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Rksumk. La ddforrnation plastique I haute tempdrature met en jeu des migrations atomiques,
quel que soit le mdcanisme de ddforrnation. Les lois de comportement ccntiennent donc un

coefficient de diffusion et la vitesse de ddformation obdit I une loi d'Arrhenius. Dans cet article,
qui ne conceme qu'un sent type de ddformation, le fluage visqueux, on s'efforce de prkciser la

natures des processus de diffusion et du coefficient de diffusion mis en jeu dans le cas des

alliages et des composds.

Abstract.-High temperature plastic deformation requires atomic migration whatever the

mechanism of deformation. The constitutive equations contain a diffusion coefficient and the

deformation rate follows an Arrhenius law. This paper will only discuss the case of viscous creep

in order to elucidate the nature of the diffusion processes and the expression of the diffusion

coefficient involved in alloys or compounds.

1. Inwoducfion.

The driving force for atomic migration is necessarily a gradient of a thermodynamic potential,
Which can be either the usual chemical potential whence a flux proportional to the gradient
of concentration, I-e- the Fickian term or any other potential, such as an electric, thermal,

or mechanical potential, giving rise to a drft (or « transport ») term in flux equations. In the

simplest way

J
=

D VC (DC/kT) V~fi

This last term, rather than Fickian diffusion, is involved in high temperature deformation

and this transport process can make up a controlling step of the whole plasticity process

~power law or recovery creep), or the main step when the deformation derives from the flow

of matter (viscous or diflusional creep ; cavitation).
While the case -of elemental materials (I.e. pure metals) is rather simple and well

understood, the alloys and compounds raise several problems, because several chemical

species are involved in the diflusional process. The fluxes of these species cannot be

independent but their differences require some coupling- from which an «effective»

diffusion coefficient is derived- and lead so some chemical segregation. Because of this

segregation, the Fickian term is no more negligible, and after a transient stage, a steady state

(S.S.) is reached where both terms in flux equations are involved to determine J~, the steady
state current (Fig. I).
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In polycrystalline materials, grain boundaries (G.B.'s) make these segregation and

coupling problems still more complicated, mainly in alloys and compounds. G.B.'s can act

either as short-circuits (G.B. diffusion), or as traps (G.B. segregation), or as source and sinks

of point defects (vacancies or interstitials), or still as a component of plastic deformation

(grain boundary sliding).
Because of the limitation of space, I chose to limit this paper to the so-called viscous or

diffusional creep. Diflusional creep is perhaps the best case to begin with, as the plastic

deformation is due to the transport of matter, I.e. to diflusional processes. A viscous type

constitutional equation is easily derived [I] where the creep rate does not depend on time and

is inversely proportional to the square of the grain size (volume diffusion controlled or

Nabarro-Herring creep [1-2] or to the cube of the grain size (grain boundary diffusion

controlled, or Coble creep [3]).
Nevertheless, this relation is derived from a simple model, which considers an isolated

square shaped crystal, submitted to biaxial normal stresses- or to a shear stress.

Constraints on the deformation process imposed by adjacent grains or by surface tension

effects cannot be neglected, as they make the local stress state different from the macroscopic

one. I shall not discuss this topics here, but s6all focus on transport processes. In this respect

other constraints are forgotten in the simple model : the surface of the crystal, or the grain

boundaries in a polycristalline specimen are assumed to be perfect sources and sinks of point

defects (*). The change in the shape of the crystal which requires grain boundary sliding is no

more taken into account.

2. Nabarro-Herdng Creep.

Let us consider a square shaped crystal, submitted to a biaxial stress as shown in figure 2

(deviatoric part). A vacancy flow is generated from the top and bottom faces to the side faces.

Let us restrict our discussion to the flux of vacancies through the volume of the crystal. In a

substitutional binary AB alloy, the diffusivities of A and B species are different : there will be

a transient stage, in which the vacancies exchange preferentially with, let us say, species A (if
D~

m
D~f, producing a segregation [8]. In a later stage, the chemical gradients due to this

segregation will stop this process by tending to eliminate any differences in diffusional fluxes

of both species, and a steday state will be obtained (Herring [2] ; R. Fuentes-Samaniego et

al. [9, 10] (Fig. I).

c

Steady-state

'

time

o

Fig. I. Viscous creep deformation versus time.

(*) The observation of a threshold stress on pure metals and ceramics (AI~O~) at intermediate

temperatures, which is strongly temperature dependent, shows that G.B. per se are not necessarily
perfect sinks or sources. A model based on grain boundary dislocation climb by jog nucleation and

movement would be able to account for this threshold stress (Misra et al. [4]). Another model suggests a

«~ dependence at low stresses (Burton [5], Ashby.Verral [6, 7J).
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Transient stage The flux of A, B and vacancies are given by (see e.g. Philibert [11])

with L~~ = L~~. The L;~ s are the so~called
coefficients.

During the first
stage,

the
hemical potential

adient of vacancies is
larger

than
the

chemical potential gradient of the A and B species initially Vp~
= = 0), hilst the

stress state creates a acancy

average

As well known the deformation rate is given by

@=Jvn/L

where L is the grain size.

The difficulty which we have to cope with lies with the phenomenological coefficients

L,~. '

The simplest assumption gives

n ~
D

~.~"
k '

n~ DB*
~~~

k '
~~~

L~B
=

0
,

where D~* and DB* are the tracer diffusion coefficients in the alloy, supposed to be constant

in the involved range of composition and n~ the concentrations. From equations (1), (2) and

(3), the vacancy flux is given by :

Jv=-~fivpv, (4)

with D=N~Dj+N~Dj (5)

where N~ and NB are mole fractions and
n = n~ + nB.

Fuentes-Samaniego et al. [9] chose for the L,~ the values Manning derived for his model

alloy [12] (a mean field model for a disordered alloy, With two vacancy jump frequencies
according to its exchanges with A or B atoms, Whatever be its other neighbours). They end up

With :

Where lo is the correlation factor for tracer diffusion in the lattici. This transient stage Will be
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governed by the diffusion of the fastest component and the creep rate will decrease

progressively down to the steady state regime, governed by the diffusion of the slowest species

as we shall see in the next paragraph. This conclusion holds as far as the G-B-'s do not migrate
(see below).

q

,,

~

~ ~z

Qi 1 ~(

~
~

Fig. 2. Stress state and diffusion path in a grain.

3. Steady state stage.

A non divergent velocity field is assumed, so that the problem may be translated in a linear

one, I.e. with a series of parallel tubes (Fig. 2). Let us consider one of these small tubes as an

element of volume submitted to a vacancy flux J~. Due to this flux, one end of the tube is

progressing at a velocity u while the other is regressing (Fig. 2b). Diffusion of A and B have to

be described in a frame of reference moving at u so that for the steady state :

JA
=

JB
=

0 (6)

and in the fixed frame of reference :

~
~~ ~ ~~~ ~~

(7)
Jf_~

~__

~B
jo

~ ~ l NV ~

which ensures that everywhere the compostion remains constant since (steady state) :

/t/4
=

N~/N~ (8)

The vacancy flux is given by

$= (n-nv)u,

Jv= $-nvu=-nu.

In the mobile frame of reference flux equations have to include a third term on the right hand

side, namely n; u.
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Neglecting the cross terms

JA=-~?((»A-»v)-nAU
~~~

'
~i ~

~"~ "~~ ~~ ~

The Gibbs-Duhem relationship can be written :

NA
I

(»A-»v)+NB I(RB-»v)=- lRv.

It follows from this equation and condition /
=

0 (Eq. (6)) :

~~
=

NB
~~* ~~*

kTu (10a)
f DA* DB*

dpB D~* D~*
j =

N~ kTu (10b)
f DA* DB*

dpv N~ N~
W ~ ~ $ ~~~ ~~~~~

We have to integrate these equations from one end to the other of our tube, with the mass

conservation condition :

iL Ni df
=

NIL
o

With Nf, initial composition of the alloy, and

pv(L) pv(o)
=

(«z ax) n (i i)

Let us assume the D's don't vary significantly in the involved range of composition :

«~ «~
u

=

Dss n (12)

with
j

Nj ~/j

~SS ~A*
~

DB*
(13)

an expression known as the Herring' formula [2].
This is just the same relation as the one derived by assuming a constant composition thanks

to a coupling of fluxes 4 and J~ (Li et al. [13]) with some phenomenological forces. The

above derivation gives a simple physical meaning to this coupling, as the velocity terms in

equation (9).
Integrating the chemical potentials for A and B leads to

~og
~~'~ ~~~~

#
j~~~ ~

,(l'A NA)0
(14)

Log
~~'~ ~~~~

=

N( R,
(yB NB)o

JOURNAL DE PHYSIQUE ui -T i, M 6, JulN lwl 3s
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with the segregation parameter R :

DB* D
~~

(«~ «~)
~ ~~~

D~* DB* kT
~

'

~~~~

whence, for an ideal solution, with small gradients :

~~~ ~~~~ ~~~
N(

~
+

~~i~~* ~~
~~~~

Moreover, for an ideal solution

exp
(N( R)

~~~~~
~~P ~

~

(17)
exp (- NB R)

~~~~~
l exp (- R)

As for as R is small enough, the segregation between two faces is approximately given by [8,

9] :

AN~
=

N~(L) N~(0)
=

RN((I N() (18)

whose maximum is R/4. Predicted concentration profiles were calculated for ideal and regular
solution, on the basis of Manning's model (Fig. 3).

INITIAL CONC
=

0.5

R
.

O.05T
=

T.

T z
T

z INITIAL CONC.

R=DOS

R=Ol

O-I O.3 O.5 O.7 O.9
~~

a) (IL b) O-I O.3 O.5 O.7 O.9

Fig. 3. a) Concentration profiles for different values of the segregation parameter R in a regular
solution. Initial concentration 50-50. After [9]. b) Concentration profiles for different values of the

initial concentration in a regular solution. After [9].

The above'calculation predicts a higher segregation at lower temperature, where the

controlling mechanism would probably be grain boundary diffusion. Moreover, in a regular
solution at temperatures lower than the critical temperature, dbmixing is expected.
Interestingly the first experimental evidence in favour of the Nabarro-Herring mechanism
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came from an observation of some «dehomogeneisation» in a Mg -0.5floZr alloy:
ZrH2 Precipitates were created by annealing the material, so that during creep only
magnesium atoms were nfigrating toward GB'S perpendicular to the tensile axis, creating
precipitate free or denuded zones near these GB'S [14, 15].

4. Cable creep.

The driving force for mass flow is the same as above, but the whole mass flow now takes place
by diffusion along the grain boundaries. let the prime denote G.B. quantities and let us use

the classical model of a G.B, stripe characterized by a diffusivity D' and a thickness 8. The

flux of matter is then written :

J'S=-jV(R-Rv).
(19)

Since the deformation is uniform on a face, the quantity of material deposited per unit area

and unit time should be constant

~~=
3 div J'

=
constant

m
0. (20)

at

But for a binary alloy in the steady state, the composition remains constant a condition

which now reads

divJ( divJj

N~ N~
~~~~

A transient stage is expected, where mutatis mutandis, the same equations (2, 5) as above

will apply, and its followed by this stationary stage.
Following Li et al. [13], this problem can be solved by introducing a coupling force between

atom fluxes :

nAD(8
~~ ~

kT
~~~~~ ~~~ ~ ~~~

n~Dj8
~ ~

kT
~~~~~ ~~~ ~ ~~~

with n~ F~ + n~ F~
=

(see e.g. Philibert [11] p. 211). Assuming n~ and n~ independent of

the position on an interface, the condition on I', equation (21) gives :

i Dj 8 V~(p~
p v) D( 8 V~(pA

p v~~~ ~~
kT n ~D( 8 + Dj 8

n~

and therefore

With p~ =

N~ p~ + N~ p~ for a molecule » of AB, and n
=

I/(n(
+

n() the- molecu-

lar » volume, one ends up with

div ~~ §
~A D' 8

~

kT
~(Hm-pv)_
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Integrating with assumption of quasi constant n;, D)

a

nAD'~
v(p pv) ~~~G 8

~ kT ~

(22b)j
D' ~

V(pm P v)
and

$ 8
~

~A ~ kTn

I.e. the same relation as for a pure metal, equation (19), with the effective grain boundary
diflusivity :

Di 8Di 8
(23)D'8ss"

~o ~i ~ ~No ~j~

which is formally identical to the steady state volume diflusivity (Eq. (13) above).
The same conclusions as above for volume diffusion can be derived about the possibility of

segregation or demixing, although this quantities should have to be calculated in the case of

G.B. diffusion. They are probably not very different in both cases.

5. General case.

In the general case of viscous flow, both volume and G-B- diffusion contribute to mass

transport. The strain rate retains the same form as for Nabarro-Herring creep, but with the

introduction of a composite d%fusion coefficient, that is a combination of the volume and G.B.

self-diffusion coefficients :

Dcomp =
D [i +

I'
= D + D~ (24)

with fl
=

3, a geometrical factor depending on the shape of the grains.
Let us recall that an identical formula was derived by Raj and Ashby [16] to describe grain

boundary sliding. The origin of this identity lies in the fact there cannot be any viscous creep
without G-B- sliding nor G-B- sliding without accommodation by mass transport by
volume and G-B- diffusion (or by plastic flow by dislocations if the stresses are high enough).
Both processes are necessarily coupled.

In a binary alloy, we have now to face with this composite diffusivity and with the effective

D's we derived above.

As the boundary conditions are not the same for volume and G.B. mass transport, it seims
physically more reasonable to consider the specimen as a « composite » material : we shall

couple A and B fluxes first separately in the volume « phase and in the G-B- phase », and

finally according to equation (24) for the composite

DA DB fl 8 Di Di
(25)~C°mP N~ D~ + NB DA ~

L NA Di + NB Di.

with the simplest formula describing the steady state (Eqs. (13) and (23)).
According to equation (25) the process will be govemed by the slowest species d@fusing

along its easiest path. This conclusion does not hold any more when G.B.'s are allowed to

migrate. As noticed by Chen [17] a migrating G.B. leaving its excess concentration behind to

an alloyed or dealloyed zone in its wake will facilitate the G.B. diffusion of the fastest species
(see Eq.(5) applied to G.B, diffusion), by reducing the concentration gradient (or
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segregation) on the G.B. which raises during the transient stage in the case of a stationary
G.B. In such a case, equation (23) does not apply any more, and because the fluxes are no

more to be coupled, a relation similar to equation (5) will result, so that [17] :

with @
=

N( D( 8 +
N( Dj 8

The creep rate will be govemed by the fastest species diffusing along G.B.'s. This process
could be akin to «DIGM (Diffusion Induced Grain Boundary Migration) and still be

enhanced when one of the component species let us say B has a tendency to G.B.

equilibrium segregation in which case the flux would be proportional to N~ Dj 8 with

N~ »
N(.

The creep rate will be quite larger than predicted by the usual rule. This is the reason why
according to Chen [17] this induced G-B- migration and alloy decomposition or unmixing
could be observed during superplastic deformation.

Such effects do not seem to have been experimentally observed as yet although some

changes in the morphology of y' precipitates in superalloys could be relevant to this

mechanism [8].

6. Stoichiometric compounds.

In the case of ionic crystals, A~ Bp, the condition of electroneutrality imposes that the two

fluxes obey the relation :

The

%n~ D
~*~~ ~ ~~ ~~f j~

~

~~~~

~ ~* S ~ ~ W ~

The condition for constant composition in an intermetallic compound imposes the same

condition as (26) which is made possible by introducing a coupling force F~, FB in the flux

equations, formally similar to the electric field. In both cases, one ends up [13] with an

effective or molecular diffusion coefficient

DA~ DB~
~~°"

" aDB~ + pDA~ '

~~~~

corresponding to the transport of a «molecule» A~ Bp. Expression (28), is identical to

equation (13) derived above for steady state in alloys. The simplest form of the equation
works as far as the two sublattices are really independent, I-e- there are no cross terms in flux

equations (LAB
=

0).
But if some departure from stoichiometry is allowed, a transient stage introducing some
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segregation is expected. Such a segregation does not seem to have been observed as yet.

When D~* » DB*, the molecular diffusion coefficient reduces to :

Dmoi,
m

DB*la (29)

Many oxides, where the diffusivity of oxygen is very much lower than that of the metal,

have their creep rate controlled by the volume diflusivity of the slowest species, I-e- the

oxygen.
This result can be confirmed, in non stoichiometric oxides by the p(O~) dependence of the

creep rate, as DA and D$ do not vary with the same power of p(O~). Several results are in

agreement with this prediction see the critical reviews by Cannon and Langdon [18], and

Castaing and Monty [19] (Fig. 4).

D(~
loco°c'

.
D~~ '°~°~~

- 712°c
V

. °
~

902°c
~(

~
~

. 712°c

-la

-6 -4

Fig. 4. Variation with pO~ of the self-diffusion coefficients of copper D]~ and oxygen D] in

CU~O. Triangles correspond to D( calculated from pure diffusional creep at 902 °C. After [19].

But in other cases (AI~O~, MgO, BeO, Si~N4, UO~ [18]) a better agreement between creep

and diffusion data is found with the (volume) fastest species. This observation contradicts the

usual opinion, based on the « composite model, that the creep process would be controlled

by the slowest species moving along its fastest path. A very fast diffusion of oxygen along
G.B.'s has been assumed, so that the creep rate would be controlled by the lattice cation

diffusion, in spite that D~~;~~ » D$ (see for the case of
a AI~O~, Cannon et al. [20].

As a matter of fact, the uncertainties in the diffusion coefficient values make such a

conclusion rather frail, as one generally observes that when D~imDz, then also

D~i>D[~ holds (see e.g. [21]), rather than the assumed inequality D[~~<D[~, unless

preferential doping, I-e- grain boundary segregation, would drastically modify the nature of

point defects in G-B- an assumption suggested by recent results of Prot et al. [22] for a very

fast diffusion of oxygen along subboundaries in AI~O~ single crystals and G.B.'s in

polycrystalline specimens (with an activation energy very much larger than the volume one I).
A good theoretical derivation of the D~~~ coefficient is still lacking for such a model. The

way the fluxes have to be coupled is not clear, and when cations and anions diffuse mainly by
different paths, a general expression for the electric field seems difficult to obtain. The

situation is more straightforward for morphology changes due to capillarity (Blakely and Li
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[23], when the kinetics of G.B. grooving or ripple smoothing is governed by the (faster) cation

species : if oxygen lattice diflusivity is slow, the anions are easily transported through the

vapour phase. Such a behaviour was observed in the case of G-B- grooving of NiO bicrystals
by Dhalenne et al. [24]. But the oxygen surface transport or its G-B- transport for creep

nevertheless raises some (as yet) unanswered questions for the flux coupling.
Another case is worth to be discussed: solid solutions confined to one of the two

sublattices: such as (A,A')~Bp, or, to take an usual example, an oxide such as

(A, B ) O or AB~ 04.
It is well known that any thermodynamic potential gradient provides a driving force for mass

transport and can cause kinetic demixing or decomposition when the diffusivities of the

constituents are different. Such phenomena have been observed due to gradients of

temperature, of electrical potential, or of oxygen activity in the case of oxides. Let us quote
the very elegant experiments by Schmalzried et al. [25].

In the same way. one expects segregation (or demixing) in an (A, jB O oxide solid solution

submitted to a stress gradient, when the mobilities of AO and BO are different a condition

realized with a very high oxygen diffusivity and D~ # DB. If D~
m

DB, a higher concentration

in species A is expected near those grain boundaries submitted to the higher tensile stress.

This concentration gradient will build up during a transient stage, until it opposes to further

segregation when the steady state is reached. In the same way a stoichiometric compound
such as A~B04 can be broken down into its constituent binary oxides AO and

BO~.
A theoretical treatment of both processes has been given by Dimos et al. [26]. In the limit of

fast oxygen diffusion, Dimos et al. essentially follow the same lines of derivation as above for

alloys, and they arrive at the same formula for the segregation, equations (16) and (18), with

n as the molar volume assumed identical for AO and BO.

They also show that such a demixing is impossible in the limit of fast cation diffusion

(D~, DB » D~J. Moreover they derived a value of the relaxation time characteristic of the

transient regime :

r =
L 2j «2 fi (30)

where l$ has the form of a Darken-type interdiffusion coefficient :

l$=N(D~+N(DB. (31)

Dernixing can be viewed as an interd%fusion process in a moving frame of reference, with

velocity u (cf. Fig. 2b). The kinetics of dernixing obey the law

AN t>
=

AN "j I exp ( tjr >1 (32>

where the SS superscript holds for the steady state.

Dimos and Kohlstedt [27] tried to observe such a demixing during creep of yttria-stabilized
zirconia. They did observe a Nabarro-Herring creep between 1400 °C and 1600 °C, with a

grain size between 2.5 and 14.5 ~m. From creep data, they calculated an effective diffusion

coeffcient

D~~~~~ =
3 x lo exp (- 5.84 eV/kT cm~

s~ '

in agreement to within a factor of 5 with the values of the tracer diffusion coeffcients

determined for Ca and Zr in calcia stabilized zirconia. The difference between formula (5) for

D~~~~~,~~~ and (13) for Dss is immaterial. But kinetic demixing was not observed, a result
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probably due to Dz~ and Dy being almost equal. Similar failure occured in (Co, Mg) O

(Dimos et al. [28]) due to the fact that diffusion creep was limited by oxygen diffusion,
although Dco

~

6 to 8 DM~.
More recently a segregation of aluminium and chromium in elongated grains of chromia

spinel (Cr, Al, Fe + )~ (Mg, Fe~ + ) 04 has been measured in ultramafic rock from the upper

mantle (Ozawa [29], and comment by Sammis [30]). The observed zonation of Al was

measured with the electron microprobe on spinel grains about 100 +m in diameter and found

rather high about 10 fb across a grain (Fig. 5). This gradient is consistent with the lineation

and the ihape of spinel grains, I.e. with the stress level the rock was submitted to. Probably,
geological times and very low creep rates offer better conditions than laboratory experiment

conditions. Unfortunately the diffusion coefficients of Cr and Al in spinel are not known.

Qualitative arguments favour larger diflusivity of Al, consistent with the enrichment of this

element at the elongated (I.e. more tensile) grain boundaries, whilst again oxygen diflusivity
is assumed to be very fast along grain boundaries.

Assuming D~j » Dc~, (16) reduces to :

VNA
=

N~
~/"

(33)

Using (Sammis, [30]) N~
=

0,5, Q
=

10 ~ m~ mol~ ', T
=

200 K as a typical upper

mantle temperature, Ozawa's observed composition difference AN~
~

0.I corresponds to a

deviatoric stress of10MPa. According to Ashby's map [40] for this material this would

correspond to a regime where oxygen diffusion occurs along G.B.'s and a strain rate of

10~ ~- l 0~ ~ s~ '

AI~O~ 27 wt%
crack

30
'

;.
AI~O~ " '16

,

,

~~

~'~~~ 2~m
b~

~~ '~'~ 20pm

Fig. 5. Compositional zonings of chromium spinel measured with the Electron Microcrobe on thin

sections parallel to (a) and perpendicular to (b) the mineral lineation. After [29].

7. Liquid phase enhancement.

Grain boundary liquid diffusion is a special type of G-B- diffusion which can generate creep

deformation, (Rutter [31]), and probably operates in some ceramic materials (intergranulhr
amorphous or glassy films due to the sintering process) and in many geomaterials where it is

known as «pressure solution (*). As noticed by Pharr and Ashby [32], liquid-enhanced

creep is familiar to skiers, due to the peculiar plasticity of wet snow and to dentists using the

temporary plasticity of dental amalgams.

(*) Although the driving force is not a pressure stricto sensu, but the equivalent ~von Mises) stress.

Creep has not to be confused with pressure induced densification.
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i~h~~
ii'

Fig. 6. Liquid enhanced creep (Schematic).

A liquid film may enhance creep in two ways, either as a lubricant which facilitates the

sliding of grains over each other or as a high d@fusivity path I-e- a series of three processes :

dissolution, diffusion and redeposition.
In the first case, a strain proportional to the stress and inversely proportional to the liquid

viscosity is expected (Fig. 6) :

d
=

constant
~ " (34)

w + L ~

where w and L are defined in figure 6.

In the second model, I-e- diffusional flow, the process may be limited either by the

dissolution rate or by the diffusion flow in the liquid film. Let us describe the dissolution

kinetics by some kinetic constant ki, which measures, in units of kT, the rate at which the

atoms are exchanged between the crystal and the liquid. One ends up with [33]

d~
=

constant
d ~~

(35)

On the other hand, if the kinetics is limited by the diffusion in the liquid, the situation

becomes similar to Coble's model [3], with 8 =w and D=C~D~, where CL and

D~ are the solubility and diffusivity of the solid in the liquid phase :

Eventually if the solid and glassy phases will form a low melting point eutectic, the above

diffusivity can be related to the viscosity ~ of this liquid through the Stokes-Einstein equation

[33] :

~
~ i (37)dd

=
C°~~~~~~ $ P

As both processes occur in series, the net creep rate will be given by :

I I (38)
~i dk

~

~d

According to the slower process, the creep rate will vary as L~ '
or

L~~
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The model of figure 6 is not very realistic if the liquid forms a continuous film in the

G.B.'s, gradients of normal tractions could not be sustained as the fluid will flow to equalize

pressure differences and will be squeezed out. Some solid contact between grains is necessary,

whereby normal tractions and their gradients can be sustained. To solve this problem, Raj
and Chyung [33] assumed an island structure of the G.B.'s, with channels filled by the liquid
phase : their constants in equations (36) and (37) must contain a factor I/(I x) where

x is the fraction area of liquid film (this only represents a small part of the glassy phase, as

most of it is concentrated in triple junctions (Fig. 7).

triple junction

Channel structure

Fig. 7. Microstructure with a residual glassy phase.

Facing the same problem, Pharr and Ashby [32] put forward a different model, based on a

coupling of plasticity and dissolution processes. Their model is akin to pressure induced

sintering. Necks between two grains are growing by (creep) plasticity. Due to capillarity
forces, the liquid which is wetting the grains penetrates the boundary between two grains,
thus eroding the neck between them. As the neck is eroded the local stress rises, so plastic
flow occurs there causing further plastic deformation, I.e. neck growth. Pharr and Ashby
derived the rate equation

where y is the solid/liquid energy, f(«) is
roportional

to («1 - «~),

strain rate in uniaxial ompression is still linearly ependent on

equation (39) are valid only for mpressive states of stress.

Experimental
results

verify the main predictions of these
models:

the creep rate is

proportional
to the stress (more exactly, the

eviatoric part of the stress). The steady state

creep
rate

vary with

8. Conclusion.

Viscous creep in alloys and compounds still deserves a lot of research. In spite of a very simple
and direct relation between diffusion and plastic deformation, all the details of the process are

not fully understood. The difficulty is to find experimentally a « pure » case, in the accessible

range of temperature and other parameters (composition, grain size, p (O~)...). In many cases

this range covers two different regimes, so that the experimentally determined parameters

(stress exponent, etc...) are not relevant. The possibility of chemical segregation will deserve

more investigations.
The situation is still worse with power law creep where matter transport is only one of
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several important steps as the deformation is essentially due to dislocation glide. the

diffusion limited step could be the climb of these dislocations, or the solute dragging of gliding
dislocations [34, 35, 36]. Dislocations can also play a role of short-circuits (« pipe diffusion).

Up to now the attempts to predicting the effective diffusivity and the activation energy for

creep of alloys and compounds have not been very successful [37, 38, 39].
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