susceptibilities and remanent

magnetizations in HTSC [382]. Lower figure, the same in a reentrant-spin-glass [383, 384] for two

different shapes of the Nimn-S.G. sample : a needle and a sphere (inset). It is indeed found that for spin

glasses the general curve shapes depend strongly on the shape of the sample as well as on the material

itself but equation (66b) relating Xfc, Xzfc and M~ is conserved.

depend experimentally on frequency [84-95, 385-388] (see also next section). A second aspect
also completely neglected in the preceding sections (for the sake of simplicity) concems the

usual viscous flux flow (particularly important in the mixed state) which by itself can give rise

to a large frequency dependence and eventually to a maximum in the experimental
X"(n 1393], when the skin depth 8~fw, T, H), which increases with T becomes comparable

to the radius of the sample. This has the same physical origin as the flux flow resistivity and is

connected with the normal current density J~ of the normal electrons in the cores of the

vortices (see subsection 5. I). Viscous flow and flux creep relaxation phenomena are generally

present at the same time in experimental data. In some frequency regions, as in the TAFF

limit and close to the depinuing line, the interplay between the two is very severe. These

effects have been discussed in section 5 and further information is available in the literature

[390-395].
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From the many measurements reported in the literature it appears that frequency effects

are radically different in single crystals and decoupled grains on the one hand and in sintered

granular materials (but for H
~

H( in this case) on the other hand. In other words, frequency
effects are very different for intergranular and intragranular currents. As discussed in

section 5 we believe that this is because the usual flux creep picture conceming relaxation

effects is generally not valid in the case of intergranular currents. More arguments supporting
this will be given later (subsection12.7).

12.6.I Frequency ej$ects in single crystals and decoupled grains in the Meissner state,

ho
~ H~~. Let us rust consider the Meissner state at ho

~ H~~ and zfc state (with no vortices

in the sample and thus no critical current ; J
=

0). It is interesting to recall that in the limit

h(t) w H~~ and in the presence of an applied altemating field of frequency v =

w/2
ar the total

current includes in principle three contributions J~, J~ and J~ corresponding respectively to the

superconducting electrons (Cooper pairs), the normal electrons (depaired by thermal

fluctuations for T~0) and the displacement current. According to London [396] the

contributions of these currents (ho
~ H~~) are in the proportion :

[)J~) (Jn) (Jd)1~ W1~ ~~

~

~ ~
,

(67)~~
~

~~
~

where
«

is the normal state conductivity and c is the velocity of light (Gauss units). Also

according to London [396], this defines a threshold frequency vo =
I/«A ~ which is of the

order of vo
~w10'~ Hz for conventional superconductors. Conceming the physical meaning of

vo we note that it is the frequency value at which the usual normal state skin depth

8~ is exactly equal to A. Since the conductivity of the new high T~ materials is rather low, one

expects v~ to be very large for these compounds as well. Therefore, in usual susceptibility

measurements considered here the frequency vo is probably so large that the signal is

dominated by the reversible supercurrents at least before the nucleation of any quantized

vortex (H w H~~). In addition, in real experiments surface imperfections which are unavoid-

able are thought to give significant frequency dependent hysteresis whichever the applied
field (see Sect. 16). Further frequency effects appear in the mixed state because of the extra

normal current introduced by the cores of moving vortices and because of flux creep (in the

presence of pinning defects). Finally, it is to be noted that the displacement current is

certainly always negligible in susceptibility measurements. However, it might be easier to

encounter in HTSC than in conventional superconductors, at least for H parallel to the a-b

planes because of the possible capacitance effect of the a-b sheets. Also, we feel that this

current is connected with the inertial mass of the vortices and it seems that in usual magnetic

measurements vortices behave like massless particles.

12.6.2 Frequency effects in single crystals and decoupled grains in the mixed state,

Ho
~ H~~. It was first shown by de Gennes and Matricon [l19] that the response of the

vortex lattice to a time varying field h(t) in the mixed state (H m H
~~)

is dominated by thermal

activated depinning at low frequencies and by viscosity effects above a depinning frequency

v~. Accordingly, below this depinning frequency the system would be better described by the

flux creep theory. Intuitively, above v~ the energy losses are mainly induced by the usual

viscous forces (flux flow) acting against the normal electrons of the vortex cores (I.e. by the

scattering of these electrons by all kinds of defects). Recall that this important question was

already discussed in section 4 in relation with the flux creep theory and with magnetic
relaxation measurements.

12.6.3 The influence of flux flow and the associated JFequency ej$ects. A more quantitative
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way to account for the viscous forces is to rewrite Maxwell's equation curl H
=

4 arJ/c in the

most general case and replace the critical current density J (associated with the usual pinning
forces) by the total current density

J~~~ =
J +J~ where J~ is the flux flow normal current

induced principally by the normal electrons of the vortex cores. This approach was applied by
Melville [397] who calculated the hysteresis losses in the limit where the viscous forces are

small compared with the usual pinning forces (or equivalently in the Iimit J»J~) and J

independent of the applied field (usual Bean's approximation). More recently, Tacacs and

G6m6ry [390] and Geshkenbein etal. [393] considered the opposite limit (J~ »Jl and

concluded that energy losses due to viscous forces are considerably higher in HTSC than in

classical superconductors. Naturally the influence of the normal current J~ always becomes

preponderant close enough to the irreversibility line when the critical current J
-

0. Viscous

effects are also treated extensively by Van den Berg et al. [388] and by Brandt [l10].

The maximum (at T
=

T~) as well as frequency and field dependences of the complex flux

flow susceptibility xi are discussed in detail in references [110, 390, 393]. From such studies it

is deduced that this maximum occurs when the
«

skin depth
»

8
=

(D/4 arv)1'2 (here D is the

diffusion coefficient of flux lines) is of the order of the sample dimension, that is for

8 =R. The maximum occurs because D and consequently 8 increases with T. As in our

preceding study the maximum occurs when 8 becomes comparable to the dimension of the

specimen. Below the fluw flow temperature maximum, T~, the energy losses per cycle are

approximately proportional to the skin depth 8 implying that they vary as
v~~'2 in the

corresponding T and H domains. At much higher temperature they would vary like

v
"( In terms of power dissipation (I.e. energy losses per second), the frequency terms must be

multiplied by
v

(I.e. replaced by v~"2 and v~~/2 respectively) for x". This is because

x" is given not per cycle but per second.

By combining the results of the above authors, in particular those of Tacacs and G6m6ry
[390], with our present analysis (see below for more details) and defining the depinning
frequency v~~~ by the condition J=J~, we propose the following relationship for this

frequency :

p~(n [J(T, ho, to) ]2 kT
"~~P grA p o

ho H~ (n
~ U/(T, lD

~~
~ ~~~P~ ~~~ ~~ ~~~~~~ ~~~~

where, po =
4 ar x 10~ ~ is the permeability of vacuum, A is a geometrical factor of the order

of one [390], p~ is the normal state resistivity extrapolated to the measurement temperature,
U? is the apparent pinning potential defined in sections 4.2 and 4.3, J is the critical current

density for measurements performed at T and ho and at some reference time to.
It is worth noticing that this formula can be generalized to take into account TAFF effects

as well as any static field Ho superimposed to the field ho sin (w t). This can be achieved simply
by equating equation (14g) giving the penetration depth in the critical state model with the

skin depth 8~ii or 8n depending on T and H. The result is straightforward :

P(T, H) lJ(~' H' ~°~l~
~

kT
in (~v

~
) (in SI units). (68b)~~~~

arA p o
h/ Ui(T, H) ~~

Here p = p~~ (Eq. (14e)) or p = p~ (Eq. (14f~) depending on T and H.

The following remarks are now of interest.

(I) Since in the flux flow regime we have pu = p~ H/H~~ = p~ ho/H~~ (if Ho
=

0) we easily

recover equation (68) from equation (68b) in which we replace p by p~ ho/H~~.
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(it) Because of the very rapid drop of J(n with Tin HTSC and because the quadratic form

of J in equations (68) and (68b) we expect that v~~~ will drop very rapidly with T as well,

particularly for Bi and Tl ceramics.

(iii) The above equation do not imply that v~~~ marks an abrupt change from the flux creep

to the flux flow or the TAFF regimes. It would correspond to a wide cross-over domain where

both phenomena are comparable in magnitude. Because of the logarithmic frequency
dependence in the creep regime the width of the cross over region would be imposed by the

power law variation of Xii or x[ff. Considering the FF regime, it can be shown that the

frequency dependence of the apparent normal current (I.e. J~ averaged over the whole

sample) and the associated xii depend on the value of ho compared to the full penetration field

H~. As a consequence, v~~~ would also depend on this condition. Since from the previous
studies we know that H~ increases with the radius R of the sample and decreases with T, this

implies that the exact equation defining v~~~ would depend on R and would be different for

T«T~ and T» T~ where T~ is again the temperature of the peak of the experimental
x". Equations (68 and 68b) were deduced under the assumption that J is independent of the

applied field and uniform within the sample (usual assumption of the Bean model). The last

condition implies that the reversal field domain of the hysteresis cycle is very small compared

to the whole cycle itself or equivalently the amplitude ho of the oscillating field is much larger
than the penetration field H~ or else the temperature T of measurements is well above

T~. We know from the preceding study of x"(n that this condition is realized only if

how H~ or equivalently if T» T~. However, these questions are not quite clear for us at

present and we feel that they need more experimental as well as theoretical considerations.

It is also interesting to address the problem of whether or not the frequency effects and

other formulae calculated in the flux flow limit [390, 393, 394] apply to intergranular currents

as they stand ? We believe that this is not the case because of the following arguments.
As far as flux flow effects are concemed, the upper critical field H~~ intervening in the

equations defining xii in various limits is introduced in these equations because the number of

conduction electrons carrying the normal current J~ is proportional to the volume of the core

of the vortex and hence to f2 related to H~~ by H~~ =
dSo/2 art( Of course, this condition does

not hold for intergrain vortices, especially for Josephson vortices which have no core at all and

a fortiori no defined core radius f. Nonetheless if one wants to use these equations for

granular samples we should replace the order parameter f by some appropriate Josephson

parameter fj. Likewise, one should also use the appropriate normal resistivity pj
~

of the

junction which is different from the measured resistivity, since the latter includes scattering of

the conduction electrons by intragrain defects (see Sect. 9).
Hereafter, we shall neglect viscosity effects and assume that the measuring frequency v

is

much lower than the depinning frequency v~~~ and ignore these effects in discussing the

frequency dependence of the ac-susceptibilities.

12.6.4 Frequency ej$ects in the approximation ofd Debye distribution for the relaxation times.

We have noted that x" is proportional to the area of the hysteresis cycle (generated by
h(t)) times the number these cycles are swept per second, that is times the frequency v. Then,

we know from figure 17 of section 5 that the area of the cycle depends on the time scale of the

experiment and thus on the measuring frequency
v,

For this reason we expect that

x" (or more correctly the complex susceptibility per cycle x"/v) as well as the temperature
T~ of its peak will increase with frequency. The question is then how to calculate

quantitatively such a frequency effect at fixed T and ho.
Before applying the critical state approach we have previously used to derive the hysteresis

cycle we now present two phenomenological models suggested independently by Nikolo and
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Goldfarb [86] and by Palstra et al. [87] to explain frequency effects in granular materials

(more quantitative models will be presented in the next section 13). Firstly, using flux creep

arguments, Nikolo and Goldfarb [86] suggested that the temperature T~ should be related to

the measurement frequency by a formula of the form :

Uo/k
~~'

ln (v~/v)
~~~~

where Uo is a field dependent value of the activation energy. From this equation the frequency

shift in the peak position T~ can be derived as : [a(I/T~)la In VI
=

k/Uo. On the other

hand, Palstra et al. [87] suggested that the complex ac-response is given by a Debye relaxation

approximation :

~~ x (o)
~~o~x = i + I w r

and concluded that a transition in x' accompanied by a peak in x" should occur if the

measuring frequency v couples to the dynamics of the vortex system at some resonance

frequency v~ such that v~ r =
I. Here, r would be some relaxation time of the vortex lattice.

After some mathematical transformations we indeed find that the temperature T~ of the peak

of x" deduced from these considerations is given by the same formula (69) as that proposed

by Nikolo and Goldfarb [86]. Almost the same analysis has been carried out in re-

ferences [378, 386].

As far as flux creep is concemed, it however seems to us that these formulae neglect two

important effects. The first one is the influence of the shape of the sample which comes into

play quite naturally if one accepts that X" is related to the area of the hysteresis cycle. We

have indeed seen that the peak in x " is related to the full penetration field H~ which increases

with R. Furthermore, we have seen that, even for a long cyclinder with negligible
demagnetizing factor N, the field seen by the vortex lattice is not the applied field

h(t) but more correctly the effective field h~~(t)
=

h(t) + 4 arM~~(h(t)). As a result for

single crystals with R»A (the London depth) this field is equal to zero up to

ho
" H~~ (T) and x " (T) is rigorously zero up to some temperature T"' (Eq. (63)) at which this

condition is just realized. Of course, we know that in real experiments x"(T) is never

rigorously equal to zero either because of the presence of some weak links at the surface of

the specimen or because of the existence of singular demagnetizing effects at the comers (or

any sharp feature) of the sample. However, these effects could be corrected for approximately

at least in the case of large single crystals and do not change the present qualitative
conclusions. See also sections 41 and 17.

12.6.5 Frequency ej$ects in the flux creep regime. To discuss frequency effects in

x "(T) it is in principle necessary to resolve the flux creep equation taking into account of the

various magnetizations (M~, M~~, M+, M~, M~j) describing the whole hysteresis cycle.

besides, since in some T-H regions J depends strongly on the field it is also recommended to

include this dependence. Formally, this can be done numerically at any temperature and field.

Lastly, for reliable comparison with experiments we should use the real pinning potential
U(r) and not necessarily the one which linearize the flux creep equations. In practice, there

are at least two difficulties to overcome in order to obtain quantitative data. The first

difficulty concems the fact that in the temperature region of most interest (particularly near

the peak of x ") we are most of the time in the field reversal condition (I.e. there exists in the

sample both clockwise and anti-clockwise circulating currents and M(t) =M~j(h(t)). In

principle, there is no reason that the reversal magnetization M~j(h(t)) exhibits the same
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relaxation as in the cyclic critical state defined by M+ (t) or M~(t). A second difficulty

concems the question of how to incorporate time effects explicitely in the magnetization
M(t) entering the calculation of the hysteresis cycle. On the one hand, this magnetization is

necessarily a periodic function of time. On the other hand, it must somehow incorporate
relaxation effects induced by flux creep : it is not clear how to account for this last effect. The

linear case is resolved in reference [388] but only in some limit and when the contribution of

M~, M~~ and M~j, are all negligible compared to those of M+ and M~ The latter

approximation amounts to assume that T » T~. For the general case, particularly for HTSC,

one of the difficulties comes from the fact that the flux creep equation (I I) which gives the

usual logarithmic relaxation : indeed, this equation includes the magnetization at some

starting time t
=

to (Mi~(T, H, to) ) which has no physical justification for periodic signals and

for general U(r) laws. This means that the distribution of currents within the sample at a given
field h(t) depends not only on the instantaneous value of this field but also on the whole

previous history during some correlation time r~(ho,
w

). From equations (12a-c) (especially
Eq. (12c)) of section 4.3 we suggest that r~= flay and that the time dependent

magnetization obtained from the flux creep model (Eq. (12)) transforms into the equation
below. According to section 4.3 as well as to the discussion of section 4.7 and figure 15, a is a

factor (see below far an approximate value of this factor) which is expected to depend on T,

the dimension of the sample R (via the penetration fields), and ho.

M
=

M (T, h(t), to)
1

~

~~
ln (r~/ro)j (r~ » To). (7 la)

Uo (T, H)

If we assume for simplicity that the above equation is valid for all the branches of the

hysteresis cycle then we can put into the equations (55-57) we have used for the numerical

calculation of the susceptibility and deduce that x" would have the following form :

with

~~

l
(71c)X~~~ ~°' "°~ ~°~~ ~°~ ~~~

l + ~~j In (£r vi ~o)
Uo

Note that we have included ho in the prefactors of the above equation to recall that in general

X " depends on the applied field. It is interesting to add that if vj is the lowest frequency of

measurement we can rewrite the term x"(T, ho, vo) of the right hand side of equation (71b)

as given by equation (71c) and normalize the measurement with respect to the lowest

frequency data. The very qualitative reasoning carried out in section 4.7 suggests that the

parameter a in the above equation would be of the form

a =
ho/p(T)R

where p is an increasing function of T, probably of the order of J~~~(T) J(T) where we

recall that J~~~(T) is the maximum possible critical current which can exist only before flux

commence to creep (see Eq. (12c) and § 4.7). However, it is to be emphasized that this

qualitative result would be more justified in the limit T » T~. Recall also that the working
frequency v is assumed to be such that

v « v~~~ where v~~~ is given by equation (68).
Finally, it is also possible to show that equation (71a, b) leads approximately to the same

frequency shift in the temperature T~ as equation (69) of Nikolo and Goldfarb [86] and
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Palstra et al. [87]. However the physical meaning of this shift is completely different and less

fundamental here as it depends on several experimental conditions. It is also important to

recall that in the equations (7 la, b, c) U? is an apparent energy barrier which is related to the

derivative of the true barrier by equations (9b) and (lo).

12.7 FREQUENCY EFFECTS IN WEAKLY COUPLED GRANULAR MATERIALS, ho ~lf~~.
Equations (69, 70) have been applied in the literature mostly to granular materials [86, 87].

However, we believe that these formulae as well as equation (71) derived above are probably

not valid for intergrain currents. We know indeed from previous results (particularly Sect. 6)

that the measured intergranular current J~j,~~~ is very different from the local current

J~j which is highly inhomogeneous within the material because of the self fields. It is clear that

it is the macroscopic apparent current J~j,
~~~

(and not the local j~j(r)) which must enter flux

creep equations (71) somehow when comparing with experimental data. The contradiction is

that the derivation of equations (71) is based on the flux creep equations (I I or 12) which

assume implicitly that the current is homogeneous in the material.

We have mentioned in section 5 that the low H-cycle of granular materials generally
depends very little on the sweeping rate of the applied field at least at low T (Fig. 17b and

Ref. [198]). Similarly, we have also mentioned that frequency effects in ac susceptibility

measurements are extremely weak in granular materials and that this has led several groups to

the conclusion that intergrain pinning barriers (responsable for J~j) are extremely large, up to

35 eV. These erroneous conclusions were often based on the assumption that equation (69)
relating T~ and applies for granular materials as well.

We suggest that the almost complet absence of time and frequency effects (in the range 0.02

to 2x lli Hz at low n in granular materials is connected with the fact that for

R » R
o

the magnetization as well as x" are essentially proportional to the characteristic field

Bo (see Sect. 6). We recall here that the characteristic length Ro is defined by equation (16)
whereas Bo is a field parameter goveming the field variation of J~j. We also recall that

Bo is approximately independent of time (Bo
=

dSo/(2 A r~) to a first approximation ; Eq. (47))

and is generally little sensitive to the local current J~j which is the most relevant time

dependent parameter. Quantitatively speaking, this depends on the exact model for the J

versus H relationship. For example the Kim model should lead to stronger time effects for

R » Ro than the other models considered in section 6.

From the literature on sintered HTSC there are numerous experiments [398-403] which

show that persistent
« transport currents »

induced either in macroscopic rings or in hollow

cylinders by a field pulse often decay notably with time in apparent contradiction with the

absence of any significant time effects in magnetic relaxation at relatively low fields. It is

possible that this is principally due to the fact that in persistent current experiments the

excitation field (which was applied for a short time and then removed to induce the remanent

cl~went) is generally relatively high (several hundered Gauss) compared with H~~ of the

individual grains. Consequently this creates intragrain vortices. It is then tempting to

associate the decay of the remanent current with the creep of these intragrain vortices. This

analysis is consistent with the fact that in some experiments the remanent or persistent current

is found to decrease by more than 25 9b within about one hour [398] whereas under other

conditions after a few minutes the current is found to stay constant within about 10 9b over a

period of almost one year [401].

13. Very low amplitude of the variable field and breakdown of the critical state.

In most of the preceding sections our analysis was based on the critical state which assumes

that any electromotive force (e
=

d~P/dt
= «

dh/dt) however small, induces the full
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critical current J to flow locally with its direction imposed by that of the last electromotive

force (- a
dh/dt ) applied at the same point of the specimen. It is the critical state assumption

which yields the well defined field and current profiles presented in figure 3 (Sect. 2) for

example. It is clear from these figures that in this theory only three critical current states

( +J, -J or zero) are possible depending on the sign of the last variation of the field

h(r, t). However, it was pointed out some time ago by Campbell [404] that if the ac-field is

too small, it is not able to depin a significant number of vortex lines (or to overcome the

critical pinning force) and to build up the full critical state. Therefore this makes such a

picture inadequate to describe the experimental results. In fact, in this case the local current

density can take any value between the
« true »

critical current density + J and J (instead of

only three possible states + J, J or zero). This is based on the experimental observations

j405] that at sufficiently small amplitude of the varying field the displacement of the vortices is

reversible within their potential wells in the sense that there is no frictional dissipation
produced by the pinning centres (in the Bean model the deformation of the vortices is always

irreversible and always costs energy). This changes the process of field penetration within the

superconductor and introduces a new penetration (or screening) depth A~j, independent of

the excitation field in a first approximation. Hereafter, we shall discuss the current and field

profiles induced by a small variable field (ho sin wt) superimposed on a large static field H

(H » ho and H » H~~). The conclusion will be also valid for the initial portion of the reversal

curve (e. g. very close to points A or B of the hysteresis cycle of Fig. 3). We shall also examine

briefly the same question for resistivity measurements.

It is to be emphasized that here as well we shall take a rather qualitative point of view

allowing us to compare the experimental results with relatively simple though realistic

theoretical formulae. In order to facilitate further these comparisons we shall try (when

possible) to express the calculated quantities in terms of known parameters commonly used

by experimentalists. Of course, all of these simplifications limit the generality of the present

treatment.

Here, we shall give the approximate equations of A~j in several field-limits and for various

geometrical configurations of the static field H (or B), the excitation field h, the surface of the

specimen and the crystalline axes (the field penetration depends indeed on all these factors).

We shall also determine the corresponding magnetization AM(h) in some cases.

13,I BREAKDOWN OF THE CRITICAL STATE, THE ELASTIC LIMIT OF THE VORTEX LINE

LATTICE.

13. I. I A small longitudinal field superimposed to a large longitudinal field. To illustrate the

above claim let us temporarily assume the validity of Bean's model and calculate

approximately the distance over which the flux density is disturbed by h : Ar
=

R r
=

5 h/2 arJ (see Eq. (59a) for a more accurate expression). Intuitively, we feel that a necessary
though not sufficient condition for this equation to be meaningful is that the disturbed

distance Ar must be much larger than some depinning distance r~ (the average radius of the

pinning potential) of the vortex lines. This allows us to define a threshold field

hi,
i~

by the equation Ar
= r~.

~l,
th

~/ ~§ (~~)

In general r~ is equal to few coherence lengths f. Taking r~ =

20 h and J
=

10~ A/cm~ yields

hi,
~ =

4 oa defined from the condition Ar
= r~ above. This threshold field can therefore be

quite large for high critical current density J and shows that this kind of situation often

happens in ac-susceptibility measurements where the amplitude ho of the ripple field is
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sometimes as low as
10~~

oa. Equation (72) shows also that deviations from the critical state

are more important at low temperature where J is generally very large. As will be seen below

the true threshold field is in fact much larger than hi,
~~.

13.1.2 A small transverse field superimposed to a large longitudinal field. Now, it is

interesting to mention that the low field situation above is probably more easily satisfied when

the excitation field is perpendicular to the steady field H » h, since in this case the amplitude
of the total field stays unchanged to the first order in h (it is equal to H +

h~/2 H). Typical
examples of transverse field geometry of this kind are torque [406], EPR, NMR and vibrating
reed experiments.

At this point, we recall that in NMR, vibrating reed and more particularly in EPR

measurements the operating frequencies are extremely high (compared to those intervening
in ordinary ac-susceptibility) and lead to a con§iderable increase of the contribution of the flux

flow viscous forces (not included here) to the measured signal. Of course as we know the

relative weight of this contribution tends to 100 9b above the depinning (or irreversibility)
line.

In the transverse configuration the effective displacement of the vortex lines due to the

transverse oscillating field as well as the threshold field equivalent to hi,
~~

are more difficult to

calculate accurately. The question of field and current penetrations and profiles in the

perpendicular geometry are of great importance for the correct interpretation of torque,
EPR, NMR and vibrating reed experiments. For instance, as it is well known the NMR line

width is extremely sensitive to the homogeneity of the radio frequency field within the

material. It is certainly very important to pay more attention to these effects than is done at

present in the litterature on HTSC. A quantitative examination of this very complex topic
requires accounting for the anisotropy of the critical current density of HTSC together with all

the elastic constants, C~~, of the flux lattice. For the sake of clarity we shall first restrict our

analysis to the longitudinal (H and h parallel to each other and to the surface of the specimen)
and isotropic case first considered by Campbell [404]. The generalization of Campbell's
theory to take into account the anisotropy of J and C,~, transverse geometry, frequency effects

and non local effects (I,e. dispersion, or k dependence of the C~~) will be examined

subsequently in 13.4 using a more complex approach.

13.2 FIELD AND CURRENT PENETRATIONS AT VERY LOW TEMPERATURE ho OF THE EXCI-

TATIoNs FIELD, ISOTROPIC MATERIALS. According to Campbell [404], if the amplitude
ho of the excitation field is small enough, the distribution of the variable fields and currents

within the sample are better described by assuming that the vortices should oscillate reversibly
(with the same frequency as h (t)). These oscillations take place either between (for unpinned
lines) or within (for pinned lines) the potential pinning wells ; rather than jumping irreversibly

over the potential barriers as in the critical state. This is in agreement with the more general
theory of Labush [126] conceming the elasticity of the vortex lattice and with more recent

theories of collective thermal fluctuations and collective pinning [l10, 172-175].
Accordingly, for very small field variations h(t) superimposed on a large static field H, a

given vortex line is submitted to a restoring force (F~) proportional to the line displacement,
u(r), within the potential well and to an extra Lorentz force equal to B 8J/10. To a first

approximation such an elastic force is proportional to the displacement distance u(r) of the

line and can be written as (in practical units) :

~~~~~

~
~~~~

Iv ~ ~~~ ~~~~

Note that since our approach is rather qualitative we shall neglect numerical factors of the

order of I to 2. With this caution in mind, Fo/r~
= « is an elastic constant in the presence of
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pinning forces of maximum value of the order of the critical pinning force ~Fo,
8J(r) is the change in the current density at site r, produced by the local variable field at the

same point. In such a limit where the displacement u is small compared to the depinning range

r~ the penetration distance Ar
=

R r is no longer given by the usual critical state model.

Then, the penetration distance is replaced by a unique characteristic penetration length

A~j independent of both r and the variable field h (in the linear approximation assumed

above). This length can be determined approximately by supplementing equation (73) by the

flux conservation condition below (in order to take into account of demagnetizing effects we

will replace the field h by an effective field h~~ in the following equations). In the simple case

of cylindrical symmetry the flux conservation condition is given by :

B 2 ar [(r~)~ (ri)~]
=

[B + b~~(r) 2 ar [(r~ u (r~)) ~ (ri
u (ri )) ~l (74a)

After some rearrangements and simplifications we get

h~~(r)
=

H
~" (with r =

(r~ + rj )/2 and ar
= r~ rj « r) (74b)

ar

Deriving this equation once again with respect to the variable r and putting in equation (73)

gives

A~j =

~~ ~~~ ~~~
(H » h~~ and A

~j
» A ) (75)

4 ar J

It is interesting to note that if one replaces the field H in equation (75) by

hi
~~

(right hand side of Eq. (72)) we find that A~j(hj, ~)
=

Ar(hj, ~)
= r~ where Ar is the Bean

partial penetration depth. The induced local field associated with the applied ripple

h(t) is given by :

h~~(r)
=

h~j(r
=

R exp
~ ~ (H » h~j) (76a)

~
et

~~~~~ ~~
~~

~~~ ~~~~~

Here N~~ is an effective demagnetizing factor which coincides with the conventional one in

the limit R » A
~j.

It is now interesting to make the following remarks :

(I) The magnetizations associated with the above field distribution (Eq. (76a)) are purely
reversible (we shall consider irreversible effects later).
(2) These equations neglect the contribution of M~~(H + h(t)) to AM and are thus not

valid very close to H~~.
(3) We shall see later that A~j is the lowest possible penetration depth, implying that the

usual critical state penetration depth Ar is necessarily larger than or at least equal to

A~j (otherwise it has no physical meaning).
(4) Moreover, it is probable that A~j is also a measure of the region around the singularity

at the reversal point rj (such as in Fig. 3, Sect. 2) where J changes discontinuously from

J to + J in Bean's model. Of course such a discontinuity cannot be justified physically.
(5) Now, we can use the above results to define a second characteristic field h~, ~

beyond
which the present linear treatment ceases to be valid. We assume that this occurs just when

the reversible displacement of the vortex lines located near the surface of the specimen
becomes comparable to r~. In terms of a maximum admissible ripple field the result is :

~
g~

1/2
~~'~

~ W ~~~Pj ~~~~



l196 JOURNAL DE PHYSIQUE III N° 7

From the comparison with equation (72) we deduce that h~
~ =

[H/h~,th] hj
~

and thus

(h~
~~

» hj ~) in general.

(6) It is interesting to calculate the critical state penetration depth Ar(AH corresponding

to a variation AH
=

h~
~.

The remarkable result is that Ar
= A~~ at this limit. In other words,

one goes from the elaitic limit to the critical state limit just when the penetrations depths
calculated within the two approximations become equal.

(7) It is now time to note that equation (76a) has a form similar to the well known London

equation giving the field distribution inside the material. Therefore, the variation

AM of the
«

elastic
»

magnetization induced by the applied field h(t) is probably also very
similar to that derived from the London calculation except that the London penetration depth

A should be replaced by the elastic distance A~j. We propose the approximate expressions
below, valid in the case of isotropic and independent grains (negligible Josephson and dipolar
couplings)

AM
=

~
h

1
3

~
~' coth

~~
+ 3

~
~ ~l(for spherical particles) (78a)

8
ar r~ A~j r~

AM
=

~ ll exp
~ (for a thin slab of thickness 2 e) (78b)

4
ar A~j

with both H and h parallel to the surfaces of the slab

AM
=

~
[l f jr/A~j ) (for a long cylinder with N

=

0) (78c)
4 ar

Here the field is parallel to the cylinder axis and f (x) (= Io(x)) is a modified Bessel function

of the first kind of order zero. If the cylinder is thick enough so that r~ » A
~j

then the above

equation reduces to

AM
-

~
(l

~ ~~'
(r~ » A ~j) (78d)

4
~' ~g

The modification of fields and currents (induced by the ripple field h(t)) should be as

schematized in figure 74b, which is to be compared with figure 74a valid in the critical state

conditions.

From the above discussion it seems that for the critical state picture to be valid the field h

must be much larger than h~,~. We believe that this will be reflected not only in the ac-

susceptibility X'
=

AM/h but also in the reversal branches of the hysteresis cycle. Because of

the ratio A~j/r~ in equation (77d) the effect would be more pronounced in granular materials

which would exhibit a more extended linear AM~j versus AH region with a reduced slope (I.e.
smaller magnetic sheilding) as compared to the slope measured just below the rust critical

field H~~ (that is to say aM(M ~H~~)laH m AM~j/AH). We indeed expect that above

H~~ the magnetic screening (I.e. the slope of Afif) would be given by equation (77) in which

A~j must replace the usual London depth A.

13.3 AC-RESISTIVITY IN THE PRESENCE OF A SUPERIMPOSED LARGE DC CURRENT. It iS

important to know that ac-resistivity behaviour is also expected to be quite different

depending on the amplitude io of the applied excitation current (= io sin wt) assumed to be

superimposed on a dc current. Neglecting again viscous flux-flow forces, it is found [407] that

below some threshold current density (io,~) there is a finite electric field E~~(t)
=

«
wio sin (wt + ar/2) in quadrature with the excitation current (thus producing no dissipation)

proportional to this current and as well as to the measurement frequency
w.

It is to be
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Elastic response
~~~~~~~~ ~~~~~
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Fig.

to be long
ylinder) in the limit of Bean's model (a) and

in the elastic

is too to depin the
vortices

(b). (c) The initial
slope

of the
reversal

curve is reduced by this elastic

orce and is
divided

by a factor of the order of [R - A ~j(T, H ) if [R - A

that the ortex glass
effect hich

appears in the more
laborated

llective uppresses

this elastic effect, but the existence of this vortex glass phase is not yet established

emphasized that if the viscous forces are not negligible the total electric field E will also

present an in phase component E~ of flux flow type which varies as w
~ (see Sect. 12 and Eq.

(68) for the conditions under which this field can be neglected). Above the threshold current

the total electric field E is nonlinear in io and presents an in phase dissipative component

E~, directly related to the critical current density J (remember that J is assumed to be large
enough and far away from the TAFF regime for which E is also linear in J~. An example of
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V (I ) characteristic is illustrated in figure 75 from Lowell [407]. Note that V is given in ~V per

kHz to recall that E~~ is proportional to the frequency. As in the case of magnetic

measurements considered above, the threshold current below which the critical state picture
becomes inadequate depends on the effective dc-field H (which generally includes the self

field generated by the dc-current as well as any extemal constant field assumed to be

perpendicular to the current direction). It goes to zero for H
=

0 but is proportional to

r~ and, according to [407], almost constant at high H.

Pb~~i~
( O x 12 KHz 65

~ ~~ ~~~ ~'
~,

q
uli, ''

~ '

/
~~ ~

' +

'

~~i ~~
°

~~
$

~~ ~~°~~
i

o.2 o.~

Fig. 75. -Example of ac-voltage ir~duced by an ac-current. At very small currents V is linear with

frequency and current and is ir~ quadrature with the latter, from Lowell [407].

Therefore, it tums out that Campbell's picture can be put in a more general form using the

collective pinning theory which accounts naturally for the elastic response of the VLL medium

as well as for time (or frequency) effects. In the limit of our understanding of the collective

theory, it seems that this question is intimately related to the «vortex glass
»

problem
(discussed briefly later in this section and more extensively in Sect. 17). Indeed, if the

« vortex

glass
»

phase readily exists it should modify considerably the elastic response of the VLL (as
the pinning barriers tend to diverge in this phase). Clearly, this fascinating question deserves

more experimental as well as theoretical development.

13.4 FIELD AND CURRENT PENETRATIONS IN ANISOTROPIC MATERIALS. This subject is

rapidly developing at present and have been recently the object of a number of very nice

papers [408-414]. The basic equations used in most of these papers are summarized below.

(I) The equation of motion of the VLL which represents the fact that the vortices are

submitted to four different kinds of forces (per unit length) which are (I) the viscous force

1J aulat, (2) the pinning force per vortex K~ u(r, t) (note that in the elastic limit this force is

proportional to the vortex displacement u), (3) the Lorentz force per vortex J(r, t) xi
o

and

(4) the so-called Langevin thermal force, F(w assumed to be a Gaussian white noise with

zero mean [123]. Here, K~ is the Labush parameter per unit length and per single vortex line

(to be distinguished from the Labush parameter per unit volume «j). The final result is

1~
auJat + K~ u (r, t)

=

J (r, t) x~bo + F (w ). (79a)

This equation must be completed by Maxwell and London equations connecting the fields

and currents within the specimen and by the boundary condition that the field at the surface
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must be equal to the applied field (if the demagnetizing factor is negligible). The interesting
results which are common to most of these papers [123, 408-414] are the generalization of

Campbell's penetration depth to include the London penetration depth A and the introduction

of frequency and time effects in the expression of A
~j.

As a consequence the latter becomes a

complex quantity the imaginary part of which accounts for irreversible effects and energy

losses.

(ii) Koshelev and Vinokur [408] calculated A~j and other quantities in various approxi-
mations corresponding to different regions of the T-H phase diagram. These regions are in

fact associated with different J(T, H) relationships as deduced from the collective pinning
theory in presence of

«
phonon like

»
thermal fluctuations [174]. Among other results, they

derived three frequency regimes : (I) At very high frequencies, energy losses are caused by
viscous motion of the VLL. (2) At intermediate frequencies the ac-absorption is dominated

by the oscillation of the lattice near equilibrium regime (or
«

Campbell's regime »). At

extremely low frequencies irreversible jumps of large lattice regions (bundles of lines)
between different metastable states would come into play and would give the main

contribution to the absorption. This last behaviour is called the
« two levels

»
regime and

would correspond to the vortex glass phase (SG).
(iii) Noting that in the above collective theory the pinning potential diverges as

U
=

Uo [J~~~/J]Y (y
~

0 ), Van der Beek and Kes [414] argued that at sufficiently low J (or low

ripple field ho~ these collective depinning mechanisms should be frozen. Nevertheless, flux

creep would proceed via interstitial defects and vacancies in the VLL. If these VLL defects

were free to move across the material the critical current would be zero. However, these

defects are thought to be impeded by oxygen vacancies giving rise to a non zero critical

current density. Such VLL defects are modeled by small pairs of edge dislocations the

distance between which is approximately equal to the vortex spacing. This leads to a further

creep mechanism called
«

plastic creep »
because the border limit (I.e. the contour) of the

associated correlation volume V~ (in the VLL) remains finite and is defined by the inter

dislocation distance. By contrast, in the usual collective pinning theory V~ is exclusively
determined by the elastic properties of the VLL and tends to diverge as J approaches zero

(vortex glass limit). In fact, in the collective pinning theory V~ is defined (more or less

arbitrarily) when the elastic deformation between the centre (r= 0) and the periphery
(R~) of V~ is of the order of f; I.e. u(R~) u(0)

=
f.

The limited validity of collective pinning theory, particularly for 2D VLL, seems also to be

inferred from numerical simulation [410, 411] as well which demonstrates that the nature and

size of the pinning force is determined by plastic deformations of the VLL generated by the

random potential whatever small. The interplay between
«

plastic flux creep »
occurring via

dislocation in the VLL and the elastic creep (typical of the vortex glass) state is also discussed

by Feigel'man etal. [174b] who incorporate temperature effects, particularly thermally
induced dislocations. This question is also the object of a nice paper by Vinokur et al. [415].

From the quantitative aspect, the treatment of van der Beek and Kes [414] seems to be

more appropriate to the TAFF domain of the T-H plane.

(iv) Coffey and Clem [123] were able to determine both A~j and the frequency dependent
complex resistivity p~j(w) taking into account viscous flow, thermally activated flux flow

(TAFF) and flux creep simultaneously. They also considered several frequency regimes
defined by a dimensionless parameter wr where r is now a characteristic relaxation time equal

to 1J
[1((v) I II [K~ Io(v )Ij(v)] with v =

U~/2 kT. We recall that U~ is the height of the

pinning potential whereas lo and I
j are modified Bessel functions of the first kind (see [123]

for other details).

(v) Brandt [412] included explicitly in the calculation of A~j the elastic constants
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C,j and non local effects (I.e. the dependence of C,j as well as K~ on the wave vector k

associated with the elastic deformations). He also considered several geometrical configur-
ations of the vectors H and h with respect to the surface of the specimen.

Other penetration depths associated with the vortex glass (VG) phase [413] are discussed in

reference [106] where it is found that the dc-skin depth in the limit of a static field

(w
=

0) is different from that obtained by taking the limit
w -

0 (in ac-measurements).

Accordingly, in this last case A
~~

would diverge as ~In w
]"*

near the VG line in the H-T phase

diagram of the VLL. This means that the limits 8H
-

0 and
w -

0 are noncommuting (or not

interchangeable). However, we believe that the SG picture within which these arguments

would be valid is not yet well established (see [410-414] and Sect. 17). Finally, it is worth

noticing that field penetration in relation to intrinsic pinning is considered in [420].

Most of the above theoretical calculations have used the Labush parameter «~ (per unit

volume) which is related to Fo and r~ of our equation (73) by the approximate but useful

equation (in practical units)

«~ =

(d~U/dr~)
=

(AU/r~)/r~
=

Fo/r~
=

BJ/10 r~ (79b)

We recall that U(r) is the real pinning energy per unit volume acting on the VLL and

incorporating the elastic interactions within this lattice.

To allow qualitative comparison with experimental data in presence of uniaxial anisotropy
(HTSC materials) we propose the following expressions for the elastic penetration depths

A~j. For this purpose we also need, in addition to the elastic modulii C,~, the two London

penetration depths A~ and A~~ together with the three critical current densities J~,~~,

J~~
~,

J~~
~~

introduced previously (Sect. 2) and which will be defined more rigorously in the
neit section.

In view of the complexity of the problem we will also make us of the following
approximations.

I) First of all, when possible we shall first give the general expression (involving the elastic

constants) of A~j and then a simplified formula. The latter is generally roughly valid in the

limit of high field (H~ « H « H
~

) and large elastic depth (A~j » A ).

(2) In some cases the exact London penetration depth entering the equation of

A~j is not well defined and includes a combination of both A~ and A~~. In such cases we shall

use the notation A rather than A~ or A~~.

(3) For the sake of simplicity we shall generally neglect the anisotropy of both

«j and r~ in the expression of A~j. Of course this is difficult to justify in some geometrical

configurations where we are forced to take into account the anisotropy of these parameters.

(4) We shall neglect frequency and time effects and assume that the sample is very thin in

the direction perpendicular to h (this is to avoid demagnetizing effects associated with this

field).

(5) However, the way how the elastic constants presented below enter the measured

magnetic signals AM together with the influences of time, frequency and demagnetization
effects will be discussed briefly at the end of this section.

(6) Finally, we emphasize again that due to the extreme complexity of the problem the

derivation of the following elastic penetration depths is not rigorous but rather intuitive, It is

also an attempt to generalize some of the results of references [123, 404, 410-414]. Therefore,

waiting for new progress in this topic, our aim is to allow some qualitative comparisons with

experimental data and, at the same time, illustrate some of the situations that can be

encountered in experiments.
We now want to consider several possible geometrical configurations of the field vectors H
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and h, the crystalline axes and the surface of the specimen and give the corresponding

Aei

(I) h f H f
c

f to the surface of the specimen

Cjj 1/2 ~~ fir 2 1/2

A~j
=

A(~ + =
Aj~ +

~ (if H » H~ ) (79c)
"l ~

'~ ~ab,
c

Note that here the ratio Cjjlaj tends to zero as H approaches H~~ and thus

A~j tends to A. The second term of (79c) is valid in the limit H » H~.

(2) h I H f
c

f to the surface of the specimen

Cj~ 1/2 ~~ jfr 2 lJ2

~
~~

~
~

~
" l

~
~

~
~

7~

ab,~
~~~ ~ ~ ~

~~~
~~~~~

Now C~ is the tilt modulus around the c-axis. It is equal to C
ii =

«B ~
at high field, but

tends to the so called single vortex term (linear in B) as B approaches zero. Since the Labush

parameter aj is also linear in B at low B this implies that this
«

tilt
»

elastic depth remains

larger than A when H -H~~. This adds more supports to our previous claim (subsection

13. I.I) that elastic effects are more important in the case of transverse geometries, and as a

consequence in torque, EPR, NMR and vibriting reed experiments, than in ordinary
susceptibility measurements.

(3) H f h f (a-b planes) f to the surface of the specimen : by analogy with the reversible

London case this geometry is probably characterized by two different elastic penetrations :

l~~ fir 2 1/2

A~j =
A (~ +

~ (penetration parallel to c) (79e)
4 arJ~~,~~

~~ fir 2 1/2

A
~j =

Al
+

~ (penetration perpendlcUlar tO C) (79f~
4

aT
J~

~~

Note that at low H these penetration depths are expected to be controlled by the

compressional moduli Cjj
i

and Cjj~ along the c-axis and parallel to the ab planes
respectively (for h in the ab planes).

(4) H I h and both fields are parallel to the (a-b) planes and to the surface of the specimen.
Here too, the magnetic response involves two elastic penetration depths which depend on the

in plane elastic constant (C~
ii, see Ref. [l10]) and which we approximate here as :

~

CL "2
~

lo Hr~ 2 1/2

~
~~~ ~~

~
~~ ~

"

b,~ab
~

~~ ~
~

'~ ~ab, ab

~~~~~

and

c$
jj

1/2 ~~ jfr 2 1/2

~~~ ~~
~ ~

"c,
b ~ ~

~ 7~ ~c,

b ~~~~~

(The right hand side of Eqs. (79g and 79h) are valid for H »H~~.)
For several reasons that will become clear in the next section on anisotropy effects, the

relative contribution of each of the above penetration depths to the measured magnetic signal
is expected to depend on the ratio (eJ~~, ~~)/(wJ~, ~~) where 2 e and 2 w refer to the thickness

(in the c-direction) and the width of the sample. In many circumstances this ratio is much
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greater than one, because of the high anisotropy of the critical current density. Then

AM is imposed by A
~, ~~

ii

alone. The inverse is true in the opposite limit realized sometimes in

very thin films of YBaCUO.

(5) Hi h f
c and the sample is very thin in the direction of the field h. Here too the

magnetic response is thought to involve two elastic penetration depths which depend on the in

plane elastic constant CM
i

(see Ref. [414]) and which we approximate as :

~

CL
~

"2
~

lo Hr~ j 1/2

~
ab, ab I ~

~
c

+ fi
~

~
c

+ $ fi (~~~)

ab, ab ab, ab

13.5 ON THE REI,ATIONSHIP BETWEEN THE MAGNETIZATION, THE AC-SUSCEPTIBILITY AND

THE ELASTIC PENETRATION DEPTHS. In this paper We are more interested in direct

magnetic measurements (AM and X) than in the elastic penetration depths themselves.

Therefoje, the important question we are readily concemed with is that of the magnetic

response of the material in the various elastic limits and geometrical configurations just

considered. We have seen that a partial answer to this question can be found if one proceeds

by analogy with the London reversible magnetization (Eqs. (78a) to (78d)). Naturally, there is

probably no general answer to this problem. A first difficulty comes from the fact that, except

in the case of cylindrical symmetry (H f h f c) with negligible demagnetizing effect, the

calculation of AM or x involves not one but two of the eleastic penetration depths derived

before. Secondly, for real specimens we must include demagnetizing effects which are

expected to be especially important in the limit where A~j is short compared to the effective

dimensions of the specimen. Nevertheless, in the absence of concrete theories accounting for

these effects, we suggest to proceed by analogy with the anisotropic reversible London

problem, at least in the very few cases of the literature where the latter has been resolved. The

London's magnetization of uniaxial anisotropic superconductors has been calculated by
Kogan and Clem [62] in several limits equivalent to the configurations H fl h considered

previously. These calculations will be summarized in the next section15. Also, the

configurations Hi h, can probably be treated by analogy with existing calculations of the

reversible torque.
Another important question concerns the manifestation of frequency and time effects of

flux creep origin in magnetic measurements. We have seen that this problem was investigated
extensively in references [408-412]. However, in our opinion, it is not certain that the

conclusions of these papers can always be applied to experimental data. There is several good

reasons for this. (I) First of all, many experiments are performed by means of a lock-in-

amplifier and hence involve two characteristic time scales. One is the inverse of the angular

measurements frequency (w~') and the other one is the time integration constant

(r~~) of the whole apparatus. Since the latter is generally very long (w r~~ » I we expect
that, due to flux creep effects, the data will generally depend on r~~ logarithmically (in a first

approximation) as in ordinary magnetic relaxation experiments. (2) A second difficulty

concems the domain of validity of the above elastic linear theories. We believe that if the

altemating field is much higher than the threshold field h~,~ (Eq. (77)), the notion of an

elastic penetration depth independent of h is no longer valid and more general treatments

such as collective pinning are required. The easist way to overcome this difficulty is to come

back to the critical state model (treated in Sect. 12) when h~, ~ ~
ho.

A relatively simple way to investigate frequency effects of flux creep origin and to test the

above predictions is to look to the evolution of the magnetic signal as a function of the critical

currents density J. This can be achieved quite simply by performing the following cycles in the

(H-n Plane : (I) Prepare the sample in the critical state at the measuring temperature and
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field. (2) Measure the magnetic signal and eventually record it as a function of time in these

experimental conditions. (3) Heat the sample quickly (starting from the same current state

(~J) to a higher temperature Tj and then cool it down to the initial temperature of

measurement T.

Since we know that J drops more or less exponentially with T we expect that the new value

Jj of J will be reduced by a factor of about exp [- (Tj T )/To] where To is of the order of 15 to

20K for Ybacuo and 4 to 6K for BSCCO (for high enough applied field H). The

magnetization is then measured as in the first case. The same procedure can be repeated with

a higher temperature T~ corresponding to a lower current J~(= J(T~) ) and so on. At this point

we must keep in mind that by doing so we change the values of both A~j and

h~, i~
(and as a consequence the associated magnetic signal), since they both depend directly

on the critical current density : J,
=

J(T, ). By the way we can use this method in conjunction

with equations (78a-78d) to test equations (75 to 77) and thus the present predictions on time

effects. However, the time drift of the signal should decrease exponentially with

T,. The effects are expected to be stronger in granular materials as they depend on the ratio

A~j/R where R is the effective radius of the sample.

14. On the shape and intrinsic anisotropies in high- T~ superconductors.

14. I INTRODUCTION. Because of their quasi bidimensional nature high T~ superconductors

are highly anisotropic materials. Until recently the magnetic and transport properties of

anisotropic ideal type II superconductors were (except in few cases, see [65] and [80-83])
described in the so called London approximation which neglects the core energy of the

vortices [66-70] and ascribes all the anisotropic behaviour to their electromagnetic energy. In

the London approach the vortices are straight lines and their energy is invariant by translation

along any direction. Because of the layered structure these two properties are lost in HTSC

and this has enormous consequences on the magnetic and transport properties of HTSC

materials. On the one hand, the energy of an isolated vortex parallel to the a-b planes is now

lower when its core lies between the Cu-O sheets than within these sheets [417-422, 423-425].
On the other hand, according to some of these theoretical calculations there is a certain

threshold angle 0c
=

0 between H and the c-axis beyond which the vortex enters the sample
parallel to the a-b planes. This idea was in fact suggested earlier [43, 358, 380] from magnetic

measurements, especially some anomalies in the hysteresis cycle of YBaCUO. For

0
~

0c (and 0 not too close to zero) the vortex ceases to be a straight line but acquires a

«
staircase

»
shape formed by a periodic succession of kinks. According to the latest theories

[426, 427] the vortex segments lying between the a-b basal planes would resemble Josephson
vortices while those parallel to the c-direction would have Abrikosov's character. However,

the average direction of the vortex is still imposed principally by the electromagnetic energy.

It is likely that at very low T and H far from the irreversibility lines, the vortex lines form a

solid lattice which follows the above description. Because of thermal fluctuations, the

situation is probably different above the apparent irreversibility line and depends on the real

nature of this line.

There is indeed a large consensus among theoreticians (though this is not yet clear

experimentally) that at sufficiently high temperatures the vortex lattice undergoes a melting
transition [106, 110]. At still higher T, the lines should be broken by thermal fluctuations into

thin slices particles (or pancakes [431]) of thickness comparable to the crystal spacing in the c-

direction. This would lead to a new kind of flux particles and should have important

consequences on the very debated question conceming the possibility of a thermodynamic
transition at or above the irreversibility (or depinning) line.
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Tuming to the low temperature side below the irreversibility line, we note that the lack of

translation invariance of the vortices along the c-direction gives rise to a new kind of intrinsic

pinning force [52, 53-58-61, lo?, 417-428] of considerable interest for the transport and

magnetic properties of HTSC. Moreover, because of the imperfect structure of the materials

we generally encounter further sources of anisotropy that influence simultaneously both

magnetic and transport currents. These anisotropies can be roughly divided into the following
four classes :

I) The anisotropy of the microscopic pinning forces either intrinsic or extrinsic due to

pinning of the vortex lines by defects, in particular by twin boundaries [63, 64].
ii) The shape anisotropy connected with the spatial distribution and configuration of the

current loops (current pathways) generally imposed by the extemal shape of the specimen.
iii) The more conventional shape anisotropy related to demagnetizing fields associated

with the spatial distribution of the self fields (I.e. generated by the currents in the sample).
iv) The anisotropy of the equilibrium magnetization and the associated critical fields

H~~, H~~ which have been the object of many theoretical [65, 70] as well as experimental

studies [54, 56] during the past few years.

We shall discuss the first two anisotropy effects in detail in this section, as they are almost

always present in critical current measurements. The third one will be considered briefly in

the section devoted to demagnetizing effects. The anisotropy of M~ will be invoked also

briefly at the end of this section. In principle, the four anisotropies just quoted are not totally
independent of each other and should be treated simultaneously in a rigorous model, but this

is not possible in the framework of this paper. It is to be emphasized however that the two

shape anisotropies (it and iii), though not totally independent, are clearly distinguishable. The

first one is related to the spatial shapes of the current loops. The second one is a dipolar effect

related to the distribution of magnetic charges in the specimen. For instance, the

magnetization (per unit volume) of a thin
«

isotropic
»

film with H parallel to its surface

depends on the shape of such a surface even though the corresponding demagnetizing factor is

zero.

14. I. I Some characteristic manifestations of anisotropy in magnetic and transport data. A

striking manifestation of the anisotropy in high-T~ oxides is illustrated in figure 76 which

compares the variation of the transport critical current J~ of thin films [58-61, 432] and the

magnetic current J~~~ of a single crystal [104, 380] as a function of the angle 0 between the c-

direction and the field direction. These curves will be discussed later.

A second very unusual manifestation of anisotropy is sketched in figure 77 which shows the

longitudinal components M~ (parallel to the applied field) and the transverse component

M~ (perpendicular to the applied field) of the measured signal as a function of the strength H

of the applied field at fixed direction 0 [52]. This figure shows cearly that the direction of the

magnetization is far from that of the vector H and is closer to the c-direction. It can be proved

that in the limit of a real two dimensional system the magnetization is strictly perpendicular to

the a-b planes except for the trivial case when H is rigorously parallel to these planes for which

M equals zero anyway. This is simply because the currents are necessarily confined to the a-b

planes. For instance, this limit of a two dimensional behaviour is almost realized in the case of

Bi based HTSC materials.

A third very characteristic feature of HTSC single crystals [380] and oriented grains [50,

358] is displayed in figure 78 which shows how the hysteresis cycle (only the first branches are

presented here) of these materials evolve with the angle 0. It is seen that when H is parallel to

a symmetry direction (c or a-b) the cycle presents the usual low-H peak discussed at length in

sections 6 and lo. However, out of these directions, especially sufficiently far from the c-axis,

one observes two distinct anomalies in the curves. These cycles are explained quite
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Fig. 76. The anisotropy of the apparent critical current density, as a function of the angle 9 of H with

the c-axis. The lower curve, J~~~, is deduced from magnetic measurements on «
thick

»
single crystals

(from [380]) whereas the upper curve (heavy line) is representative of transport data on thin films (see

for example [58-60] and text for other details). The dashed curve is expected to represent

J~,~~~ for a very thin film.

Fig. 77.-Upper graph: hysteresis cycles associated with the longitudinal M~ and the transverse

M~ magnetizations as deduced from torque and conventional magnetometer measurements on the same

single crystal of YBa2Cu~07 152]; lower graph: schematic decomposition of M into M~ and

M~.

satisfactorily by a decomposition model developed in references [50, 358, 380] and also later

in this section.

The amplitudes and directions of the vectors M and B represented in figure 79 are

qualitative and were deduced from comparing torque and ordinary magnetic measurements

(which give the equivalent longitudinal and transverse components of M) of the same single
crystal of approximately spherical shape (to reduce conventional demagnetizing effects). The

sketch shows that when the applied field H is oriented out of the high symmetry directions

(0 # 0 and 0 # ar/2) all of the three magnetic vectors H, M and B are not aligned. For

instance, in the case of a two dimensional superconductor (very high anisotropy as in bismuth

based ceramics) the vector M is expected to be essentially parallel to the c-axis. This is

vhatever may be the angle 0 except when H is oriented very close to the a-b plane with

ho ~m~Jm~, but M tends to zero in this limit. Here m~Jm~ is the mass anisotropy ratio

whereas ho is the deviation from the a-b planes).
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Sketched in figure 80 is the expected variation across the sample of the vortex spacing
d(r), together with the amplitude and the direction of the angle 0~ of the local induction

B(r) for H directed not very close to the symmetry directions (c-axis or a-b planes).
It should be noted that the orientational variation of the vortex lines of figure 80 is different

from the so called
«

orientational disorder
»

which is thought [429] to be induced by arbitrarily
small pinning disorder. As a matter of fact, according to some theories this

«
Orientational

disorder
»

would exist even in the case of isotropic materials or for H parallel to the c-axis in

the case of HTSC. However, this is in strong contradiction with other theoretical predictions
[430].

Our point of view is that
«

Orientational disorder
»

is very difficult to justify experimentally.
The argument is that once the radius of the sample exceeds the

«
Orientational disorder

»

correlation range (expected to be of the order of the vortex spacing) the local magnetic
induction B would be distributed practically uniformly within a solid angle of about 2 ar, At

first, this would result in a strong reduction of the anisotropy of the magnetization. Perhaps

more importantly, this would lead to the complete disappearance of the macroscopic Lorentz

force in transport measurements (since
«

Orientational disorder
»

implies (Bj )
-

(B~ )).

14.2 DESCRIPTION OF THE VARIOUS CRITICAL CURRENT DENSITIES ENCOUNTERED IN

LAYERED SINGLE CRYSTALS. Let us for the moment limit our attention to the configuration
where the vectors J and H are parallel to symmetry directions (c axis or a-b planes) as is

frequently the case in experiments on single crystals. Then, we can identify three different

critical current densities (J~
~~, J~~,~ and J~~,~~) defined according to the directions of the

Lorentz forces F~
=

F~ as
illustrated in figure 81, We recall that in the above notations the
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Fig. 79. Schematic evolution of the direction of the average magnetic vectors M, and B as a function

of the amplitude of the applied field the direction of which is being kept constant, It is seen that only for

H w H~~ (and for negligible or isotropic demagnetizing field) M is colinear with H.

first index (ab or c) defines the direction of J whereas the second index (c or ab) refers to the

B-direction.

(I) J~,~~. It is the critical current density along the c-direction with both B and

F~
=

F~~, ~~
in the a-b plane. At low enough T and H, this is expected to be the lowest critical

current density value since in this configuration the vortices always stay (and eventually
move) between the a-b planes where their energy is the lowest possible (but for H much lower

than the critical field H~~,
~,

see below the reason of this restriction).

(ii) J~~,~~. The current and the field are parallel to the a-b planes whereas the Lorentz

force (F~,~~) is perpendicular to these planes. The current density is expected to be higher
here than in any other direction since in this case the vortices have to move in the c-direction
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Fig. 80. Schematic variation across the sample of the vortex spacing d(r), the intensity of the local

field B (r) and the direction of this B (r) (the direction 9 of the applied field is still constant, the same as

in Fig. 79).

and to overcome the energy gaps between the CUO sheets, thus experiencing some intrinsic

pinnig forces.

(iii) J~b,
c.

The current and the Lorentz force (F~~, ~) are parallel to the a-b planes whereas

the field is parallel to the c-axis. At first sight it appears that this current should have an

intermediate value, lying between the two above extreme cases. However, it is to be noted

that because of the anisotropy of the upper critical field (Hi)
~ Hj~) this property would be

not true at very high fields and high temperatures. It is indeed expected that in the region

Hj~ ~
H

~

Hi)
one has J~~,

~
=

0 whereas J~, ~~
is not necessarily zero (from different sources

in the literature [433] H() and Hj~ are estimated to be of order 6 MG and I MG respectively,

for YBa~CU~O~ at TM 0). This would lead to the intersection (in the T-H plane) of the

irreversibility lines associated with these two current densities respectively. It is to be recalled

that at present, we know very little about the irreversibility lines and absolutely nothing
conceming that associated with J~~, ~~.

This is because of the great difficulties to analyse the

experimental data correctly and because of the high fields required to investigate a significant
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Fig. 81. Schematic representation of the magnetic induction B, the critical currents J and the Lorentz

forces F~
=

F~
,

inside a single crystal. The rust index ab or c gives the direction of the concemed vector

(J,
~

or F~ ~)
while the second one refers to the direction of B, I-e- that of the vortex lines. Also shown in

(d) is the intrinsic pinning energy U~ (schematic) of the vortex as a function of the variable z (in the c-

direction) when the flux line is parallel to the a-b planes. When both the Lorentz force and the vortices

lie parallel to the basal planes the driving force is the lowest, at least far below the irreversibility lines,

since the vortex does not need to cross the energy gap in this case. If the vortex is still parallel to the

basal planes but the Lorentz force perpendicular to these planes the drivir~g force is the largest because

of the energy gaps that the vortex has to overcome in this geometry. Finally, the case where the line is

parallel to the c-axis would correspond to an interrnediate situation (see text however). (e) Defects

depress the order parameters in the a-b sheets, thus decrease the gap and the intrinsic current. This

effect is not easy to detect by magnetic measurements.
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portion of such lines. From the above discussion, the three critical current densities should

satisfy the inequalities :

J~~, ~~ ~ J~~,
~

~ J~, ~~
(T

~
T*, H

~
H *) (80a)

J~~
~~ ~ J~

~~ ~ J~~
~

(T
~

T*, H
~

H *) (80b)

The irreversibility lines associated with these currents should look as sketched in figure 2

(Sect. I). We can use now these considerations to interpret approximately the J~(9) and

J~~~(0) curves of figure 76.

14.3 ANISOTROPY oF THE TRANSPORT CURRENT J~(9). The critical current densities

J~, ~~, J~~,
~

and J~~, ~~
just introduced can be determined directly from transport measurements

by choosing the field and current directions accordingly to figure 81. However, due to the

very high values of the critical currents (and the resulting heating problems) this is in general
only easy to realize for very thin films. Unfortunately, another difficulty appears in this case

as the contribution of the reversible London-Abrikosov currents (J~) to the measured current

is no longer negligible, especially for H
~ H~~. In addition, the relative contribution (not the

absolute one) of this reversible term should increase considerably with temperature. This is

because the bulk critical currents (I.e. J~~,
~

and J~, ~~) of single crystals drop rapidly with T (see

Sect. 7) while J~ varies rather slowly except very close to T~. The situation can be described

phenomenologically as follows.

Highly textured thin films.

I) Let us assume that J(0) can always be expressed as a combination of the various current

densities J,,~ of figure 81. Then the first difficulty encountered in analysing the transport

current in thin films is related to the question of which among the four currents defined above

is really relevant, especially in zero applied field ? Figure 82a shows qualitatively that the

pinning force in zero applied field is principally of intrinsic character and that the contribution

of J~~, ~b
is expected to be about (w J~~, ~~)/(e J~~, ~) larger than that of J~~,

~

(here 2 w is the

width of the sample parallel to the a-b planes and 2 e is its thickness in the c-direction

(Fig. 83)). For thin films the aspect ratio wle is generally of the order of lli
so that the factor

(w. J~~, ~~)/(e. J~b, ~) can be as high as 105 in YBaCUO and even more in Bi based materials.

More generally, whenever w exceeds e the contribution of J~~,~~ to the measured transport

current in zero field should be preponderant compared to that of J~~,
~

and or J~, ~b.

2) Secondly, when e becomes comparable to the London penetration depth A the

contribution of the equilibrium current J~ to the total current can be preponderant or

comparable to J~~, ~~.
In addition, as noted before, the contribution of the equilibrium current

should decrease rather slowly with T and H and, hence, would play a more important role at

high temperatures. Indeed, at zero applied field, the ratio of the equilibrium current to the

critical current is probably of the order of H~~/Je, in the limit e m A (see Sect. 7 comparing the

temperature dependence of some critical currents and also appendix A). Even though the

above results are not rigorous they show that the understanding of the critical current density
of thin films requires more investigations and cannot be simply compared to the critical

current of bulk single crystals, especially when the latter is deduced from magnetic

measurements. It is interesting to add that we shall see in section 15 about demagnetizing field

effects that the magnetic critical current density in thin crystalline films is also expected to be

strongly dominated by intrinsic pinning at relatively low applied field.

A long single crystal or a highly textured wire. We wish now to address the problem
conceming the nature of the transport current and the associated pinning in thick

(w
= e « L) anisotropic samples. It is generally not appreciated that because of the layered
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structure the distribution of the current within an anisotropic wire, as that sketched in

figure 82c (I.e. melt textured samples), is necessarily inhomogeneous, even when the material

itself is highly homogeneous (no weak links). This complicated problem is of course not easy

to elucidate in the framework of this paper. Nonetheless, qualitative arguments suggest that

the distribution of currents within this wire would be concentrated near the surfaces parallel

to the a-b planes and in regions far from the surfaces parallel to the c-axis. The real

distribution depends on the exact shape of the specimen and on the values of the various

currents f~. For instance, qualitative arguments suggest that for extremely anisotropic wires

the repartition of currents should resemble the tube drawn in figure 82c.

The analysis of this paragraph as well as that of figures (81, 82) suggest that any kind of

defects within the material (for example those induced by irradiations) could deteriorate the

transport current rather than improve it in highly anisotropic materials. This is because

defects are expected to lower the intrinsic pinning barriers as sketched in figure 81e.

Therefore, this will result in a decrease of the critical current when the latter is dominated by

J~~,~~. In practice, this is rarely observed in magnetic measurements (which are almost

insensitive to J~~, ~~, see figure 83 and 14.4.2) but may occur in transport data (which are of

more interest as technical applications are concemed). However, in real materials the

situation can be more subtle and more complicated if J~ is primarily limited by weak links (as
sketched in Fig. 43), since in this case the current paths are ill defined. In fact, we know that

in this cas J~ depends also on J~, ~~
(see Eq. (37)) and can be, for this reason, increased by

defects. Another way to view this is that the diminution of the current anisotropy ratio

J~~, ~JJ~,
~b

limits the negative effect of the weak links.

~ab,ab
~abjab

j
@

abjc

I

4

,
*

(
~

Jt~=<J>«J~~~~ ,H$H~~

Fig. 82a, b. Qualitative representation of the vortex rings (a) and the Lorentz forces (b) induced by
the applied current feeding a very thin monocrystalline film and their self fields (negligible applied
field). It is clear that, in this case, the resulting critical current is dominated by J~~

~~
compared to

J~~,
~.

If this is the case it should be decreased by any kind of defects as discussed in the text (here, for

simplicity we have not represented the equilibrium current density J~). Intuitively, we expect that defects

will decrease J~b
ab

and increase J~~
~

(at low enough concentration) leading to a more uniforrn

distribution current-
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Fig. 82c, d. c) A thick sample or wire (of thickness 2 e =
width 2 w) fed with an extemal current

approximately equal to its critical current. d) Because of the layered structure, we predict that the

current should be concentrated near the surfaces parallel to the a-b planes as sketched in the figure (but

quantitative calculations are needed to clarify this point).

14.4 ANISOTROPY OF THE MAGNETIC CURRENT J~~~(9) IN THICK SINGLE CRYSTALS AND

ORIENTED GRAINS. Let us consider again the three critical current densities J,,~ of

inequalities given in equations (80a) and (80b) above. It is important to emphasize that the

manifestation of these currents in magnetic data is generally much more complicated to

analyse than in transport data. In fact, the anisotropy of the irreversible magnetization is

related not only to that of the critical current density but also to the dimensions of the sample
via the shape dependent characteristic fields (described just below) associated with each of

the currents J~~. By convention we define these fields by the same indices as the corresponding
critical currents J~~

Hab,
ab ~

~)
~Jab, ab'

Hab,
c

~

~)
WJab,

c'
Hc,

ab ~

~)
WJC, ab

(81)

As depicted in figure 83, w and e stand respectively for the width and the thickness of the

sample.
In figure 76 we show (solid lines) the apparent anisotropy of J~~~ as deduced from magnetic

data [50, 358, 380] (lower curve) after appropriate corrections of the shape of the sample (this
point will be clarified later) and that of J~ determined by transport measurements on thin

films [58, 60] at 4.2 K and 30 kG. We have seen that the transport curve probably reflects the

passage from J~~,~b to J~,~~ as H is rotated from the a-b planes to the c-direction (with the

caveat conceming the possible contribution of the equilibrium currents as just discussed). We
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Fig. 83. Development of currents within a single crystal of dimension (2 w) x (2 e) x (2 L as a

function of the applied field. a) H parallel to the c-axis. b), c), d) and e) H along the a-b planes.

feel that the magnetic critical current curve J~~~(0) of the same figure would correspond to the

anisotropy J~~,
~

- J~, ~~
which is just the opposite of the anisotropy J~~, ~~ - J~, ~~

deduced from

transport measurements. The dashed curve of figure 76 does not correspond to any

experimental data. It represents the predicted anisotropy of J~~~(9)(I.e. J~~
~~

-J~~ ~) in the

limit of very thin samples such that eJ~b,~~ « wJ~~
~.

To support the above claim conceming the apparent anisotropy of J~~~(9) it is necessary to

calculate the hysteresis cycle of single crystals in the presence of anisotropy, This can be done

easily in the limit where each J,~ is independent of H (the field effects have been considered
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separately in Sect. 7 and 8). This calculation is interesting from other points of view as well

(see next discussions) and is carried out below. For such a calculation we recall that the

magnetization involves all the currents circulating in the material whatever their origins and

can be written as follows (in the practical units of Bean, A/cm2, emu/cm3 and oa) :

M
=

l[J(r) x r] du (82)
2° U

where the integration is over the whole volume u of the sample assumed to be either a long
cylinder or a slab with negligible demagnetizing field. Note that for cylindric symmetry with

J
=

constant we recover the Bean model immediately.

14.4.I H parallel to the c-axis, the relationship between the hysteresis cycle and the current

J~~,
~.

Let us first assume that J is isotropic and independent of H (I.e. J(r)
=

constant and

cylindrical symmetry). This is approximately realized for H parallel to the c-axis at

intermediate fields. In this case one has J
=

J~~,
~.

Then, the equations describing the whole

cycle for H oriented along the c-axis are quite simple (we still neglect demagnetizing effects)

and can be written as :

~

J~~
~

R
M(Y

=
~ + M~(lD (H m H

~~ ~) (83a)

M]~
=

~~~
(l

~~~
+

~~~ j
+ M~~(H) (83b)

4
~' Hab,

c

3 Hab,
c

with

H~ii
=

H + 4 arM~~(Hl and (H w H
~~, ~) (83c)

M('
=

~)[~
+

~f (1- ~~~
+

~~~ j
+ M~(H) (83d)

ab, c ab, c

with

hlieff
~

~imax l~eff
~

~ l~ab,
c

(83e)

We recall that the equilibrium magnetization M~~(H) contributes to the total M in two

ways : directly and via its screening field which enters H~j. These equations describe the

cyclic, the virgin, and the reversal branches of the hysteresis cycle respectively. Inspecting
these equations, it is interesting to see that the reversal magnetization may be determined

from the virgin one by a simple translation of M and H and by multiplying the Bean field

~ab,c ~Y ~.

14.4.2 H parallel to the basal plane, and the relationship between the hysteresis cycle and the

currents J~, ~~
and J~~, ~~.

We now consider the hysteresis cycle M~~(H) for H lying in the a-b

basal planes. In this configuration, the intensity of the local current density J(r) is no longer

constant (along a given current loop), and varies from J~~
~~

to J~, ~~
(Fig. 83b-e). This rises the

important question conceming which of these two currents is really at the origin of the

magnetization M~~ ? To answer this question it is necessary to calculate M~~ analytically, at

least approximately. For this purpose, it is more physical to assume that the sample is a slab

(rather than a cylinder) of dimensions 2 e x 2 w x 2L having the symmetry of the single
crystal with its surface parallel to the a-b planes and such that L~ w. The gradual
development of the magnetic currents as a function of the strength H of the applied field is

sketched in figures 83b to e.
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We can readily calculate the whole cycle M~~(H) (with the help of the current loops and the

definitions sketched in Fig. 83) following the same method as in the calculation of the

hysteresis cycles in sections lo and I I. The cyclic magnetization for H parallel to the ab planes
has been first calculated by Gregory etal. [56]. The present treatment extends these

calculations to the whole hysteresis cycle (I.e. to the virgin and reversal branches) and more

importantly it considers simultaneously the contributions of both currents J~~,~~ and

J~, ~~
to the cycle, especially to the virgin curve. In addition we also account qualitatively for

M~~ and the associated surface current J~ (London-Abrikosov's current). The final result

depends on the ratio (eJ~~, ~~)/(wJ~, ~~) =
H~~, ~jH~,

~~.
In general H~~,

~~
» H

~, ~~
for single

crystals (see Eq. (81)) for the definition of H~, ~). In this case we find for the virgin curve with

H parallel to the basal planes :

~vj
~eff l W~ab,

c

~eff W~c, ab
~eff j

~ ~~ ~~ ~
~ ~

7~
~

~
~~ab, ab

~c,
ab

~
~ ~~ab, ab

~ ~c,
ab

~
~~

~

We recall that H~ii is given by equation (83c) (in the absence of demagnetizing effect). In

the case where H~~,
~~ ~

H~,
~~,

the virgin magnetization is again given by the same equation

except that J~, ~~
must be replaced by J~~, ~~

and vice versa. It is interesting to note that it is in

principle possible to determine the ratio (eJ~~, ~~)/(wJ~, ~~) from M~~ and thus the ratio of the

anisotropy of J. In practice, because of the low H peak effect discussed in sections 7 and lo it

is necessary to account for the field dependence of J in the analysis. However, in this case it is

better to use the reversal curve for which J is much less dependent on H in the limit

H~~«H«H~~. This condition is easily satisfied for YBa~CU~07. In addition, for

H »H~~ the contribution of the equilibrium magnetization to the magnetic cycle is smaller

and almost independent of H (we know that in this field domain M~~(H) varies logarithmically
with the reduced field (H/H~~)) allowing us to replace H~ii by H. The equation of the reversal

curve for H parallel to the basal planes is related to the virgin one (given by Eq. (84a) above)
by the same transformation as for equations (83b-83e). The cyclic curve is given by :

~c~c
~~~ (W~c, ab '

~~ab, ab) lilt (WJC, ab ~~ab, ab)
~ ~ ~~~~~

~ 20 3 sup (wJ~
~b ; eJ~b,~~)

~
~~

In general (except sometimes for thin films) we have wJ~,
~~ ~ eJ~~, ~~ so that equation (84b)

transforms into :

~'~i~
"

~~~~
(i ~'~~c, ab

~~ ~ ~~b,
ab

~ ~~~~~~ (84c)

It is easily seen from equation (84b) that when the shape anisotropy measured by the aspect
ratio (wle) just balances that of the critical current density (I.e. when wle

= J~~, ~JJ~, ~~) we

exactly recover the
«

isotropic
»

formula (83a). Moreover, if J~~,~JJ~,~~
=

l we obtain the

classical equation for a slab as first considered by Bean. According to Cronemeyer et al, [57],
the anisotropy ratio J~~, ~JJ~,

~~
exceeds 250 for YBaCUO and is probably much larger for other

HTSC families (Bi, Tl, La). This implies that for H parallel to the a-b planes the measured

magnetizafiion M~~ is generally govemed by J~,~~. In other words, the anisotropy of

J~~~ displayed in figure 76, lower curve) reflects the variation of J~~~ from J~~,
~

(for H parallel
to the c-axis) to J~,~~ and is completely insensitive to J~~,~~.

Figure 84 shows the calculated (dashed line) and the experimental cycles (solid line) for H

oriented either along (9
=

0) or perpendicular (9
=

90°) to the c-axis. It is clear that the

agreement between the two cycles is remarkable, except for the small «hump», the
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~~
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Fig. 84. The hysteresis cycle of a single crystal at the indicated angles between H and the c-axis. Note

the anomalous virgin curve for 9
=

82°, d) Very close to the a-b planes the vortices are no longer

straight lines but have staircase shapes.

interpretation of which was considered in the previous sections (3 and lo). This in fact

explains correctly the anisotropy of J~~g reported in figure 76.

The evolution of the initial magnetization (Eqs. (84a, 84b)) for an anisotropy ratio

J~~, ~JJ~,
~~ =

250 and with wle varying from 103 to 10 is calculated and presented in figure 85.

This is performed for J~, ~~
and the width w kept constant and equal to 3 x

10~ A/cm~ and

I mm respectively. It is interesting to note that the shape of the virgin magnetization depends

on the effective anisotropy and can be used to determine both J~~, ~~
and J~,~~.

14.4.3 H directed out from the high symmetry directions. In the examples given above the

applied field was assumed to be parallel to one of the symmetry directions (c axis or a-b

planes). We have also noted in the introduction to this section that for an arbitrary orientation

of H the three magnetic vectors H, M and B were desaligned, with M almost parallel to the c-

direction. These anisotropy effects are often unavoidable in granular samples (where the

crystallographic axes are distributed at random) and to some extent in textured materials. The

general treatment of these cases (with H out of the symmetry axes) is exceedingly difficult.

Here we wish to discuss this important point using a simple decomposition model [50, 358,

380] which can be justified in the limit of a truly two dimensional superconductor. A more
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Fig. 85. Calculated M(H) curves of a slab (see Fig. 83) of variable thickness (2 e) for H parallel to

the a-b plane. The critical current density J~,~~ along the c-axis, the current anisotropy ratio

J~b, ab/J~, ~b
and the width 2 w are kept constant J~,

~~ =

3 x
10l A/cm~, J~~, ~jJ~,

~~ =

250 and w =

I mm.

The curves correspond to four different aspect ratios : wle
=

10l (top curve nearest to the H axis), 250,
100 and 10.

general model based on the collective pinning theory was reported very recently by Blatter et

al. [419]. This model is based on a new scaling approach which allows to map the results

obtained for isotropic superconductors to anisotropic materials whichever the angle 0.

14.5 A DECOMPOSITION MODEL FOR AN ARBITRARY ORIENTATION oF H. Let us again
consider the curves of figure 78 for which H is oriented out of the symmetry directions and the

curve 0
=

82° of figure 84. It is clear that in these two figures the initial magnetization exhibits

a very complex behaviour and looses any connection (of the sort deduced from equation (83)
with the reversal one : experimentally, the latter is indeed regular while the former exhibits a

step like anomaly.
Figure 78 [50, 358] corresponds to a sample of aligned grains diluted in epoxy resin and

shows an ensemble of virgin curves at different angles 9. Here too the shapes of the

M~~(H, 9) curves are very complex. Nonetheless, it is found that they can be explained
reasonably well by the following and simple decomposition procedure.

At first, we decompose H into a component H~
=

H cos 0 along the c-axis and a component
H~

=

H sin 0 in the a-b plane. Then, it tums out that for any fixed 9 the M vs. H relationship
could be (to a first approximation) deduced directly from the 0

=

0° (I.e. from M~(H~)) and

the 0
=

90° (I.e. M~~(H~)) cycles of figure 84. In other words, the magnetic vector induced by
the applied field would be described by :

M(H, Hi
=

M~(H~) + M~~(H~) (85a)

It is to be stressed that conventional magnetometers only measure the projection of the

vector M(H, 0) along the field direction. Thus, in this model the measured magnetization
would be equal to :

M(H, 0)
=

'~ '~'jf' °)
=

M~(H~) cos (0) + M~~(H~) sin (9) (85b)

It is found that this relation describes quite correctly the experimental data in many
conditions. [50, 358, 380] particularly for fine decoupled grains, For large single crystals with
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large R and large J the fit with experiments is found to be less satisfactory [155] probably
because of the fact that the local field is very different from the applied field. In fact, this

decomposition model would be reasonably well justified in two limiting cases : (I) the

anisotopy is infinite (highly layered systems) and (2) the vortices are sufficiently soft (stifness
modulus very low) so as to adopt a staircase shape as in the inset to figure 84 (Note that these

two questions are not independent [l10] since anisotropy favours the formation of kinks).
In conclusion of the above considerations, magnetic measurements are sensitive to the

anisotropy of the total current which is imposed both by the shape of the sample and by the

actual anisotropy of J through that of the pinning forces (Fig. 81). In addition, we have seen

that even when we know how to correct from the shape anisotropy it is generally not easy to

get information on the critical current density J~~, ~b
particularly from the cyclic curve (see

Eq. (80a, 80b)). Nevertheless, it is possible to have information on J~~, ~~
via either the initial

or the reversal magnetizations the shapes of which depend on the ratio J~~,~jJ~,~~. At this

point it is interesting to add that informations obtained from the reversal branch are more

reliable than those deduced from the initial one. This is because the former includes what we

have called the central peak, or H~~, effect (ascribed here to single vortex pinning) which

makes the analysis harder.

14.6 THE RELATIONSHIP BETWEEN THE ANISOTROPIES OF J AND M IN TEXTURED SAMPLES

AND IN ALIGNED GRAINS DISPERSED IN Epoxy RESIN. Magnetic anisotropy as derived from

the hysteresis cycle is often used to estimate the degree of alignment of crystallites in textured

samples. However from the above considerations it is clear that magnetic anisotropy generally
includes a shape dependent term which reduces the total apparent anisotropy and hence

reduces the apparent degree of texturing. Regarding this problem, it is interesting to mention

that magnetic measurements performed on highly aligned (better thand ± I degree) thin

crystals embedded in epoxy resin [50, 358, 380] exhibit a magnetic anisotropy ratio

MjM~~ of only about 4 to lo against 15 to 25 for a «
spherical

»
single crystal investigated in

the same conditions. Such a result rises the question about the real meaning of the measured

magnetic anisotropy and how to correct for the shape of the sample and grains. At first, it can

be argued that since the non-equilibrium magnetization is a defect-dependent quantity it is

quite possible that the measured anisotropy varies from sample to sample (even when their

shapes are identical) depending on the state and the nature of the involved pinning sites.

However, we know from many examples in the literature that despite these defect-dependent
phenomena the critical current density is the same in order of magnitude from sample to

sample and for T « T~) whatever the method of preparation employed (for the same high

T~ family, particularly YBaCUO (1 : 2 : 3)).

14.6. I How to correct for the shape of grains in the magnetic anisotropy ofaligned and highly
textured samples. Frequently, the grains of textured materials have either needle-like or

elongated platelet shapes. We would like to show here that this can lead to a drastic decrease

of the apparent magnetic anisotropy. This effect provides a part of the explanation conceming
the observed difference between the magnetic anisotropy of fine grains and that of the

spherical single crystal discussed before. The arguments are based on the ideas mentioned

previously that the irreversible magnetization (such as M~ for H parallel to the c-axis) is

govemed by the smallest dimension (hereafter defined as w for simplicity) of the platelet in

the a-b planes. In fact, this short dimension acts as the weakest link within these planes. The

same calculations as those which led to equations (84b) and (84c) show that to a first

approximation the cyclic magnetization in the c direction is given by :

M~
=

~
[l $

+ M~ ~(H) (w w L) (86a)
20 3 L
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Now we can also derive M~~ by adding the contributions of all grains (recalI that

M~~ is the magnetization for H strictly parallel to the a-b planes, neglecting for the moment

any possible desorientation of H). For this, let us consider equations (84b, 84c) together with

figure 83 and assume that the distribution of the grain dimensions w and L (in the plane

perpendicular to the c axis) is at random, we must replace in this equation the width w of the

platelet by the average width (w + L )/2, and rewrite equation (84c) as follows :

M~~
=

~
~~ ~~'~ ~ ~

+ M~~ ~(H) (86b)

This qualitative evaluation shows that a more appropriate relationship connecting the

anisotropy of the magnetization to that of the critical current density is obtained from

equations (86a, 86b) and can be summarized (neglecting the equilibrium magnetizations) as :

J~, ~~
M~~ 2 (w)

~
3 L

~~ ~ ~~ ~~~~

It is important to remember that equation (87) always implies the inequality L m w and that

M~~ is imposed by J~,~~ rather than by J~~,~~. Replacing MjM~,~ in equation (87) by the

experimental value (= lo for the oriented grains) we immediately see that the anisotropy of

the current density for aligned grains would be about the same (at least 25) as that of the

single crystal considered before if (L)
=

6(w) (elongated platelets). Such a condition is

often realized in granular superconductors. Textured materials often exhibit a very large

aspect ratio too. However, we know that in the case of textured materials the problem must

be considered in connection with the possible existence of weak links to define the effective

grains. We indeed emphasize that the above formula assumes that the grains are perfectly
aligned and decoupled with H rigorously parallel to the c-axis for M~ and to the a-b planes for

M~~. We must also mention that in addition to this spurious size effect, the measured (or

apparent) magnetic anisotropy can also be reduced severely by the imperfect alignment of the

grains, which is seldom better than a few degrees.

14.6.2 Influence on the apparent anisotropy of
a small desorientation of H from the basal

planes. To estimate quantitatively the effect of a small desorientation ho from the basal

planes on the measured anisotropy it is reasonable to assume that when H is directed very

close to the symmetry directions the magnetization and the critical current density are still

related by the same relationships.
The angular dependence of the measured magnetization of a «

spherical
»

single crystal (at

H
=

30 kG and T
=

4.2 K) was illustrated in figure 76. The anisotropy of J given there was

derived from that of M by the relation J~~, jJ~,
~~ =

l.5 x MjM~~ (given by Eq. (87)) using the

fact that the investigated single crystal was quasi spherical so that w =
L. The real anisotropy

of the critical current density is presumably larger than given by such an equation because of

the following experimental fact. We indeed observe (Fig. 76) that the logarithmic derivative

of M (and hence of the associated J~ as a function of 0 seems to diverge in the limit

0
-

ar/2 (I.e, when H approaches the basal planes) while it tends towards zero in the vicinity
of the c-axis. That is :

~
m

~
m

0 (88a)
Mc do

°
~

° Jab,
c

do
° 0

~
m

~
m 25. (88b)

Mab d °
°

~
"/2 Jc,

ab
do

° "'2

Such a singular behaviour near the a-b planes strongly suggests that the pinning forces
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acting on the vortex lattJce vary rapidly close to the a-b planes probably because of the

intrinsic pinning.
Also, in connection with such a singular behaviour, it is of interest to estimate the error in

the experimental anisotropy due to the unavoidable uncertainty boon the direction of H

relative to the a-b planes. It is indeed likely that the apparent anisotropy ratio of the critical

current density is notably reduced (compared to the real value) by the angular error ho. In

order to estimate roughly this effect let M(ar/2 ho) be the measured magnetization with H

directed as close as possible to the basal plane and M~~
=

M(ar/2) the unknown magnetization
for H strictly parallel to that plane. Then, assuming that ho is small enough to allow first order

Taylor's expansion, we have M(ar/2 ho)
m

M~~ A0(dM/d0)
e

~
~/~.

Substituting in the

second term of equation (88b) gives (we recall that we assume w
=

L here) :

~j)
~~ ~

dM

(gr/~~
ho)

~~~~~

~
~ab ~°

~~

Accepting a desorientation angle hem1° (= 0.017 rd) and using the experimental value

(-25, right hand side of Eq. (83b)), we find that the true anisotropy ratio (MjM~~) is

underestimated by a factor as high as loo 9b. In addition, a more detailed analysis suggests
that even in the limit of a bi-dimensional superconductor the experimental anisotropy ratio

never exceeds I IA 0. Of course, this is a very rough calculation. Nevertheless, it shows clearly
that the effective anisotropy of the current density is, in general, significantly higher than that

of the measured magnetization (I.e. probably larger than 40 in the present «
spherical

»

YBa~CU~07 single crystal). Finally, it is to be emphasized too that despite the impression
that the angular derivative of M(0) diverges as one approaches the basal plane (Eq. (88b)), it

is actually probable that, this derivative goes to zero for ho « M~JM~
=

0.025 rd
=

I °, which

is well below the present experimental accuracy. It is also probable that this effect reduces

significantly the apparent anisotropies of textured samples and oriented grains where the

alignment always presents a distribution of a few degrees in the best cases. Therefore we

believe that the anisotropy of the critical current density is often about the same (~ 20 to 40)
in macroscopie single crystals, in fine oriented grains and in highly textured materials of

YBa2Cu307 even when the associated magnetic anisotropies look quite different. We recall

that the comparison between the real anisotropy of the current and that of the measured

magnetic anisotropy also requires corrections from shape effects.

14.7 INFLUENCE OF M~q AND THE ASSOCIATED CURRENTS J~ ON THE APPARENT ANISOTROPY.

In this paragraph we present extremely simplified and very qualitative formulae intended

to be useful for rapid comparison with experimental data. Quantitive comparison requires

more specialised considerations as developed in references [69, 80-83, 62, 434] (see also

3. I).

We know that magnetic and transport properties are dominated by the equilibrium surface

currents J~ in the two reversible regimes defined either by H~H~~(n or by H~H~~(n

(above the irreversibility line). The manifestation of anisotropy in the equilibrium magneti-
zation M~~ is expected to depend strongly on the ratio A/r~. This shape effect can be quite

large in granular materials, in particular close to T~ where the ratio A/r~ diverges.
To see this qualitatively, we can again decompose the applied field H into H~

=

H cos 0

(along the c-axis) and H~ =H sin 0 (in the a-b planes), generalize equation (60a) of

section12 to anisotropic particles and calculate the corresponding components M~~,~ and

M~~ ~~
of M~~ along the c-axis and the ab planes respectively. We find that for a spherical grain

in the limits A~ » A~~, A~ « r~ and H
~

H~ we can rewrite equation (60a), as
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~'~>
~

~
P 4

(~~~ i~) ~ ~ ~~
~~~~~

~'~~'~~ ~P
4

$'~~ i~) ~ ~~~~/~~~
~~~~~

where we recall that A~~ and A~ are the London penetration depths in the a-b planes (or H

parallel to the c-axis) along the c-axis respectively whereas V~ is the fractional volume of

superconducting material. More exact calculations have been carried out by Kogan and Clem

[62] in various limiting cases and by Stroumbos et al. [434]. We see immediately from the

above equations that for r~ WA we can neglect the ratio A/r~ so that the grain behaves as

perfectly isotropic whereas for r~ comparable to A the magnetic vector M is oriented nearer to

the c axis, if A~~ WA
~

as is the case for most HTSC materials. Neglecting the factors

A/r~, it is interesting to rewrite these equations in terms of longitudinal and transverse

magnetizations for H « H~~

~~~'" ~P Iv
i~~~/~ ~

~/)
~~~~~

~~'~ ~~ ~'T
l

Nz
I

Ny
~°~ ~ ~~~ ~ ~~~~~

It is also interesting to give the equilibrium magnetization of spherical particles in the

opposite limit A/r~ » I (always realized near T~) and for H ~H~~ [62] :

H
rj m~ cos (@)~ + m~~jl + sin (@)~j

M~~ =
V~ (89e)

~ 7~10 A~b '~c + Rlab

H r( [m~ m~~] sin cosM~
~ =

V
~ ~ (89f~

~ 7~ 10 Aab '~c + mab

We recall that the physical origin of the anisotropy of M~~ for H
~

H
~~

has been considered

theoretically by several other workers [417-421]. For H » H~~ the equilibrium magnetization

was calculated rust by Kogan [67] and then by Balatskii etal. [69] in the London

approximation and more recently by several authors [80-83] under more general hypotheses.
Combining and simplifying (for the purpose of rapid comparison with experimental data) the

results of these authors we find that M~(H, 0) can be written in the form (valid in the London

approximation and for H~~ » H » H
~~

and A » r~) :

~ H~~(ar/2 @)

~~~~ ~~

m~b
~~~ ~

~
7~

~~~~~

~ H~~(ar/2 @)

M~~
~ = c~

" sin (90b)
m~ 4

ar
i~

with

3 A~~ In (d/f~~) 3(A
~

+ A~~) In (d/f~)
~~

r~ In (A ~Jf~~) ' ~Y 2 r~ In (A jf~)
~~~~~

$
d

=
(about the vortex spacing)

B
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and [69]

Hcj(°)
=

~~" j (90d)

cos @~ +
fi sin @~

mab

We recall that here H~~(@) is the first critical field for H oriented in the direction, d is the

vortex spacing and m~~ and m~ are the masses of the normal electrons moving within and

perpendicular to the a-b planes respectively. In the above formulae we assumed (without
rigorous proof however) that the correction terms from size effect (I.e. terms A/r~) are the

same as for H
~ H~~(@) in equations (89a, 89b) and that r~ » A. It is possible to check that if

we put
=

0 or
=

ar/2 in the above equations we recover equation (3) in the London

approximation («
=

p
=

I and r~ » A). Again, we see that for highly anisotropic materials

with m~ » m~~, M~~ is essentially perpendicular to the a-b planes whatever the direction of H

except in a very small angle ho, of order m~Jm~, around the a-b planes. Note that contrary to

the case H w H~~ this property holds true here whatever the ratio A/r~.

14.8 CoNcLusIoN. In this section, we have emphasized the fact that the measured

magnetic as well as transport critical current densities generally correspond to a complicated
distribution (both in strength and direction) of B(r, 0) across the sample and includes

contributions from different currents J~~ the weight of which depends on the experimental
conditions.

It is also important to have in mind that conventional magnetometers measure only the

projection of M along the direction of the applied field H. As a consequence, in this case the

signal represents the longitudinal magnetization (M~) and gives no information on the

transverse component (M~) which, in some conditions, can be much larger than the

longitudinal one. The former is often determined by means of the torque technique.
Comparison between magnetic and current anisotropies is meaningful only after appropri-

ate corrections of the distribution in the grain dimensions and of the residual desorientations

of the grains.
It is clear from the above considerations that rigorously speaking the conventional scalar-

critical state breaks down in the presence of a large anisotropy and cannot be applied to

calculate the hysteresis cycle and the associated critical currents, except perhaps in the

limiting case of infinite anisotropy where the decomposition model proposed here becomes

valid. For a more exact solution the problem of the irreversible magnetization must be treated

in the more general critical state formalism by taking into account the anisotropy of the elastic

constants of the vortex lattice (see Ref. [110] and [419]). This is a very hard task compared to

that of the equilibrium magnetization which itself is very complicated.
Finally, the manifestation of anisotropy in equilibrium magnetization depends strongly on

the dimensions of the sample and grains via the ratio A/r~ and is different from that of the

irreversible magnetization. Generally, the latter is larger because it is related to the

anisotropy of pinning forces themselves probably related to the anisotropy of H~~.

15. Demagnetizing effects ; the magnetization of thin films.

is. I INTRODUCTION. In the major part of the preceding analysis we have neglected
demagnetization effects except in the case H~H~~ (Sect.12 and 15). Here we wish to

reconsider again the low-H limit briefly on the one hand and the extreme example of very thin

films in transverse applied fields on the other hand. The treatments of these two cases are
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relatively independent from each other and the reader interested in thin films can ignore the

first point.

IS. 2 DEMAGNETIzING EFFECTS IN THE Low H LIMIT sucH THAT Ar « R. Quite generally,

the M versus H relationship is govemed by the usual demagnetizing field when the flux

penetration distances Ar resulting from a small variation AH of the field are much lower than

the macroscopic dimensions of the specimen (Ar«R). This claim is true whichever the

physical mechanism responsible for Ar, in particular for the virgin magnetization

(Ar
=

R r*, Fig. 3), the reversal cycle (Ar
=

R rj, Fig. 3), the screening distances

(Ar
=

8 ; Eqs. (14f-g)) or for the elastic depth A~j (Eq. 73b)). This is also generally the case

for R » A and H « H~ (where H~ is the field of complete flux penetration) or H w H~~ since

the penetration distance is equal to the London penetration depth in this latter case.

This low field behaviour is illustrated in figure 86 which shows the initial magnetization
M(H) as a function of both H and the angle 0 of H with the c-axis, for a single crystal of almost

spherical shape (Fig. a) and oriented grains embedded in epoxy resin (Fig. b). Note that the

t
~

H.iF
H

_--

r~

~~/
40 H(fi)

'
Hwff

' em q
9=0°

~
i

~

.'

~_~~,
~ii

'-----

,

--

j

a b

Fig. 86. Angular dependence of the low H magnetization. Left a large, almost spherical ir~ shape
single crystal. Right : oriented grains diluted in epoxy resin (about I fb concentration). Inset : because

of the shape anisotropy of the demagnetizing factors of the grains H~~ differs from H both in amplitude
and direction (see next Sect. 15), [380].



1224 JOURNAL DE PHYSIQUE III N° 7

initial slope of the response of a highly textured YBa~CU~07
-~

thin film is almost infinite

(because of the large demagnetizing factor) and cannot be visualized at the field scales

(~ 40 G) of this figure.
In many examples investigated in our laboratory we found that for large enough samples or

grains (r~ » A) the initial magnetization is given by

M= V~
~~ (H«H~, r~»A). (91)

4ar(1-N)

We recall that V~ is the packing factor (or the fraction) of superconducting material. The

same result holds for sintered granular samples as illustrated by figure 87 (from [380] which

shows that the hysteresis cycle of two sintered pellets having different radius R (but the same

hight L) exhibit the same initial slope after correcting for the macroscopic demagnetizing field

[380]. It is useful to note the following formulae which allow us to derive V~ in the limit

r~ WA. These results are valid for completely decoupled grains as well as for sufficiently

compact specimens (V~
~

80 9b for instance). Note however that the case when the dipolar
coupling between grains is neigher very strong nor very weak (I.e. intermediate limit) and the

Josephson coupling negligible is the most difficult to treat theoretically and requires
accounting correctly for multipolar interactions [437].
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Fig. 87. The low field hysteresis loops of two sintered pellets of YBaCUO (1: 2 : 3, R
=

0.5 and

2 mm, the same length 5 mm) before (left) and after (right) correcting for the macroscopic

demagnetizir~g field [357].

For single crystals and oriented grains diluted in epoxy resin the above expressions (91) can

be combined with the sum rule connecting the demagnetizing factors Nj and N~ in the

principal directions of the grains (assumed to have oblate ellipsoidal shapes) :

2Nj + N~ =1. (92a)
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The resolution of equations (91) and (92a) allows us to determine from experiments both

these demagnetizing factors and the fractional volume V~ of superconducting material.

(Generally NJ and N~ correspond to an applied field directed along the ab planes and along
the c direction respectively). If r~ » A we have :

~
xl

Vp
=

8
'~

2 ~~
~xi

' ~~~ ~ ~~ ~~~~~
~

2 x j X'

,

Ni
= ~ ~~ + xi '

Here xi and xi are the initial susceptibilities (x' or x~c) for H respectively parallel and

perpendicular to the a-b planes. Naturally, when possible, the demagnetizing factors can be

derived directly from the dimensions of the (ample using analytical formulae. For an oblate

ellipsoid one has :

N~
= ~~~ [u arctan (u)]

,
u =

j~~ (93a)
u

~ ~

We recall that 2e and 2R refer to the thickness and the diameter of the sample
respectively. For other orientations of the applied field see reference [357] and below.

To help the analysis of experimental results in the field domain He H~~, we would like to

add two helpful remarks.

(I) The first one concems the determination of the angular dependence of H~~. It is indeed

clear that, except for spherical samples with R » A, the effective field H~ii,
~

differs from the

applied field, H(0), both in amplitude and direction. Let 0~ii,~ be the angle of

H~ii,
~

with the c-axis and assuming that R » A we obtain

H~ii,
~

=
H j~°~ ~ ~~

~
+

~~~ ~ ~~

~
(93b)

(1 N
~

) ( l N )

I N
~~~~ ~~"'~

l N
~~ ~ ~~~~~

As a consequence, the real H~~ is related to the apparent one (I.e. that determined naively

from a direct experiment) by these two equations.

(2) It is interesting to write the total magnetization in term of a longitudinal component
and a transverse component :

~
~

~ cos ( )2 sin g )2
~ l -Ni ~

l -Nj
(93d)

M~
=

H sin ( cos ( (93e)
Nl I Ni

It is to be recalled (Sect. 14) that when A is comparable to R there is another cause of

anisotropy : the difference between A~ and A~~ which tends to align M along the c-direction.

15.3 DEMAGNETIZING EFFECTS IN THIN FILMS AT ARBITRARY APPLIED FIELD. We know

from the previous sections and discussions (in particular from Fig. I in Sect. 2 and Fig. 82a in

Sect. 15) that the local current density in thin films generally results from a complicated
combination of the currents J~, J~~,

~
J~~, ~~

and J~, ~~
(accepting again that the critical current

can be described by a combination of these parameters).
The spatial distribution of the axial field H~(r) in a thin superconducting film and the
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magnetization associated with it via the current
J=~'~ (aHlar-aH~laz)

were first
c

calculated numerically by David Frankel [438] (using an iterative procedure). Frankel

assumed that J obeys a Kim model but neglected the radial contribution (aHlaz) to J.

Dkumling and Larbastier [439] extended the numerical calculation (using finite element

analysis) to thicker disks (with a variable aspect ratio e/R) and, more importantly, included

radial effects associated with the radial field H~(r, z) generated by the screening currents

themselves. The case where J depends on H following a Kim form was also investigated by
Conner and Malozemoff [440] more recently. Due to the complexity of the problem only the

saturation magnetization was reported in the main results of the above studies which can be

summarized as follows :

I) The saturation magnetization is still given by Bean's model and is thus proportional to

the radius R of the disk.

2) The field of full flux penetration (or equivalently current saturation) is almost

independent of R but scales with e, half the thickness of the film.

3) Contrary to the usual
«

long cylinder
» geometry, the critical current density is related

aH~
principally to the gradient of the radial fields (I.e. to in cylindrical coordinates or to

az
aH~ aH~

and in cartesian ones) rather than to the usual aH~lar term (remember that the
az az

applied field is along the z axis).

4) According to Diumling and Larbastier [439] difficulties can occur in deriving the field

dependence of J from the measured magnetization. In particular, the field dependence of M is

less steep than the field dependence of J.

5) In addition, a curious experimental result not generally noticed in the literature is that

the hysteresis cycle of highly textured HTSC thin films is strongly dissymmetrical with respect

to the field axis. This leads to an apparent reversible mgnetization (M+ + M~ )/2, sometimes

larger than 4103 (uem/cm3). Some possible physical origins of this apparent reversible

magnetization will be discussed later.

As can be expected, the numerical calculations carried out in references [438-440] are

extremely tedious even for approximate solutions. Besides, anisotropy effects (not considered

in the examples above) and the real variation of J with H (which is, as we have seen in

Sects. lo and I I, more complicated than the simple Kim form even for single crystals) make it

very hard to test these calculations by means of experimental results on HTSC thin films.

Here we would like to consider the hysteresis cycles of textured thin film from a rather

qualitative but somewhat more analytical approach than in the above examples. Our

treatment is extremely simple : nevertheless, we shall see that it reproduces most of the

characteristic features of the magnetic properties of the superconducting thin films enumer-

ated just above.

15.4 A SIMPLE ANALYTICAL CALCULATION OF THE HYSTERESIS CYCLE OF THIN FILMS. TO

derive the hysteresis cycle of thin films and see how it is related to the local currents we use

here a very simple model which only requires a few lines of analytical calculations and which

avoids entering into the complexity of resolving the general critical state equations in the

presence of strong demagnetizing effects. Our working hypothesis are as follows :

I As in the case of long cylindrical samples, we assume that in response to the applied field

the superconducting film will develop shielding currents starting from the edges of the disk.

These currents will propagate across the film until a certain radius r for which the self-field

induced by these currents at the centre of the film (I.e. at r =

0) equals in amplitude (but
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opposite in direction) the applied field H. Thus, we have H~~ji(r
=

0)
=

H~~if,z(r
=

0)
=

H and H~~ji, ~(r
=

0)
=

0 by symmetry.
2) The infinitesimal field 8H~~ji induced at the centre of the film by an elemental current

loop of radius r and carrying a current 81 is given by the very classical formula for a single tum

coil (Fig. 88a) :

8H~~ji(r
=

0)
=

~ " ~~
with 81

=

2 Je 8r.

Putting this equation into the integral equation (94a) and assuming that flux has penetrated
the film down to a circle of radius r* gives :

H~~ji(r
=

0)
=

~) l~
~ ) ~~

=

~)
eJ In (R/r*) (94a)

r* ~

or equivalently

j

r*
=

R e
~ "~

=

R e"~~P (94b)

Hi~
=

~ '~ Je. (94c)
c

From this formula we can define a full penetration field (right hand side of Eq. (94b)) which

is exactly equivalent to the Bean field H~ except that the radius R of the sample is replaced
here by e. The magnetization is then easily derived by means of the general integral equation
relating M and J which is rewritten just below. From this equation the virgin (or initial)
magnetization is given by (in practical units in which c entering the above equations in cgs is

replaced by lo) :

M(= ~~~l~Jr2dr=- ~ ~(~~-~j =-~~ (l-~j.
(95a)

10R
r*

10R 30 R

Using equation (94b) for r* leads to

M((
=

~~
[l e~~~~~] (95b)

and

Mcyc ~
Msat

"

fl
(95C)

where the sign + and are for the upper and lower branches of the cycle. From the above

equations for the virgin curve we can deduce several remarkable properties.

I) First of all, it is very interesting to note that Taylor's expansion of the virgin
magnetization near H

=

0 gives

~
H R

(95d)Mvg
" G I

which is almost exactly (within a factor of ar/2) the value obtained using the demagnetizing
factor N

=

(I gre/2 R) of a very thin oblate film in low transverse field.

The physical origin of this gr/2 increase factor is interesting to understand for its own right :

our calculation is based on the ideas that J is constant and that the magnetic screening is

always complete at the centre of the specimen (I.e. H~~w(r
=

0)
=

H). The latter condition
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is an approximation and is in fact too strong : we know indeed from standard textbooks that

the axial component H~~j~,
~

induced by a single tum coil passes by a minimum at the centre of

the coil (this is easily justified by symmetry arguments), then through a maximum at

r =
R and finally tends to zero at long distances (Fig. 88c). This result holds for the whole film

except that the maximum is now smoothed out and is located somewhere between

r =

0 and r =
R. This is illustrated schematically in figure 88d which is consistent with the

numerical calculation of [438].
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Fig. 88. a) A coil made of a single tum carrying a current J(2 e &r). c) The elementary axial field

induced by the elementary coil (a). b) Sketch of the current loops in a thin disk and the associated

induced axial field (d). This field is obtained by adding up all the contributions of the elementary fields

sketched in (c), see also [438]. It is to be recalled that, to a very large extent, J is not imposed by this

axial field but by the radial field.

2) Considering again the virgin curve we see that as H is further increased the signal
reaches about 95 9b of its saturation value M~~~ at H

=

Hi~ (Eqs. (95a, 95c)), thus justifying

our definition of Hi~ (Eq. (94c)) as the field of complete flux penetration throughout the film.

3) The saturation value of M is still given by the usual Bean's formula (provided that the

usual hypothesis that J is not strongly dependent on H is justified).
4) Repeating the same calculations as for the virgin curve allows us to derive the reversal
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branch of the hysteresis cycle. The result is :

~
jR ~-

3(H~~ H )
M~j

=

2 exp (96)
3° 2 HPf

It is of interest to note that the width of this reversal branch is equal to about

2 Hpi and that its initial slope is the same as that of the virgin one. Therefore as for the latter it

is controlled by the film demagnetizing factor N : to see this we replace H~i in equation (96) by
(94c) and take the derivative dM((/dH at H=H~~~. We then find the same slope

dM$/dH (formula (95d)) at H
=

0.

15.5 WHAT Is THE CONTRIBUTION oF THE RADIAL FIELD H~ To J~~~ IN THIN FILMS ? To see

the physical origin of the apparent magnetic current in thin films let us again consider a disk

geometry with uniform current density (Fig. 88b) placed in a transverse field. Applying
Ampere's theorem to the closed path (r) of this figure and noting that by symmetry we must

have H~
=

0 at the middle of the film (I.e. at the symmetry plane z =

0) we get :

H~ R + [H~(R ) H~(0)] e =

~
'~ JeR, (97a)

or

j
=

S Hr
~

Hz (R H~(0)

4
'T e R

(97b)

Here H~ is the effective radial field averaged at the surface whereas H~(R) and

H~(0) are the effective axial field along the z axis at r=R, (edge of the slab) and

r =
0 (the centre of the slab) respectively.

From the results of the preceding paragraphs we know that magnetic saturation of the film

is complete for an applied field H=Hi~. The contribution of the self field to the

corresponding effective field H~(R ) can be estimated directly by means of Biot and Savart's

law. In the limit R We and to a first approximation one has :

H~ (R ) H~ (0)
=

2 eH~ (e) (for low field such that H
=

H ~) (97c)

Here
e

is a factor of the order of + I for the ascending field branch of the cycle and I for

the descending curve (in the current saturated state). Putting in equations (97a, 97b) and

using the value of Hi~ given by equation (94b) we find that the average contribution of the

radial field, respectively the axial field, to J are about

J[1 2 I and 2 J I (97d)

Consequently, in the saturated cyclic state the current is principally govemed by the radial

field H~. Note also that the local critical current density J(r) is not rigorously constant across

the sample. This is particularly true for the current component related to H~. We have indeed

seen (Fig. 88c) that the sign of H~ changes near the edge of the film, but this contribution is

negligible in thin films.

15.6 WHY IS THE CRITICAL CURRENT DENSITY SO HIGH IN THIN FILMS AND WHAT IS THE

DIRECTION OF THE PINNING FORCES IN THE FILM ? Presented in figure 89a is a typical
example of the hysteresis cycle of YBa~Cu307 thin films. It is clear that this cycle exhibits all

of the characteristic properties already enumerated. In addition, the magnetization varies
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Fig. 89. a) Example of a thin film hysteresis cycle of YBa2Cu~07. R
=

I mm, e
=1500A and

J~~~ estimated to be about 2 x 10~ A/cm~, b) Suggests that because of both the anisotropy of the layered

structure and the demagnetizing field the vortices prefer to lie in the a-b planes at low B. The dashed

curve of (b) would correspond to the isotropic case. At large B (Fig. c) the interaction between vortices

favours straight lines hence diminishing the radial field and the associated current.

significantly with H and is quite dissymmetrical with respect to the H axis. Here, we have

neglected such field variations, the possible physical origins of which are discussed briefly
below.

We show in figure 90 a calculated hysteresis cycle using the various equations (95b-96)
derived previously for thin films assuming J independent of H. Also shown for comparison is a

straight dashed line which corresponds to the calculated magnetization of a long cylinder
assumed to have the same radius R and the same current J as the film (I.e. R~~j=

RRj~ and J~~j =

Jiij~ in both cases the magnetizations are given per unit volume). In the field

domain (H
~

2 kG of this figure one has M
=

H/4 ar (with a very good approximation) for

the cylinder the magnetization of which per unit volume is almost three orders of magnitude
lower than that of the film (note the difference between the corresponding magnetization
scales).

The following remarks can help understanding the field behaviour of the cycle.

(I) Firstly, the magnetization is a factor of 2 to lo higher than in usual single crystals and

oriented grains.
(2) Also, if one excepts the very low field region close to H~~ (not visible in Fig. 89)

M(H) drops with H much more rapidly here than in single crystals. We believe that a

significant part of this drop is due to anisotropy. Another suggestion is that the measured

signal includes somehow a large contribution from the radial component of the equilibrium
magnetization.

(3) From the previous paragraphs we know that when the applied field reaches the current

saturation value, H
=

Hi~, H~ and H~ become comparable in magnitude and are both of the

order of Hi~. This implies that the Lorentz force is directed far away from the c-axis : since

tan (@~)
=

H/H~
=

I one has @~ =
45° where @~ is the average angle of B with the c-axis.
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Fig. 90. Calculated hysteresis cycle for a thin film 500 1thick and J
=

3 x 10~ A/cm~, R
=

0.5 mm.

Shown for comparison as a dashed lir~e (right scale) is the expected M(H) curve of a long cylindrical
sample with the same R (R~~j~J~~ =

R~j~ ~ e) and the same J as the film and in the same field range. Note

the factor 500 in the vertical scales.

15.7 DlscussloN AND coNcLusIoN oF THIS SECTION. The reason why the critical current

is much higher in thin films than in single crystals is not clear at present, at least for us.

However, recent microscopic observations [441-444] revealed the presence of screw dislo-

cations (in thin films) the density of which was found to be correlated with the critical current

density. In section 14 we proposed another mechanism based on intrinsic pinning, to explain
the transport current of thin films. Here, we wish to show that our mechanism can explain the

magnetic data as well. This is based on the following remarks.

(I) In the field region where H~ is very low the vortex segments are in the a-b planes and

thus fully submitted to the strong intrinsic pinning forces (inset Fig. 84d).
(2) The field dependence of the experimental Jm~g is probably controlled simultaneously by

a direct field dependence (I.e. at fixed direction of BJ varies with the amplitude of B) and by
the anisotropy. (The local direction of B changes as the applied field is varied.) Such

dependence would be introduced through B and @~ dependences of the elastic modulus of the

vortex lattice, particularly the tilt and shear stiffness, c~ and c~~ respectively.
(3) We expect that for highly anisotropic materials the radial and the axial portions of the

vortices are decoupled (pancakes). Then it is difficult to imagine how the screw dislocations

(which are perpendicular to the film plane [441, 444]) can pin the radial segments of the

vortices which, according to the above calculations, contribute strongly to J.

Intuitively we expect that the layered structure will help the bending of the vortices (since

an isolated vortex always prefers to lie between CUO sheets), thus increasing the radial field

H~ and consequently J via equation (96b). This is schematized in figure 89b which shows that

the bending of the lines would be reinforced at low flux density and lowered at high fields.

Consequently, we believe that because of the very high anisotropy of layered superconduc-
tors the critical current J of thin films should be to a large extent imposed by intrinsic pinnings
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at low fields and would diminish with H because of the fact that repulsion between lines would

oppose the bending of the lines and hence decrease H~. Lastly it is possible that the

equilibrium magnetization is also enhanced considerably by the radial field. One way to test

this suggestion is to investigate relaxation effects which should be very weak in the case of the

equilibrium contribution. This can explain some of the asymmetry of the hysteresis cycle with

respect to the H axis.

16. Surface barrier, surface pinning and surface imperfections.

Surface pinning has been widely investigated in conventional materials. Its manifestation in

the magnetic properties of conventional materials has been considered by Bean and

Livingston [445] and analysed in details by Ulmaier [446] in particular in relation to the

hysteresis cycles of hard superconductors. This is illustrated schematically in figure 91 which

shows how the so-called minor cycle would look like in the case where the critical current is

dominated by surface pinning (bottom left Fig.). More recently, surface barriers and surface

pinning have been invoked by several authors [213, 348] to explain some anomalous

behaviours of the hysteresis cycle of HTSC in particular near T~ [348]. However, in our

opinion there are not yet many convincing proofs in favour of such surface effects in the

literature. In addition, we have seen in sections 7 and 8 that correct descriptions of the

hysteresis cycle must take into account properly the equilibrium magnetization, especially the

influence of its screening field induced by the Abrikosov-London current J~, on the

irreversible magnetization (see term 4 M~~ of Eq. (39)). The influence of this shielding field is

particularly important near T~ as the contribution of the equilibrium magnetization becomes

very essential there. The role of the demagnetizing field, which is much more complicated

0
Hct ~cz ff

~ _~

_~
" ~ ~~

/ /
l

~
~

'-- '--/

4

~
Fig. 91. Schematic illustration of the shape of the minor hysteresis cycle [446] when the critical

current is imposed either by surface currents (bottom left) or by usual bulk current (bottom fight).
Recall that this is only valid in the critical state limit and for conventional magnetic measurements. For

instance, the situation is quite different when M is measured by a tiny Hall probe fixed close to the

sample.
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than in homogeneous ferromagnetic materials, see Sect. 14, must also be considered correctly

for quantitative interpretations. When analysing either the minor loops or the virgin curve or

the reversal branches of the cycle it is important to take care of the experimental technique
employed (see Fig. 3 of Sect. 2 for the definition, of these branches). For instance, the M

versus H equations for these curves are quite different whether they are measured by means

of a classical magnetometer placed far away from the sanlple or via a Hall probe fixed on that

sample. To our knowledge, up to now these problems are generally not accounted for in the

literature on HTSC. There are arguments (but only valid in the framework of the critical state

model) that the minor cycle determined by such a Hall probe will always (I.e. even in the

absence of any surface pinning) be similar in shape to that obtained using a magnetometer in

the presence of extrinsic surface pinnings (Fig. 91, bottom left). In addition, demagnetizing
fields are unavoidable there (end effects) and depend not only on the geometrical shape of the

sample but also on the whole distribution of the current within it.

From the theoretical point of view, the interaction of the surface of the specimen with the

vortex lines can be established in at least three distinct ways the most common of which are

(I) extrinsic pinninig due to pinning centres near the surface, (2) intrinsic or thermodynamic
surface barriers and (3) surface weak links connected with extended defects. Let us now

discuss each of these effects consecutively.

16,I SOME CHARACTERISTIC FEATURES OF EXTRINSIC SURFACE PINNING IN MAGNETIC

MEASUREMENTS. Now it is important to note that, so far as surface pinning is concemed it

has the three very distinctive signatures described below (assuming that the thickness of the

«
surface layer

»
is infinitely thin as compared to the sample radius).

(I) The magnetization curve in particular the minor cycle, has roughly a parallelogram-like
shape (when J is independent of H as in the initial assumption of Bean) with sharp angular
points.

(ii) The magnetization per unit volume becomes independent of the macroscopic radius R

of the sample (instead of being proportional to it as in the Bean model) whereas the apparent
(or average) critical current density (as defined by the Bean model) decreases as

I/R. Moreover the demagnetizing field is now given by the same formula (H~
=

H + 4 arNM)

as in ordinary ferromagnets (homogeneous and isotropic).
(iii) A third and quite subtle feature of the surface barrier appears when the associated

current density depends on H : J
=

J(H ). Then, if the equilibrium magnetization is negligible
the hysteresis cycle should be symmetrical with respect to the field axis, after correcting for

the demagnetizing field in the usual way. In particular, this means that any positive peak in

the hysteresis cycle should be accompanied by a symmetrical peak and vice versa. We recall

that the low-H peak encountered previously, particularly in section 7, is always symmetrical
with respect to the origin and not to the field axis.

16.2 FORMAL ANALOGY WITH TUBULAR SAMPLES AND RINGS. In fact the general problem
of surface barriers is not easy to solve except when the total magnetization is strongly

dominated by surface pinning and when the specimen is a long cylinder with negligible
demagnetizing field (we have noted that the latter approximation is more difficult to satisfy in

measurements using Hall probes because of end effects). In this case the problem becomes

quite simple and is indeed equivalent to that of a hollow cylinder of thickness e equal to the

thickness, of the surface pinning barrier. The quadrangular shape of the minor cycle of

figure 91 (bottom left) and the angular points of the same cycle are then easily explained. This

is simply because the variation of M with H is abruptly interrupted when the flux tkont (and
the associated currents produced for example by the reversal field) arrives at the inner surface
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of the tube (*). This is very easily demonstrated by calculating the magnetization of a tubular

sample.
Let us assume that the surface current J~~ is independent of H and let e be the thickness of

the tube (I.e. the thickness of the equivalent surface barrier) of outer radius R. The virgin
magnetization is then given by the same equation as equation (83b) of section 14 except that

the virgin interval is now very narrow and limited to the field domain H~H~~=
~

"

J~~ e (which means that the field H~~ of full flux penetration is now proportional to e and
5

not to R). Note the use of the subscript
« sp » to define quantities related to surface pinning :

we have calculated the whole hysteresis cycle in the presence of two field independent

currents, one (J~p) is assumed to be restricted to an outer layer of thickness e and the other

(called J as usual) is defined in the rest of the sample, I.e. in a cylinder of radius

R e. The corresponding cycles are presented below (Fig. 92). Here for simplicity we only
give the equations for J

=

0 in practical units :

~~~
Iv ~

~i~ J~R ~ ~i~J~R
~j

~~~~~

with

H
~ Hp~

=

~'~
RJ~p (98b)

eJ~~ e
e2

Mcyci " j I # + j p
,

H
~

H
s

(98c)

It is interesting to note that :

(I) The equation of the virgin curve is independent of the thickness e of the barrier. The

same statement is equally true for the reversal curve the equation of which is not given here.

(2) The derivative of M(H) is discontinuous at H
=

H~p with

~ ~~i ~~ ~~~~i ~ ~~ ~ar ~ ~i
~ i~ ~~~~

As we can see this discontinuity disappears for e
=

R. The same kind of calculation leads to

a discontinuity in the reversal magnetization too and explains the sharp angular points of the

minor cycle of figure 91. Formula (99) shows also that because of the factor e/R the

discontinuity in M (H ) and more generally the angular points in the hysteresis cycle should be

much more pronounced in large samples (single crystals) than in small samples (granular
materials for which e can not generally be very small compared to the radius rg of the grains).

We can make the above formulae a bit more general by adding to the current

J~~ of the surface barrier of thickness e a less intense bulk current J located in the rest of the

sample (also independent of H), that is in the inner region of radius R e. This is performed
in figure 92 which shows the calculated cycles in two cases: (I) a surface current

J~~ =

l~iA/cm~ limited to a surface barrier of thickness e
=

20 ~m and a bulk current

J
=

Il~'A/cm~, (2) the same values as in (I) except J
=

lli A/cm~. In these calculations e is

(*) Note that such an abrupt interruption in the variation of the measured magnetic flux is expected

to always happen (at least in the critical state model) when using a Hall probe for magnetic

measurements.
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hickness e 20 ~Lm, and variable radius R. The current is lower in the
rest

of the
(I.e. in the

ylinder of radius R - e). The values of the critical
urrents

and those of the radii

sample are varied as
ndicated

in the

kept constant (20 ~m) but rg is varied from about 300 to 20 ~m. It is to be noted that :

(I) For R=20~m one has e=R and the notion of surface pinning looses any
signification the cycle is in fact simply that of a long filament.

(ii) The comparison with experiments can be more complicated than predicted here when J

depends on H. This is generally the case in the low-H peak region (H » H~~). Therefore, the

comparison with experiments would be more meaningful far from this peak region. This

implies that the reversal curve would generally be closer to the experimental data than the

virgin one.
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16.3 ON THE PHYSICAL ORIGINS OF THE VARIOUS SURFACE EFFECTS. Usually, the

interaction of the surface of the specimen with the vortex lines can manifest experimentally in

at least three distinct ways the most common of which are now considered.

16.3. I A perfect su~fiace behaves as a thermodynamic barrier for entry and exit of vortices.

A perfect surface leads to a severe distortion of fields and currents of any vortex line located

within a distance of the order of A or less from that surface. The physical requirement that the

currents of the vortex are necessarily tangent to the surface leads to the introduction (to
facilitate the calculation) of a vortex image of opposite polarity to the real one. These two

vortices interact in exactly the same way as two real vortex lines except that the interaction is

attractive here whereas it is generally repulsive within the VLL (the expression of this

interaction can be found in most textbooks concemed with superconductivity ; it is generally
given in terms of standard Bessel functions). Moreover, as the vortex crosses the London's

penetration shell around the sample it is submitted to a Lorentz force dso x J~ due to the

London-Abrikosov current J~(r)
m

4 arm~exp[- r/A where r is the position of the vortex

with respect to the surface and M~ the magnetization induced by these surface currents in the

presence of the barrier. Note that : (I) in the absence of any barrier M~ it is simply equal to

M~~ and (2) for non cylindrical specimens M~ is determined by the local demagnetizing field at

the point r of the surface under consideration. The total energy involves also the usual

unperturbed energy of the VLL. The consequence of all this is that a perfect surface behaves

like a very high potential barrier opposing both the entry and the exit of vortices. According

to de Gennes ([118] p. 76-80), in terms of magnetic field, this barrier would be as high as the

usual thermodynamic field H~
=

fi
at relatively low vortex density (H m H~ ) and for

isotropic materials. This calculation was extended to higher fields by several authors (see Ref.

[19] p. 339-41 and Refs. herein). The case of HTSC have been considered by several people
[447]. Damjanovic and Simonov [448] found that H~ is again given by ~Po/(4 arA~~ f~~)

=
H~.

More remarkably, these authors found that H~ is practically independent of the direction of

the applied field with respect to the c-axis (in qualitative agreement with the fact that

H~ is isotropic in the London approximation model). Using a different approach (Josephson
interlayer coupling model) Buzdin and Feinberg [449a] found that this result holds near

T~ but H~ becomes weakly anisotropic at low temperatures, if the transverse coherence length
f~ becomes smaller than the interlayer distance d. For the sake of comparison, it tums out

that in a Josephson junction, the entrance field is approximately equal to the first critical field

Hj of this section [449b]. In practice, this situation can be realised only in the case of Bi based

compounds and not in that of YBa~CU~O~ which is the most investigated systems at present.
In the case of high T~ materials the calculated H~ is of the order of 10~oa (at

T « T~) and is thus about three orders of magnitude higher than the experimental penetration
field (= 50 oa for YBa~CU~O~ along the a-b planes and much less than this value for Bi based

compounds) generally identified as H~~. This huge difference between the calculated and the

experimental values holds for T as high as 0.99 T~. The absence of any evident surface barrier

of significant magnitude (compared to H~) is often ascribed to surface imperfections which are

thought to enhance considerably the local demagnetizing fields and hence help overcoming
the thermodynamic barrier in these regions. However, as we shall see below, we believe that

the non observance in experimental data of a thermodynamic barrier of this kind is practically
impossible to explain in terms of local demagnetizing fields alone.

Physically, the barrier presented by perfect surfaces would be very similar to the surface

barriers encountered by Bloch and N6el domain walls in ferromagnetic materials. So by
analogy with the latter it would be interesting to introduce a nucleation field, H~, and a

propagation field H~~, for the individual vortices. We know that because of the very large
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anisotropy of HTSC it is not necessary to consider that the vortex is a rigid line. Then we can

imagine that the nucleation of a given vortex can first take place by means of a small vortex

portion (pancake) which can be much more easily induced (than a whole rigid vortex) by the

local demagnetizing field as well as by thermal fluctuations. This
«

slice
»

of vortex will then

develop (or propagate) more easily through the specimen. In the absence of any other kind of

pinning force than the thermodynamic barrier (perfect material) the propagation field would

then coincide with H~~. We know however (see Fig. 50) that the apparent H~~ is in practice

larger than the true one because of defects (unavoidably present in the material) which

oppose the propagation of the vortex lines. We have noted that in addition to the action of the

local demagnetizing field temperature fluctuations can also help the vortices to jump over the

effective surface barrier [213]. The fact that the relative difference between the measured and

the calculated first penetration fields are practically independent of T suggests that the

effective surface barrier is much smaller than the other energy scales intervening in J and M

measurements.

16.3.2 Su~fiace impe~fiections can behave like localized weak links. We have just mentioned

that in real experimental conditions, the surfaces are imperfect and present various kinds of

defects with different spatial dimensions. Such imperfections play a great role in microwave

losses and have been extensively investigated in the past [450-452] in relation to conventional

superconductors. Surface imperfections are not equivalent physically and not equally efficient

in perturbing the flux penetration within the sample. Some imperfections are rather difficult

to visualize by usual microscopic observation techniques. This is because these methods

generally require polishing the sample thus removing some imperfections but adding new

(undesirable) ones. In addition, usual microscopic observations do not make any distinction

conceming the weak or strong superconducting link character of the imperfection. A new and

promising E.P.R, method is being presently developed [453-455]. It investigates surface

imperfections via the perturbations of the field H(r) near and immediately above the surface

by such imperfections. Conceming more usual magnetic measurements some surface

imperfections can be considered as «surface weak links
»

which give rise to magnetic
hysteresis at very low field. In addition, in the presence of sharp features near such weak links

the local field seen by the link can be considerably increased by the demagnetizing fields

created by these features. As a consequence, the combination of the
«

surface weak links
»

and the local demagnetizing fields would in principle lead to the existence of hysteresis effects

and losses whatever small the applied field is.

In practice, however, we expect that the relative value AM/M of the usual irreversible

magnetization associated with these surface imperfections would be of the order of

~~~ (or in the worst case of the order of
~~

) where 8u is the effective volume occupied
wR 2 arRA

by the surface
«

weak links ». It is to be added however that such imperfections can lead to

large ac-losses (due to flux pinning) at very high frequencies as the latter increase as w.

However, at very high frequencie the losses are less due to flux pinning (or trapping) than to

viscous flux flow via the normal electrons of the vortex cores located in the
«

surface weak

links ». Indeed these normal electron losses are expected to increase roughly as
w(

16.3.3 Su~fiace pinning in the vicinity of the surface. As discussed previously in detail the

term «
surface pinning

»
is related to an anomalous increase of defect concentration very close

to the surface and thus to a large
«

surface
»

like critical current density. It is of interest to

note that such a layer of surface pinning can exist naturally in YBaCUO if the annealing time

(in oxygen or in air) is not sufficiently long to allow for oxygen to diffuse through the whole

sample. It is often found that large single crystals are oxygenated only in a limited penetration
depth beyond which the material is poorly superconducting and hence would have a very low
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current J in these regions. In the discussion about
«

butterfly
»

shaped hysteresis cycles
(Sect. 7) we have seen that such effects could lead to surface like hysteresis loops of the sort

depicted in figure 92.

16.4 CoNcLusIoN. In conclusion of this section we have tempted to clarify and identify
surface effects particularly extrinsic surface pinning (Fig. 92) in magnetic measurements.

Conceming the thermodynamic barrier opposed by the surface to the vortices it is probable
that in HTSC both local demagnetizing fields, local weak links, thermal fluctuations and more

importantly anisotropy add their effects to overcome this barrier.

17. Thermal fluctuations, collective pinning and irreversibility line.

Up to now we have concentrated our efforts upon the interpretation of the experimental
results from the usual critical state (and somewhat phenomenological) point of view (a major
exception is Sect. 13). This approach was first of all intended to relate the experimental data

(M (T, H, t, R, rg), x"(T, H, w, R ), J~ T, H, t, R) to the local critical current density and to

other micro and macroscopic factors such as anisotropy and demagnetizing effects and

granularity. It is clear from the ensemble of the previous results and conclusions that the

understanding of the so-called irreversibility or depinning line requires as a preliminary
condition the correct interpretation of the measured quantities both near and far from such a

line, taking into account the various parameters quoted just above. The problem of thermal

fluctuations of the vortex position ( (u~) proportional to n, the physical nature of such a line

and the modification of the flux creep model by such fluctuations are not independent. In the

spirit of the present paper these questions can be summarized into a single one : why does the

critical current density drop so abruptly with T, H and t ?

From the discussion of section 4 we concluded that the anomalous T, H and t behaviours of

M can be understood within the framework of the flux creep model. However according to

Feigel'man et al. [173, 174] the usual flux creep model of Anderson would be valid only in the

limit J(t
=

0) -J(t) «J(t
=

0) where (as already defined) J(t
=

0) is the critical current

density in the hyper critical state (before the starting of any flux creep). We have indeed seen

that because of the exponential drop of J~~,~ and J~,~~ the condition J(t
=

0) -J(t) «

J(t
=

0) (or equivalently J
=

J~~~) is rarely realized in usual experimental time scales t except

very close to T
=

0 (Fig. 14). The theory of collective pinning-collective creep developed first

by Larkin and Ovchinnikov [172] at T
=

0 and then extended in references [173, 174] to finite

temperature, would include the case J(t) « J(t
=

0) and, accordingly, would be valid over

larger temperature and time intervals. The main results of this theory are the following.

(I) The energy barriers are smoothened by thermal fluctuations and their spatial range

broadened from r~ =
f to r~ =

f~
+

(u~). In the limit of weak pinning the mean-squared

thermal displacement is determined by equating the thermal energy to the elastic energy per
degree of freedom. It seems that in the field domain H~~ « H « H~~ the result has the form

kT
=

C (u~) B '/~ where C depends on all of the elastic constants C~~.

(2) As a function of J the pinning potential would grow as J~ " with a ~
0 and notably

smaller than I. However, it is to be recalled that this singular behaviour is related to the fact

that the correlation volume V~ tends to infinity as J
-

0 (vortex glass state [106, 413]). This

result is itself based on a tacit assumption of the usual collective pinning theory according to

which the only effect of pinning disorder is to deform elastically the VLL. However, the

presence of unavoidable irreversible deformations (particularly dislocations [411, 410])
provide a natural border for V~ which therefore would be limited by the average distance

between the physical defects in the VLL. At this point we also recall that the collective
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pinning theory involves another characteristic volume V~ of the flux bundle intervening in the

plastic flux jumps through the barriers. These two volumes are related to different elastic

constants of the VLL.

It is also of interest to note that in the fc-state the current density J is practically zero, since

generally [Mi~,~~(T, H)[ « [Mzi~,~(T, H)[ at T« T~. As a consequence, the condition of

vortex glass behaviour is reasonably realized. Then, the observation of relaxation effects in

Mi~ measurements leads to some finite effective pinning potential U?=kT/S with

S
=

(Mi~,i~)~'(dJfijdln t) (see Eq. (13a)). Therefore, this experimental fact is in total

contradiction with the vortex glass concept which predicts that the effective potential tends to

infinity as J approaches zero.

(3) The magnetic relaxation also shifts from the logarithmic (lnt) to a power law

(t~P) behaviour (but with 0~ pm I). Here too, some of the anomalous effects are

connected with the vortex glass phase and hence need more clarifications from the theoretical

point of view. Conceming the experimental side, the fact that the exponent p is very small

makes it very difficult to distinguish between the two possible relaxation laws.

(4) A more important consequence of the theory is that the critical current density would

drop exponentially with T. As we know, this prediction is in agreement with experimental
results. It seems that this approach is more general and more powerful (but also more

complex) than the classical flux creep theory. However, from the experimental point of view

it is not easy to distinguish between the two theories at present and decide whether the

anomalous J(T) drop (with n is due to the collective thermal fluctuations or to spatially
extended potential barriers [139-141]. In addition, the effects of T, H and t on M are so

different from one HTSC family to another (Y, Bi, La...) that it is not certain that they can be

described within the same theoretical framework. In fact, it is likely that even for a given
oxide the competition between usual flux creep and collective thermal depinning would vary

as a function of temperature and field. It is to be added that the predicted exponential drop of

J(T) is based on the idea that the pinning is weak. Finally, it is not clear for us how these

predictions are affected by plastic deformations of the VLL.

(5) We also strongly believe that the effect of thermal fluctuations are less dramatic for the

intrinsic pinning and thus on J~~, ~~.
There are at least two arguments supporting this claim :

(I) Intrinsic pinning in HTSC is very strong. (ii) The elastic constants controlling the

fluctuations of planar vortices (I.e. vortices lying in the a-b planes, see Figs. 81c, d) are

probably much stiffer than in the configurations goveming J~~
~

and J~
~~

(Figs. 8 la, b). At this

point we recall that according to our discussion (§ 7.4 and ~§14.3)~J~~,~~ is expected to be

deterioreted by any kind of defect, even at low concentrations, in contrast to J~~,~ and

J~, ~~.
It is interesting to note that the new scaling approach of Blatter et al. [419], which relates

the anisotropic properties (such as J, C;j etc. ) to the isotropic properties, could probably help
clarifying these problems.

The question conceming the possible occurrence of a melting transition or a glassy
transition in the vortex lattice is of fundamental interest in its own right. Here is a brief outline

of this subject : Melting of Abrikosov's vortex lattice has been envisaged long time ago by
several authors (Berezinskii [456] and by Fisher [457]) who showed that a solid-liquid
transition is favoured considerably in the limit of thin films (conventional superconductors) of

thickness much smaller than the London penetration depth. However, for bulk (or three

dimensional) conventional superconductors the melting line in the T-H plane is very close to

the H~~(T) line and therefore hard to detect.

Nelson [458] examined the case of HTSC in the anisotropic Ginzburg-Landau (G-L) model.

He found that the melting temperature T~ is lowered both because of the very high value of
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the Landau-Ginzburg parameter K and because of the high temperatures involved in HTSC

measurements.

According to several authors and more particularly to Brandt [I lo, 459] and to Fisher et al.

[106], the melting temperature T~(H) deduced by Nelson (in the limit of local elastic

approximation) is in fact too high and is drastically reduced (by a factor of order of

[(H/H~ )/ (I H/H~~)]~i as a result of non local elasticity of the vortex lattice (I.e. due to the

k-dependence of the elastic moduli). Brandt also showed that the melting transition would be

lowered further through the softening of the vortex lattice by flux pinning. Here, too, the

experimentally determined line would result from the combination of both thermal

fluctuations of the vortices and usual flux jump with a relative weight depending on T and on

defect concentrations. At this point it is important to note that contrary to the common belief,
pinning of the vortex lines can persist above the melting line in the liquid state [I lo, 460]. This

confirms the need for a simultaneous treatment of the two questions. Markiewicz [176] has

recently given an interesting discussion conceming the consequence of the melting transition

on the critical current density and the possibility to incorporate such a transition and defects

into an extended flux creep model.

The various theories invoked above are more or less based on the anisotropic London

theory. Doniach [460], has argued that because of the layered structure of the new high

T~ oxides the anisotropic London theory is valid only very close to T~ and breaks down as T is

reduced, for (T~ T )/T~ of the order of 4 x 10T ~ in the case of Ybacuo and 4 x 10T ~ in that

of BSCCO. According to Doniach, the more correct model of Lawerence and Doniach [461]

which assumes weak Josephson coupling between Cu-O layers would further reduce the

melting transition line with respect to the above predictions including the nonlocal ones.

Physically, this is because the layered structure introduces, in addition to the
«

entangling
»

of

the individual vortex lines along the B direction predicted first by Nelson [458], reconnections

between different lines at higher temperatures. Because of the layered structure the vortices

are very soft in the interlayer regions and this can lead to the breaking of the vortex line in

smaller slices (« pancake ») of dimension comparable to the lattice constant in the c-direction,

generally much smaller than the size of the thermally activated nucleation of vortex loops in

the G-L theory. This yields soliton like excitations with thermal fluctuations notably different

from those of the usual vortex line of dimension equal to that of the specimen.

18. General conclusion.

This review was, in part meant to clarify the question of critical current density and magnetic
irreversibilities in HTSC, emphasizing the novel properties of these materials. In view of the

huge amount of experimental data on the subject, we also tempted to clarify the relationship

between the measured critical current density, the experimental conditions and the

techniques employed. Most of the analysis was based on the usual concepts of the critical

state, but we also considered some specific examples (diffusive limit (Sect. 5.5), very low

amplitude of the measuring field (Sect. 13), demagnetizing effects (Sect. 15, )) where the

usual critical state ceases to be valid. We also generalized this state to granular materials and

showed the analogy between hysteresis cycle and a-c susceptibility measurements. The very

complex question of anisotropy was looked at from a somewhat phenomenological point of

view. In the last section we referred briefly to the very important question of the theory of

thermally activated collective depinning. This topic is rapidly developing at present in

particular by theorecians from the Landau Institute in Moscow and is in fact beyond the scope
of this review.

We excluded from this paper considerations conceming technical applications, in particular
the interesting question relating thermal instabilities, thermal conductivity and specific heat.
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Lastly, we believe that the classical experimental techniques examined here, though of

fundamental interest, are alone not sufficient to clarify the question conceming the nature of

flux depinning and the associated irreversibility line. We believe that other experimental
techniques such as direct or indirect visualisation of the vortex lines (for instance via improved

«
Lorentz transmission electron microscopy

» or tunneling microscopy) are needed.

Noise measurements, in particular near the irreversibility line, would be also of very great
interest. For instance, we suggest that an original and new method could be the use of

«
microscopic

»
Hall probs of the order of the dimension of the vortex

=
A. This is possible

with modem lithography but the main problem is in the fact that the time scales

r~ involved can be extremely short : r~ m
A/u~

=

10~~
s for a vortex moving at u~ =

lo cm/s.

We have also addressed a number of questions, among which that conceming the specific
and opposite effects of crystalline and chemical defects on J~~,~~ on the one hand and on

J~~,~ and J~,~~ on the other hand, is probably of great importance for possible technical

applications.
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Appendix A.

Comparison of the various supercurrents flowing in type II superconductors.

We wish here to enumerate and compare some of the most characteristic current densities

that can exist in type II superconductors.

Al. THE LONDON CURRENT. The simplest case is probably that of the London current

density defined for H w H~~ by :

[=-~V.H=~~
(Al)

circulating around the sample in the London penetration depth A, as illustrated in the inset of

figure 2 for example (typically for H
=

H~ and T« T~ on has J~
=

I to 5 x 10~ A/cm~).

A2. THE CRITICAL CURRENT DENSITIES IN VERY THIN WIRES, FILMS AND NEAR VORTEX

coREs. A second important example concems the critical currents in the limit where the

thickness of the specimen becomes comparable to the coherence length f(n. In this case and

in the G-L approximation the critical current depends on the applied field and goes through a

maximum at H
=

H~ (the thermodynamic field) :

~~-~
"

3 fi
w

A (n
~~~~

This is comparable (within a factor
=

1.8) to that obtained from the London approximation
(Eq. (A I)) if one replaces H by H~. Such a current is also comparable to the depairing current

at this field (see Tinkham [120] p. 116-118). This current is also almost equal to the maximum

surface curren. in the presence of the Bean-Livingston's barrier [445].
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It is also of interest to compare the current values given just above with those existing in

Abrikosov's vortex lines close to the cores. It is well known (see de Gennes [118] p. 59) that

for isolated cylindrical vortex the magnetic field is given by :

~Po
h(r)

m
Ko(r/A (A3)

where Ko is a zero order Hankel function of imaginary argument which diverges as r

approaches zero but which is for physical reasons limited to In (f/r) as r tends to f. From

Maxwell' equations and making use of the relationship relating H~ and H~ (H~
=

H~ In (K)/
(/K) where K

=
A If) we obtain

~> ~°~~~~ 2
ar

In (K~ r 2 / arK ~

We can then easily check that for r=
lx f (I.e. very close to the vortex core) the

supercurrent deduced from equation (A4) is exactly equal to that (J~_~) obtained from

formula (A3). It is now interesting to emphasize that : (I) the existence and the intensities of

the above critical current densities require no pinning centres (they arise in perfect materials),

(it) the critical current density is expected to be intrinsically larger in thin wires and thin films

than in bulk materials.

According to Larkin and Ovchinnikov [172] and to Geshkenbein et al. [462] the usual

critical current density J is the highest (neglecting the
« phonon

»
like thermal fluctuations) in

the limit of
«

collective pinning of individual flux lines
»

and is related to the depairing current

J~ by :

J
=

J~(t/L ~)2 (L
~

~
t) (A5)

Here L~ is the correlation length along the vortex direction. L~ depends upon the strength of

disorder and on H and T and measures the
«

longitudinal
»

dimension of the correlation

volume V~. We believe (though we have no rigorous arguments) that equation (A5) is not

valid for L~ w
fi. The qualitative argument is that the critical current J represents an

average value of the local currents J(r r,) induced by all the lines of the vortex lattice

located at positions r;. For vortices located either sides of r (I.e. for r~ and q of opposite signs)
these currents are of opposite signs. As a consequence, the real current is a strongly and a

rapidly oscillating function of r, particularly near the vortex cores. In addition, the amplitude
of J(r) never exceeds J~. Since the only dimensionless characteristic parameter of the

superconductor material is the Guinzburg-Landau parameter K
=

A/f we propose that an

upper limit of J is given by

J w

~~
= J~(H~~) (A6)

°~ ~~~~~~~ ~ ~ ~~
~~ ~

Therefore if the dimension of the sample is much larger than f and L~ «
fi,

we suggest

that the upper limit for J is of the order of the maximum London-Abrikosov current density
obtained at H

= H~~. It is interesting to pay more theoretical attention to this point.
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Appendix B.

Units and notations.

Many of the equations reported in this article are written in the so-called practical units in

which the magnetization per unit volume is expressed in emu/cm3, the current density in

A/cm2 and the magnetic field in Oersted (Oe). These units are obtained from gauss c.g.s.

units simply by replacing the velocity of light (c) by lo. We have chosen the practical system

because it is used extensively in the literature on the magnetic properties (particularly those of

the critical current density) of superconducting materials. However in the course of

preparation of this article we leamed that the practical system is not always so practical and

we have been led to use the notations (SI and gauss c.g.s.) as well.

To help the reader who wishes for a more uniform notation, we present a brief

correspondence between SI and gauss-c.g.s. units below.

Quantity SI c.g.s. gauss

Electric field (E) Volt per metre (V/m) u.e.s.
=

3 x
104 V/m

Electric current (l~ Ampere (A)
~~ ~ ~

3 x
llf

Resistance Ohm (Q) u.e.s. =
9 x

lo" Q

Magnetic flux (~P) Weber (W) Maxwell
=

10~S Wb

Magnetic induction B Tesla Gauss
=

10-4 Tesla

Magnetic field (H) Ampere per metre (A/m) 1o3
Oersted

=

A/m
4 ar

Magnetization per unit

volume or magnetic Ampere per metre (A/m) u.e.m. =

103 A/m

intensity (M)

Total magnetic moment m
A.m2

u.e.m. =

10-3 A ~2

Bean's formula for 3 ~ 3 ~M
cylindrical symmetry

J
" $ f
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Some useful equations

SI c.g.s. gauss

J
= «. E

« is the conductivity of the

material

~
B

~ ~
B H po is the permeability in

~po 4ar vacuum

The magnetic moment of a

dm
=

I. dS dm
=

dS small circuit of surface dS
~ carrying a current 1

~

force acting on a

F
= ev A B + eE F

= v A B + eE moving with a velocity u
~ and carrying a charge e

~
F~ is the force density

F~
=

eJ A B + n~ eE F
= A B + n~ eE the number of nornJal

~ electrons per unit volume

D is the electric induction.

~~ ~
The associated current is

Curl H
=

J + p Curl H
=

(4 arJ +
~

negligible in the
~ ~~ experimental conditions

considered in this paper

~ ~
and A are the electric and

E
=

VV p E
=

VV
~~

the vector potentials
~ ~~ respectively

B
=

Curl A B
=

Curl A
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