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R4sum4 Un 4coulement pu1s4 1 basse fr4quence d'un fluide incompressible visqueux a 4t4

4tud14 num4riquement dans un coude, £ 90°, de patois rigides et de section droite circulaire et

constante, par la m4thode des volumes finis. Les valeurs des param+tres adimensionnels gou-

vemant l'4coulement sont : un rapport d'amplitude de 1,25, un param+tre de Womersley de 4,

un
nombre de Reynolds crkte de 358, un nombre de Dean crkte de 113 le nombre de Strouhal

varie entre 0,05 et 0,45. Aucune inversion du courant principal n'est observ4 et un unique vor-

tex dans chaque demi-section droite apparait. Les effets sun les tubes droits, l'un pr4c+dant et

l'autre suivant le coude sont caract4ris4s par un d4calage du pic de vitesse axiale vers le bord

inteme du tube en amont et la persistance de l'4coulement secondaire sur une
longueur de plu-

sieurs diambtres
en

aval. Les courants transversaux sont de tr+s foible intensit4 quand la vitesse

d4bitante de l'4coulement puls4 est beaucoup plus petite que la vitesse moyenne (composante
stationnaire). Le cisaillement axial dont le maximum est situ4 sur le bord exteme de la majeure
partie du coude augmente en

aval de la section d'entr4e du coude puis reste constant sun une

longueur d'environ 8 diam+tres. Le maximum de la contrainte de cisaillement circonf4rentiel

est localis414gbrement vers le c6t4 externe du coude il est beaucoup plus foible que celui de

la contrainte axiale (20 £ 28 $i). Les valeurs de ces contraintes augmentent pendant la phase
acc414ratrice. La r4gion £ foible cisaillement est situ4e au bond inteme du coude sauf dans une

courte zone d'entr4e. Cependant, la pr4sence d'un coude ne favorise le d4p6t de particules solides

circulantes que pendant la p4riode de cycle £ forte vitesse par rapport I une conduite rectiligne.

Abstract. Low frequency pulsatile flow of an incompressible viscous fluid has been numer-

ically investigated in
a

rigid 90° bend of circular cross-section, using the finite-volume method.

The governing parameters are as follows
:

amplitude ratio of 1.25, Womersley parameter of 4,

peak Reynolds number of 358, peak Dean number of 113, Strouhal number ranging from 0.05 to

0.45. With this set of input data, no flow reversal is observed and a single axial vortex occurs in

the half cross-section. Upstream and downstream effects of the bend
are

mainly characterized

by
an

inward shift of the peak axial velocity in the upstream straight tube and the persistency
of the secondary motions several diameters down the exit straight pipe. Secondary motions,

present in steady flow, weaken greatly when the unsteady axial component of the flow (W) is

lower than the mean flo,v W. The axial shear stress ra, whose maximum is more often located at

the outer part of the bend, increases and remains nearly constant about 8 diameters downstream

from the bend inlet. The circumferential shear stress rc maximum, located slightly towards the

outer bend, is 28$i of ra maximum, and 20$i when W < ll'. The magnitude of both ra and
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rc increases during the accelerative phase. The low shear region is more often located near the

inner tube wall. However, the existence of bends in a
tube network might increase the deposit

of solid particles, with respect to straight pipes, only when W(t) > W, and locally at the inner

edge.

Nomenclature.

a
tube radius

d tube diameter

De Dean number

k curvature ratio

L local length
R radius of curvature

Re Reynolds number

St Strouhal number

T period

u
circumferential velocity

u
radial velocity

w axial velocity

~
circumferential angular coordinate

y radial coordinate

z
axial (angular in bend) coordinate

a
Womersley parameter

7 amplitude ratio

v kinematic viscosity

r
shear stress

w
angular frequency

Subscripts
:

a axial

c circumferential

m amplitude of sine wave

p peak value

s steady component
2 secondary flow

1 Introduction.

The permeability of the arterial wall and the development of the atherosclerotic plaque is influ-

enced by the wall shear. The circulatory bed is characterized by numerous sites of curvature,
branching and bifurcations, and by cross-sections of varying dimensions along the network.

In addition, a
huge variability in geometry of the vessel network exists between the human

subjects. The arterial wall is viscoelastic the mechanics of the blood flow is thus coupled to

the mechanics of the compliant wall. Furthermore, the wall is subjected to a
highly variable

biochemical environment which induces mechanical and geometrical changes. Last but not

least, the blood, which behaves like
a

non-newtonian fluid, is conveyed by
a

periodic non-zero
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mean pressure gradient. Consequently, approximations are currently made in order to model

blood flow in the vascular tree, so much more it exists
a

huge between-subject variability. The

first unavoidable stage of
a

three-dimensional unsteady flow study is focused
on

bend flow.

Purely oscillatory flow in
a

fully-developed regime was investigated initially. In this case,

an axial twc-vortex system appears in the half cross section for large values of the Reynolds
number of the secondary flow or small values associated with high values of the unsteadiness

parameter a
(Lyne 1970, Bertelsen 1975). However, the superimposition of

an
oscillatory flow

on a
steady component is

more
relevant to cardiovascular problems. A finite-difserence solution

of a laminar~ pulsatile (with unit ratio of amplitude to mean of the velocity waveform 7), fully-
developed flow in a curved pipe

was
done by Rabadi et al. (1980), using a 21 x 21 mesh in the

half cross-section. This
was

done mainly for a Dean number De
=

100 and
a curvature ratio

k
=

1/100 (k
= a

Ill
: a

tube radius, R : radius of curvature of the pipe axis). With increasing

a
(I < a < 15), the magnitude of the wall shear decreases

as
well as its variation within the

period. Furthermore
a

considerable variation of the secondary flow intensity during one cycle

was observed for low values of a. Laser-Doppler measurements of the axial velocity and of the

secondary velocity along selected vertical traverse lines were carried out by Talbot and Gong
(1983)1 in a 180° bend. In their experiment II ([or 7 =

1.02, k
=

1/7,
a =

12, and De
=

372),

reverse axial flow occurred at the inner bend during the decelerating phase. As the deceleration

proceededi
an

embedded vortex was
found to be associated with the outer and upper borders of

a "jet-like" secondary motion. Aloreover, the secondary velocity profiles suggest the existence

of an additional vortex in the inner half of the cross sectioni near the centerplane, at 30° from

the bend entry. During the accelerative phase, the axial flow reversal disappeared, whereas

the secondary motion kept its complex features. The pressure-gradient waveforms of Talbot

and Gong (1983) were used by Chang and Tarbell (1985) for their numerical simulations of

fully-developed pulsatile flow. A uniformly spaced non-staggered 21 x 21 grid was employed
in the half cross-section of the curved tube. At the beginning of the flow deceleration, the

secondary flow
was

characterized by a single vortex with
an

inner center and complex paths in

the outer half of the cross section. At the mid-time of flow deceleration,
an

embedded vortex

appeared near the inner wall. A weak outer vortex, whose current was opposite to that of

the others, was also observed neaI~ the plane of curvature. This secondary flow disappeared as

early as about the last third of the duration of the decelerating phase. Twin embedded vortices

occurred at the end of flow acceleration. Very recently, Hamakiotes and Berger (1988) studied

the eisect of De (0.76 < De < 756) on fully developed pulsatile flow, with k
=

1/7, for
a =

15 and 7 "
1. They used

a staggered non-uniform 14 x 19 mesh within the half cross-section.

The secondary flow became much more complex and an inward cross-motion of fluid along the

center plane was obtained for De approximately greater than 227 (Re
r-

600).

In summary, unsteady flow is much
more

complicated with flow reversal and embedded

cross-vortices as within larger fluid movements. The characteristics of these flow properties
have been shown to depend

on
the values of the governing parameters for fully-developed flow.

The present work is aimed at carrying out a numerical study of the development of
a

low

frequency pulsatile laminar flow in
a

90° bend of uniform circular cross-section (k
=

1/10).
The Womersley parameter equals 4, this value corresponding to the condition in the human

femoral artery.
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2. Method.

2. I GOVERNING EQUATIONS. The puisatile flow of an incompressible, viscous, newtonian

fluid in
a

rigid curved tube of uniform circular cross-section, is studied theoretically using a

toroidal coordinate system (~, y~, z) Within the cross section, the polar coordinates ~, y' define

respectively the angle between the position vector and the centerplane and the distance from

the center of the cross section. The axial coordinate z measures the angle between the cross

section of interest and the bend inlet. The following normalized variables can be introduced

y =
y'la,

s =
-Rz la, D

=
(R + y'cos ~) /Ri u, u =

(WI /llw)~~u', u';

w = Wp~wi'
where

w is the angulai~ frequency of oscillation and Wp the cross-sectional mean of the peak
axial velocity (prime denoting dimensional quantity). In unsteady flow, when the temporal
inertia forces of the secondary flow are

mainly balanced by the radial pressure gradient,
a

scale for the secondary velocity is given by U(
r-

W*~/wR, where W* is
a

characteristic axial

velocity (here taken as Wp). The dimensionless governing equations (mass and momentum

conservation) become
:

(I /y + k cos
~/D)u + up (k sIn ~/D)u + (I/y)u~ + (Sip ID)

ws =
0 (1)

tLt + St~~
(UUV + (U/Y) (tL« U) + (Stp/D)

W (Us Stpk Cm ~W))

= py + a-~ ((i /D)3/3~ (u~ k st~ cos ~w D st~wy)

-(I/YD)3/3~ (D (Uv U/Y (i/Y)U«)) (2.1)

vi + St~ (uuy + (u /y) (u + u~) + (Sip ID)
w (k Sip sin

zw + u~)

=
(i/y)p« + (o~~/D) (3/3y (D (vv + v/y (i/y)u«))

+ alas ((i/D) (Us + k sip Sill ~W) (stp/YI'°Z)) (2'2)

W< + St~~
(tLWv + (U/Y)W« + (W/D) (Stpws + k(tL CDS ~ U

Sin ~))

=
(i/StpD) Ps + («~~/Y) 3/3v (Y (WV + (k CDS

~/D)W (i/D Sip) Us)

+3/3~ ((1/Y)W« (i/D) ((i/Stp) Us + k Sin ~W)) (2.3)

where subscripts x, yi s (s
=

Ilz) denote partial derivatives, St
=

(w~aR/W/) and Sip
=

Rw/Wp.
Several non-dimensional quantities appear in these equations. The Womersley parameter

a =
a(w/v)~/~ (v kinetic viscosity) may be defined as the ratio of inertial forces associated

with the local acceleration to the viscous forces per unit mass The ratio a~/Re defines
a

frequency parameter, the Strouhal number St, which determines the time available for vortex

formation, It gives also the ratio of the local acceleration to the convective acceleration. St

corresponds in the above equations to the Strouhal number for secondary flow, the correspond-
ing Reynolds number being Re2

"
W/k/wv. Sip is the Strouhal number calculated from the

peak Reynolds number Rep
=

Wpa Iv. As for the steady case, laminar bend flows are also

characterized by the Dean numberi De
=

k~/~Re, which is proportional to the square root of

the product of the inertial and centrifugal forces to viscous forces. This work has been carried

out with
a

single velocity waveform. The ef§ect of the amplitude ratio 7 has thus not been

studied. Flow conditions in curved tubes
are

also defined by the following similarity parameter
WpT/d (T

:
period), used to specify the degree of disturbances in oscillatory flow.
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2.2 COMPUTATIONAL MODEL. A finite-dif$erence scheme is used to solve the developing
quasi-steady laminar flow of incompressible fluid through

a
90° bend. The curved section of

tube is interposed between 2 straight sections,
a

short (length of 3.6 d) upstream and a longer

one
(length of 8.I d) downstream. Brieflyi the finite-volume method employs a hybrid of up-

wind and central diiserencing procedure proposed by Caretto et al. (1972). The solution of the

set of discretised equations is achieved by the Piso algorithm developed by Issa (1982). The

sequence of main operations of the solution procedure is
as

follows
: (I) the pressure field is

guessed, (it) the predictor-step momentum equations are
solved to get a

first approximation of

the 3 components of the velocity fieldi (iii) the first corrector step pressure-increment equation
is solved to obtain

a new pressure field
i

which gives a corrected velocity field satisfying the con-

tinuity equation, (iv the second cori~ector step pressure-increment equation with new pressures

calculates
new

velocities. The residuals for each equation solved over the entire field must have

decayed systematically below
a

specified threshold to obtain a convergence. Otherwise, a new

iteration with the same steps is initiated. The velocity field in the 3 directions is computed
using a line-by-line counterpart of Gauss-Seidel iteration employing the tri-diagonal matrix

scheme. The pressure field is calculated by the Stone implicit method (Stone, 1968). The

number of line iterations at each complete sweep through the domain varies for each variable

eight iterations are
used for the 3 components of the velocity and 250 for the pressure. Besides,

the velocities were under-relaxed (under-relaxation factor of 0.5).
The velocity nodes

are
staggered with respect to the storage locations of all other variables.

The domain is discretised into
a

finite number of hexahedra. The pressure is stored at the

center of the cell while the three components of the velocity u
(circumferential direction ~),

u
(radial direction y), and w (aa~ial direction z),

are defined at the center of the faces of the

hexahedron for which these velocities are normal. Figure I shows the grid system. The axial

length of the cell d± was smaller in the curved tube and in the adjoining straight sections; dz

was equal to 5 d~ and increased regulary to 10 d~ toward the inlet of the upstream straight
pipe and the outlet of the downstream straight tube. A coarse mesh (7 x 7 x 48) was used

because of the limit in available memory size, the computation being done on a Control Data

computer CY 855, under NOS operating system.
The inlet conditions correspond to the Womersley solution (Womersley, 1955) applied to a

sinusoidal pressure gradient (amplitude of 2.66 kPa, mean of13.33 kPa, cycle period T of I s)
in

a
straight rigid tube. The resulting velocities were superimposed

on a
steady Poiseuille flow.

The temporal variations of the cross-sectional average of the axial velocity is displayed also in

Figure 2 (7
=

0.8). The values of the governing parameters are as follows a =
4, Re

=
199,

Rep
=

358, Re2
"

W/k/wv
=

181. The mean Dean number De
=

63, while Dep
=

l13. In

our test, with the amplitude of the oscillatory component lower than the steady component,
St(t) remains lower than 0.5 throughout the pulse cycle. The numerical test was

treated as

quasi-steady, since the local acceleration terms (3u/3t)
were

considered negligible with respect

to the other convective terms (inertial forces linked to the convective acceleration
u

3u/3x
and the centrifugal forces,

see
left-hand side of equations 2.1 2.3). The developing bend

flow
was

computed for several axial velocity profiles at the entrance of the upstream straight
pipe, corresponding to the normalized times: 0 (beginning of the second half stage of flow

acceleration), 0.13, 0.26 (beginning of the decelerating phase), 0.39, 0.52, 0.61, 0.74 (beginning
of the accelerating phase), 0.87, 1.

2. 3 EXPERIMENTS. The perspex bend, of 25.5 + 0.2 mm internal diameter (d) was
located

57 d downstream from a constant head reservoir, connected to a straight tube by a converging
nozzle. The straight tube downstream from the test section had a length of 43 d. The plane of

measurement, I-S mm above the plane of curvature, was
slightly oblique due to the refraction
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Fig. 1. Grid system in the cross section (top) and along the pipe (bottom). X is the circumferential

-, y =

y'la the radial and z the axial coordinate the arrows indicate the location of selected cells

used to display the results (the shear stress values, at the cell center, are
interpolated).

of the laser beam at the pipe inner wall (r-0.8° from the horizontal). The bend was machined

from 2 plexiglass plates, fitted in the plane of symmetry. The assembled curved tube had flat

polished outer faces of width 70 mm and of height 38.10 mm. The test section was supported
horizontally

on an aluminium beam. Water was conveyed by gravity from the constant head

reservoir the flow speed
was set by

a rotameter. After travelling down the tubes, the water

passed into a large sump tank from where it
was

pumped back to the head reservoir.

Velocity components ,vere measured with
a

laser-doppler velocimeter, operating in dual

beam forward scattering mode. This comprised a 5 mW helium-neon laser (Spectra Physics

120) of wavelength 632.8 mm, a
50 mm beam splitter (TSI 915),

a Bragg cell for acousticc-

optical frequency shifting (TSI 980), transmitting- receiving and collecting lenses of respectively



N°1 ECOULEMENT PULSE DANS UN COUDE 1001

j
~h

q

~~d~A$

a A

A A

--

/
( ~

d ~

A

~i
A a

o /
@ A A

~
'~

~ A / A
~

A a
~Aa/

I

o 25 5

Time <si

Fig. 2. -Top
:

temporal variations of the cross-sectional average of the axial velocity during the

oscillatory cycle (amplitude of 0.08 m.s~~,
mean of 0.1 m.s~~). The arrows indicate the time at which

the results are plotted. Bottom axial velocity profiles throughout the oscillatory period calculated

from the Womersley solution applied to a
sinusoidal pressure gradient (10.7-16 kPa, frequency of1

Hz) with a superimposed Poiseuille flow. The profiles are displayed each 1/31 of the period. The axial

velocity at the left wall
are not given in the present (3-D) plotting box. y =

-1 correspond to the

inner wall, while y =
1 is the outer wall.

247.3, 246 and 200 mm focal length, and finally a
photomultiplier of aperture size 256 pm.

The photc-detector signal was demodulated with a
frequency tracker (TSI 1090). The tracker

operated at an average tracking rate of 0.5. The measuring volume had
a

diameter of
r-

91

pm, a length of
r-

0.92 mm and
a

height of
r-

0.90 pm the number of fringes was about 28.

Both measurement sites and axial velocities were
corrected for refraction. The inlet flow was

checked to be
a

Poiseuille motion and measurements were performed at z =
15°, 45° and 75°.
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However an error on
the actual location of the measurement point of 2$l has been estimated.

The velocity
was

measured at a given point several times (to obtain a temporal mean and

check the variability) and at diiserent periods (to test the reproducibility). The noise and the

flow fluctuations are responsible for
an error of 3$l

on
the velocity.

3. Results.

In figure 3, experimental profiles of the axial steady flow velocity are compared to the numerical

values, extrapolated for the plane of measurement, at stations 15° (1.3 d), 45° (3.9 d), 75° (6.5
d) and + 2 d. A second, but lo«,er, maa~imum is observed between the mid-vertical plane and

the inner bend. A qualitative agreement is obtained between the two sets of data. The wall

shear appears to be overestimated in the numerical model, which uses a coarse grid in the

cross-section, especially at the inner wall.

' L

L

m

-1.0 -0.5 0 0 -j,0 -0.5 0 U-Sgl l~i ~l (45°)

c c

m

L

-1.0 -0.5 0.5 1-0 1-o G-S 0 0
1?~i 1+~~)

Fig. 3. Comparison between the measured axial velocities (L) in
a

90° bend for De
=

433 and the

numerical extrapolated values (C), in a plane located at 0.i a from the centerplane, at 15° (upper left

panel), at 45° (upper right panel), at 75° (lower left panel), and at 2 d in the downstream straight

pipe (lower right panel). Steady flow (Re
=

1370, De
=

(a/R)~/~ Re
=

433).
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Fig. 4. Axial isovelocity contours in the centerplane computed at 61.2° from the bend entry through-

out the pulse cycle. The outer wall corresponds to the upper horizontal axis (y
=

1).

An example of axial isovelocity contours in the centerplane for
a

fixed cross section of the

curved tube is depicted in figure 4. For high values of the pulsatile flow, the "isovels" reveal

an outer shift of the peak axial velocity, here at z =
61.2°. For low values of the pulsatile flow,

the profile seems to be more symmetrical. This feature is confirmed by the axial isovelocity

contours in the centerplane of the test section plotted in figure 5 at diiserents times. The

distortion of the axial velocity profiles in the curved tube becomes slight at t
=

0.61 (end of

flow deceleration) and
even more at t

=
0.74 (beginning of flow deceleration, W being lower

than at t
=

0.61). Figure 6 shows the axial isovelocity contours in the half cross-section at

selected sites along the test segment. The isovel shape,
as

in the case of contours obtained for

bend flow with a Poiseuille entrance, is distorted by the strong secondary motion. The region
of high axial velocity, displaced towards the outside bend is expanding in the circumferential

direction. However, this expansion is smaller than for the
case of Poiseuille entrance flow

for which the contours are crescent shaped At the beginning of the accelerating phase, the

flow is almost symmetrical, although
a

slight outer shift of the peak velocity is observed, at

least, for z > 32.4°. Moreover, the peak velocity occurs in the region of the centerplane. The

vector plots of the secondary flow show the diiserence in magnitude of the secondary velocity
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Fig. 5. Axial isovelocity contours in the centerplane computed at different times during the pulse
cycle (from

a to h
:

t/T= 0, 0.13,0.26, 0.39, 0.52, 0.61, 0.74 and 0.87) from the selected cross sec-

tions (from the inlet, at the bottom of each figure, to the outlet section 1.7d, 0Ad, 0°, 14.4°,
32.4°, 43.2°, 46.8°,61.2°, 75.6°, 79.I°, 86.4°; + 0.7d, + 1.7d, + 3.6d, + 5.5d and + 7.4d). The inner

wall is located at [he left side (I) and the outside bend at the right side (0).

between the beginning of flow deceleration (I) and the beginning of flow acceleration (it), more

especially as the scaling factor is three times greater in (it) than in (I) (Fig.?). The cross flow

is negligible when the magnitude of axial flow is near zero. In this studied case of pulsatile
flow, the secondary motion, at

r-

34° from the bend inlet, is
r-

20Sl of the axial component at

the beginning of flow decelerat,ion and
r-

10Sl of the axial component when W is in the range

of its lowest values. Throughout the pulse cycle, along the entire curved tube, only one-vortex

system in the half cross-section is observed. The vortex center is located nearer to the vertical

diameter and to the centerplane than for Poiseuille entrance flow,

Another variable, very iinportant fi.om, at least,
a

physiological point of view, is the shear

stress. In particular it plays a role in particle deposition on the vessel wall, as the atherc-

sclerotic plaques tend indeed to form preferentially in low shear regions (Caro et al., 1969).
Furthermore, the flow pattern has been indeed shown to influence the cell dispersal over the

cross section (Snabre et al., 1987). The non-uniform adhesion of monocytes to the endothelial

layer of the arterial wall might be explained by the distribution of the wall shear, the transverse

migration depending on the state of aggregation of the flowing suspension of red blood cells

(Mills and Snabre, 1987). The variations of the numerically predicted axial (ra) and circumfe-

rential (rc) shear stresses are
plotted against the axial distance z, at constant circumferential

coordinate, and against the circumferential angle ~, in selected sections along the pipe model,
respectively, in figure 8, for 2 diiserent times of the sinusoidal cycle. At both times, ra is higher
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a

o

b

t=O.26s t=O.74s

Fig, 6. Axial isovelocity contours in the half cross section. From top to bottom, the figures corre-

spond to selected sections selected sections located at 32.4° (a), 61,2° (b), 86.4° (c) and + 1.7d (d). The

isovels
are

display,ed at the beginning of flow deceleration (left, t =
0.26) and at the beginning of flow

acceleration (right, t
=

0.74). I
:

inner ,vall, O
: outer wall.

near the inner ,vall in the entrance region of the curved tube and in the adjoining segment of

the upstream straight pipe, as in steady flow

It becomes higher near the outer wall, I-S d downstream from the bend inlet. But, its

value decreases a
lot between the beginning of flow deceleration and the beginning of flow

acceleration the magnitude of the fall reaches 90$l in the bend entrance and slightly more in
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Fig. 8. Top
:

axial shear stresses r a
(in N.m~~ against longitudinal distance along the test section

(s
=

L/d in the straight tubes,
s =

Rz/d in the curved tube) for different circumferential angle
z

(2
:

18° 3 :
54° 4 :

90° 5 :
126° 6 :

162° at the beginning of flow deceleration (left) and at the

beginning of flow acceleration (right). bi
:

bend inlet bo
:

bend outlet.

Bottom
:

circumferential shear stresses rc (in N.m~~) against circumferential angle z
in different

sec-

tions of the duct. (A :
1Ad B 0.2d C

:
1.8° D

:
16.2° E

:
34.2° F

:
45° G

:
48.6° H

:
63°

:
77.4° J 81° 1< :

88.2° L
=

+ 0.9 d M
: + 2.0 d N

: + 3.9 d O
: + 5.8 d P

: + 7.8 d) at

the same times of the cycle as the top figures.

larger magnitude change during the cycle is observed near the outer bend than
near

the inner

edge. The temporal variations in rc, at 2 selected cross sections (mid-part and exit region of

the curved tube),
are given in figure 10. The amplitude of the variations in a

given section

of bend is about twice the
one

of ra, the increase in magnitude during the acceleration phase
depending on ~ and z.

The ratio of the maximum of rc to the maximum of ra, decreases during
the decelerating phase from about 28$l to about 20$l. Throughout the pulse cycle, the low

shear region (for both ra and rc) appears to be located
near

the inner wall in the major part
of the curved tube, with the flow conditions used in this study.

Values of the axial shear stress in the bend may be compared to these in the upstream
straight pipe (Fig. 9). During the end of flow deceleration, as well as during the beginning
of flow acceleration, the wall shear is greater or

nearly equal, in the bend than in
a

straight
section. It becomes lower than in the straight duct during the end of the accelerating phase

and during the beginning of the decelerating phase at the inner wall of the major part of the
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Fig. 9. Axial shear stress ra (in N.m~~) against non-dimensional longitudinal distance (s
=

L Id
in straight pipe

or s =
Rz Id in curved tube) throughout the pulse cycle

:
(t/T

=
0 (1) 0.13 (2) 0.26

(3) t
=

o.39 (4) o.52 (5) o.61 (6) 0.74 (7) 0.87 (8) 1 (9) at different circumferential angles (from top

to bottom, left then right,
a :

18° b
:

54°
c :

90° d 126°
e :

162°). The left and right arrows

indicates the locations of the bend inlet and outlet respectively.

bend (Fig. 9a). Its value is also lower in
a

short segment located in the upstream segment of

the bend (whatever ~) when the instantaneous axial component of the velocity W(t) is greater
than the mean

(steady) component W.

The axial velocity profiles in the centerplane, at the beginning of flow deceleration and at
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Fig. 10. Circumferential shear stress rc
(in N.m~~) against circumferential angle

z
throughout the

pulse cycle (same symbols
as in Fig. 7) at two selected cross sections in the curved tube (a

:
48.6°; b

88.2°).

the beginning of flow acceleration, have been superimposed in figure 11. At the beginning of

the decelerating phase, the velocity profiles in the downstream part of the curved tube (z >

75°, I-e- profiles I; J and It) exhibit only slight diiserences. At 90°, the flow
seems to be

not far from a
fully-developed regime. In contrast, at the beginning of flow acceleration, the

profiles can be almost completely superimposed, from a cross section located much nearer the

bend inlet (z > 34°). When the unsteady axial component of the flow is smaller than the

mean flow, the curvature afsects only slightly the flow the secondary motion is very weak and

consequently the axial velocity profile is much less distorted. The entry length may then be

shorter.

4. Discussion

Inhaled particle deposition (pollutalits present in the surrounding medium, radioactive parti-
cles, anaesthetic

or
therapeutic aerosols) depends on the flow characteristics in the airways.

Atherogenesis is closely linked to the mass transfer between the blood and the arterial wall.
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Fig, ii. Superimposition of axial >.elocity profiles in the centerplane at different
cross

sections along
the bend (same symbols as in Fig. 6). Top

:
beginning of flow deceleration. Bottom beginning of

flow acceleration.

The tracheo-bronchial tree, as well
as

the arterial network, is characterized by numerous sites

of branching and curvature. The transport of particles within the vessel lumen and through
the vessel wall is quite complex. A reasonable approach is to study the difserent steps of the

mass transfer separately. The present work is focused on the particle deposition of the tube

wall which depends on the geometry of the vessel network and the type of flow. Numerical

experiments of pulsatile developing flow in a rigid curved tube have therefore been carried out,
with a given set of governing parameters, as a

preliminary to this work.

The numerical model presents some limitations. The inlet conditions are far from ressem-

bling the cardiac output, although
a

sinusoidal, zerc-mean flow would be suitable for airway
flow at rest. The pipe wall is rigid, whereas the flow behavior is known to be closely coupled
to the mechanics of the compliant ,vall. The 90° bend of uniform cross-section

was not aimed

at representing any particular biological curved duct, since such ducts
are liable to huge vari-

ability along the pipe netivorl;,
as

well
as a very large variability of given curved parts of this

network among human subjects. As usual, the flow was assumed to be incompressible (with
respect to air flow in the respiratory tract) and Newtonian (with respect to blood flow in the

central arteries, which
are

those preferentially afsected by atheroma). The main limitation may
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arise from the relatively coarse grid used for the computations, although it is not inherent to

the numerical model itself but to the computer system used in this work. However, reasonably
good agreement has been found, for steady flow, with our experimental results and those fur-

nished by several gi~oups of investigations
,

despite an overestimation of the shear stress near

the inner wall. Such an agreement may be assumed for the present test characterized by
a

strong steady component. The symmetry condition has been already discussed by Hamakiotes

and Berger (1988). This assumption aught be irrelevant to flows characterized by
a

high un-

steadiness. At large Re2> Lyne (1970) proposed indeed the existence of an additional boundary

layer of thickness Re[~/~
across the centerplane. A.Ioreover complex secondary motions have

been found in unsteady flows for high De (4, 5, 6), especially in the inner part of the pipe. At

the outlet plane of the downstream straight tube, of length 8.I d, the normal derivatives of the

velocity components were assumed to be
zero

for the exit boundary condition. But this length

as an entry for a pulsatile flow appears to be too short in comparison with the length of10 d

generally admitted. IIowever, the fully-de,,eloped flow assumption, over a
shorter distance,

does not seem to introduce any significant reduction in the downstream efsect of the curved

tube, the secondary motion remaining strong 2 d from the bend outlet.

Variations of aa~ial and circumferential shear stresses during the sinusoidal cycle have been

investigated for diiserent sets of governing parameters, at diiserent stations along the curved

tube. Unfortunately the values of the flow parameters in the present model do not correspond

to those provided lJy the literature. For similar values of a
and De (a

=
4, De

=
100, but

Re
=

1000) Rabadi et al. (1980) found that the axial shear stress maximum, located at the

outer wall, for
a

fully-developed flow, is about 4 times lower than in our model with
a curvature

10 times larger. The maximum of rc, moving slightly near the outer part of the upper wall,
oscillates also with

a
lower amplitude during the sinusoidal cycle. Hamakiotes and Berger

(1988) studied the pulsatile flo,v in
a

bend for much lower (Re
=

2)
or

much higher (Re
=

400)
values of the mean Reynolds number. For

a =
15, flow reversal is observed. At Re

=
400,

a shift from the outer wall to the inner wall in peak axial shear stress occurs
when the axial

flow becomes bidirectional. The large changes in ra magnitude are associated with direction

variations. The maximum of rc remains at the same site (near the vertical diameter slightly
toward the outer wall) throughout the cycle. The maximum of rc is closer to the peak ra than

in
our

study.
As in test I of Chang and Tarbell (1985), no flow reversal is observed. Besides, the computed

results as i,,ell as flow visualisation experiments have not shown separation in the 90° bend

with the fixed geometry and for the given flow regime used in the present work. As soon

as separated regions occur, longer residence times within these regions may increase particle
deposition and diffusion through the wall.

At.herosclerotic plaques tend to occur in highly reproducible sites. One of the main goals
of the study of bend flows will thus be to investigate the role of the flow variables on the cell

adhesion on the arterial endothelium and the lipid uptake by the vessel wall. It is
now

generally
admitted that deposits on the tube wall occur in regions of low wall shear. At the beginning

of flow deceleration, the wall shear is lower at the inner edge of the major part of the curved

tube than in straight pipe. Particle deposits may thus occur at any inner curvature. But at

the beginning of flow acceleration, the wall shear is higher in the bend than in the upstream
straight section. Consequently, the existence of a

curved section may not improve deposition
of solid particles during the low flo,v stage of the cycle. However blood flow, with its typical

pressure waveform, is more
complex. The governing parameters vary along the vascular bed for

a fixed cardiac output. The variations of the wall shear depend thus
on

the situation along the

arterial tree. Aloreover, the cardiac output, as
«,ell

as the vessel geometry, change in response

to diiserent stimuli. Consequently, local variations in both magnitude and direction of the
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shear stress during the cardiac cycle and its possible range of change during much higher time

intervals must be taken into account. Furthermore, the eisect of the shear stress depends on

the nature and
on the time constant of the diiserent particle transfer processes involved in the

atherogenesis.
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Appendix

The toroidal dimensional coordinates (~, y'~ z) define the most natural system for the curved

pipe ~ is the circumferential
-,

y' the radial and z the streamwise angular coordinate. The

origin of the reference system is the center of curvature (Fig. 12). Let X, Y, Z be the cartesian

coordinates of
a frame with the same origin, and D the distance between the projection of a

point of any cross-section of the duct in the plane Z
=

0. (D
=

R + y cos ~, where R is the

radius of curvature of the centerline). X
=

D cos z, Y
=

D sin z, Z
= y sin ~.

)y,

i

o

Fig. 12. Coordinate system in curved pipes (a is the tube radius, R the curvature radius of the

tube axis), k is
a

unit vector.

In this suitable orthogonal coordinate system, the continuity equation in its dimensional

form becomes

((1/y') + (cos ~/D))
u + up, (sin ~/D)u + (I/y')

u~ (I /D)wz
=

0,
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where the subscripts ~, y',
z

denote partial derivatives.

The three components of the momemtum dimensional equation are given respectively by
:

I) p (ut + uuy> + (u/y')(u~ u) (w/D)(cos
~w + uz))

=

-py, + p
[- (I/y'D) (D (Uy, + (U/y') (I/y') ttz)~ + (l/D~) (ttz + COS JIW + DWy,)~))

2) P (Ut + UUV, + (U/Y')(U + U«) + (W/D)(Sirl
~W Uz ))

=

-(i/r)P« +P I(i/D) I(D (Uv, + U/Y' (i/Y') Hz ))y, + (( i/D) (Uz Sin ~W) + (i/r)W«)z11

3) p [wt + uwy, + (u/y') w~ (w/D) (wz cos ~u + sin ~u)]
=

(I /D)pz +p ((I /y) ((y'(wy, + (cos z/D)w + (I /D)uz ))
,

+ (( I /y')
w~ + (I /D)uz (sin

z /D)w)~j
v
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