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Abstract. The dynamics of semi-flexible polymers and membranes is discussed. The effect

of thermal undulations on both the transversal and longitudinal Mean Square Displacement
(MSD) of

a
tagged "monomer" is studied in free polymers and membranes. The two MSDS

are found to be proportional to one another, and behave as rw

t~/~ for polymers and
rw

t~/~

for membranes on the short time scale. The longitudinal motion is shown to be linked to

the dynamics of fluctuations of the projected length (area) of the polymer (membrane). We

demonstrate how, at long times, these fluctuations lead to reptation motion of the polymer
(membrane) in the longitudinal direction. We generalize this approach to investigate the motion

of
a membrane between two plates and a

polymer in a
tube. The latter problem is used as

a model for polymer motion in semi-dilute solutions in which the persistence length is longer
than the entanglement length. Such systems are not suitable for the classical reptation model

of de-Gennes and of Doi and Edwards, which was designed for chains that are flexible on the

entanglement distance. The reptation diffusion coefficient and relaxation times that we obtain

have the same scaling with chain length L as in the classical reptation model, but differ greatly
in factors that are dependent on the ratio of persistence length to entanglement length. We also

discuss the diffusion of a tagged "monomer" under imposed tension and liquid crystalline order.

1. Introduction

The dynamics of flexible polymer chains in entangled networks is well described by the reptation
model (henceforth referred to as classical reptation) developed some years ago by de Gennes [1]
and by Doi and Edwards [2] and discussed by many others [3]. In such networks, which appear
both in melts and in semi-dilute or concentrated solutions, the chain segments between two

consecutive entanglement points (along
a tagged chain)

are flexible. The classical reptation
model thus assumes that L~ » Lp, where L~ is the (real space) distance between two such

entanglement points, and Lp is the persistence (Kuhn) length. The reptation is viewed as

resulting from the motion of loop-like defects along the tube contour (the so-called "primitive
path" ). This motion is described by the "bead and spring" Rouse model, because the chain is

rather flexible between its nearest entanglement points.

(*) e-mail: cpgranek©weizmann.weizmann.ac.il

© Les #ditions de Physique 1997



1762 JOURNAL DE PHYSIQUE II N°12

There are, however, semi-flexible polymer networks in which the persistence length is so

long that Lp / L~. One well known example, of particular biological importance, is the

actin-filament network, which is part of the cytoskeleton of plasma membranes [4-8]. Here

Lp
~w

4 -17 pm (depending
on the method of estimation), whereas L~

rw
1 pm. Other

examples emerge in the field of giant cylindrical micelles. For instance, the CPCI/Sal sys-

tem at 5% micelle volume fraction is a solution of equilibrium, worm-like, micelles in which

Lp i L~ ci 150 I [9j. At higher volume fractions ($ 30%) the system remains isotropic and

L~ < Lp. Here, knowledge of the chain diffusion coefficient and relaxation times is extremely
important for understanding the viscoelastic properties. We believe that the dynamics of these

networks cannot be described by the classical reptation model, even though others have at-

tempted to explain experimental data using it [5j. Nevertheless, reptation in an actin-filament

network has been directly observed using fluorescence video microscopy [5]. Viscoelastic mea-

surements in the worm-like micellar systems [9] also indicate the existence of reptation. Clearly,

some other mechanism that leads to reptation motion is present, allowing for the polymer to

diffuse and for stress to relax, and we
describe such a

mechanism here. Another description
of reptation in such networks has been presented by Semenov [10], and we compare the two

approaches.
Membrane bilayers are the 2-Dimensional (2-D) analog of the semi-flexible polymers [11].

These are semi-flexible surfaces that are also characterized by a persistence length Lp (usually
denoted as

(~), which was first recognized by de Gennes and Taupin [11,12]. On length
scales shorter than Lp the membrane undulates with an elastic bending energy penalty. On

length scales much longer than Lp, however, the membrane is effectively flexible and its shape

can fluctuate with no energy cost. These characteristics are similar to those of semi-flexible

polymers. The persistence length is related to the bending modulus t~. In membranes, where

t~
has dimensions of energy, the persistence length was found to be exponential in the bending

modulus [11, 12]

~~ ~ ° ~~~ ~~
~T~

~~~

where a is a molecular length (basically the bilayer thickness); the numerical factor fl is

somewhat sensitive to the form of calculation [11]. In semi-flexible polymers,
t~ has a dimension

of energy x length and the persistence length is linear in t~
[13-15]

Lp ci

~ (2)
kBT

The situation a « Lp is thus common in membrane systems and less common in polymer

systems (with
a

taken to be the cross-section diameter). Nevertheless, as described above, a

large number of polymers (or polymer-like objects) have a persistence length large enough to

enable studying undulations of wavelengths I in the regime a « I « Lp. We will show that

these undulations are extremely important for the reptation motion discussed earlier.

To understand how these concepts are connected, consider first a membrane sheet of a size

smaller than Lp. A surfactant molecule belonging to the membrane, or a particle attached to

it le. g., a protein molecule), can move in the transversal (normal) direction only by means of

collective membrane motion, the so-called thermal undulations. This motion should therefore

be slower than that of a free particle. Indeed, it has been recently shown that such a particle

will perform anomalous subdijfitsion in which its Mean Square Displacement (MSD) increases

as r~

t~/3 j16]. This motion becomes slower as the rigidity of the membrane increases. This

anomalous diffusion leaves its fingerprint in the dynamic structure factor [16] as a stretched ex-

ponential decay S(q, t)
~w

e~l~~~)~~~ (where q is the scattering wave vector and q =
)q)), which



N°12 REPTATION OF SEMI-FLEXIBLE POLYMERS AND MEMBRANES 1763

has been experimentally detected [17]. Similar behavior, a transversal MSD increasing as

~w

t~/~, and a stretched exponentially decaying dynamic structure factor S(q, t)
~w

e~l~~~)~~~,
have been experimentally observed [6, 7] and theoretically predicted [18] for semi-flexible

polymers.

Thermal undulations of the membrane also imply that the projected area, I.e. the projec-
tion of the true membrane area onto the base planar surface, is smaller than the true area.

The mean value of the projected area, or that of the excess area, has been a useful concept
for understanding the physics of membranes [11]. It is equivalent to the (mean) end-to-end

distance in the physics of semi-flexible polymers, which we shall refer to here as the projected
length. An interesting question, which has not been considered thus far, concerns the static

and dynamic effects of undulations on the fluctuations of the projected length (area) of the

polymer (membrane) around its mean value. Such fluctuations are not necessarily small (rela-
tive to the mean) since these objects are not macroscopic. We show here how the dynamics of

these fluctuations is related to the dynamics of thermal undulations. For example, a point on

the polymer (membrane) performs anomalous diffusion in a direction parallel to the polymer
(membrane)

mean axis (plane),
as well as in a transversal direction. At long times, these

excess length (area) fluctuations cause a reptation motion of the polymer (membrane) in the

longitudinal (parallel) direction. Although this contribution to the longitudinal translation

diffusion coefficient is at best marginal for free polymers, it becomes dominant when the coher-

ent translation is inhibited, as with polymers in entangled networks. For membranes, such a

possibility is less obvious, however, membrane reptation is a very new concept and contributes

to the (parallel) translational diffusion coefficient. A closely related problem is the transport
of vesicles through pores or channels whose radius is smaller than the mean radius of the vesi-

cles. Such transport can occur only by means of membrane thermal undulations. Our later

discussion of a planar membrane sandwiched between two parallel walls can provide greater
insight into this problem.

Direct visualization of microscopic motion in membrane and polymer systems has recently
been made possible by using enhanced video-microscopy techniques [5, 7,19, 20]. Thus the

mean-square displacement of a molecule (particle) attached to a membrane (polymer) can be

detected. For example, the reptation of actin filameiits (in
a

network) was directly observed

using fluorescence microscopy, and the so-called curvilinear diffusion coefficient of a polymer

along its tube contour was directly measured [5]. Moreover, it is now possible to manipulate

such objects using various tools such as micropipettes [21, 22], optical tweezers [19] or magnetic

tweezers [7]. It would be interesting to explore the diffusion of polymers and membranes with

additional conditions and constraints. Two such constraints are considered here. The first is

the effect of imposing tension on the membrane (polymer). The second is the excluded volume

constraints exerted on a membrane in the liquid crystalline lamellar phase. Interesting new

behaviors and crossovers emerge.

This paper is organized as follows. We start (Sect. 2) by introducing previous work on the

dynamics of (free) membranes and semiflexible polymers, with particular attention to the effect

of thermal undulations on the transversal diffusion of a tagged particle. In Section 3 we show

how these thermal undulations affect the projected length (area) fluctuations. This concept is

first used then to describe the reptation of free polymers and membranes. Later we
generalize

the approach to describe the reptation of semi-flexible polymers in strongly entangled networks.

In Section 4 we consider the effects of tension and liquid crystalline-excluded volume constraints

on the diffusion of a tagged monomer. Our conclusions are summarized in Section 5.
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2. Free Polymers and Membranes in Equilibrium

2.I. MEMBRANES. We consider a free fluid membrane of linear size L $ Lp that is floating
(in equilibrium) in the solvent. For simplicity we have assumed that the membrane terminates

with edges. For self-assembled membranes this is usually energetically unfavorable and either

macroscopic sheets or finite vesicles emerge instead. In this section we will focus, however, on

the short time behavior that is sensitive only to the short wavelength undulations and not to

the large scale shape. Thus it does not matter if we consider a membrane with edges, a vesicle,

a membrane in a lamellar (L~) phase, or a piece of membrane in the sponge (L3) Phase.
The undulations of a membrane piece can be described by the Helfrich bending free-energy

[23], evaluated for small deformations Vh « i,

H
=

)~
/

d~p (V~h(p)) ~

=

j ~j t~k~hkh-k, (3)

~

where p is a 2-D vector on the base (planar) surface, t~ is the bending modulus, and

hk
~

fd~pe~~'Ph(p) is the 2-D Fourier transform of the local displacement field hip). The

term V~h(p) is the mean curvature written for small deformations. Using the equipartition
theorem we can obtain from equation (3) the equilibrium spectrum of undulations

lhkh-k)
=

~))( 14)

Thus undulation amplitudes increase rapidly with increasing wavelengths (decreasing
wavenumbers k), since such wavelengths are less expensive in bending energy.
As usual for linear response, the time-dependent correlation function of hk(t) decays

exponentially from its equilibrium value

To find the relaxation
requency uJ(k), the hydrodynamics of the olvent surrounding the mem-

brane and its coupling to the membrane motion have to be considered.
These

alculated using the
Navier-Stokes

equations with nertia being neglected [24, 25], because of

the short mesoscopic) length scales involved. A imple
alternative approach to this is

possible
using the Oseen hydrodynamic nteraction tensor [2]. This also derived

from

the
quations, linearly

relates the
velocity vector of a point particle in position

r in the solvent to a force acting on another
point

particle
in position

tions
taken at infinity. These boundary are proper for

studying
the linear

dynamics

of membrane undulations.
Although

the membrane is not flat, and this does alter

ynamic
between two

distant
points on the embrane, this modification only

to a non-linear
contribution to the dynamics. hus the

ydrodynamic interaction
between

two such distant points on the
membrane

is almost the same as if the

them were
absent. Because the lastic force and motion are primarily

transversal for small

ndulations,
only

the
iagonal

where 1/ is the viscosity. The Langevin equation of motion for hip, t) becomes

°~l'~~
=

/
d~P'AllP P'l)~Vi, hip', t) + (lP, t), 17)
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where ((p, t) is white noise. Fourier transforming equation (7) leads to

~~j~~~
=

-Ldlk)hklt) + (kit), 18)

where the relaxation frequency uJ(k) is given by [24, 25j

uJ(k)
=

$
(9)

~l

uJ(k) is thus simply a product of the energy spectrum t~k~ and the 2-D Fourier transform

A(k)
=

1/41/k of the hydrodynamic interaction Alp). The spectrum of the white noise Fourier

component (k It) follows from the fluctuation-dissipation theorem

j(~jt)(~~ it'))
=

2k~TAjk)&(t t'). jio)

Equation (8) is easily solved to give equation (5).
Using the Langevin equation (8), the transversal MSD, is expressed as [16j (Appendix A)

iiAhit))2)
w

((h(t) hio))2)
=

j@ fill
e-Wik)t). iii)

The lower and upper limits of these integrals are k
=

gr/L and k
=

grid, respectively. (The
circular boundary conditions used here imply that all tagged points within the membrane

are equivalent, resulting with no dependence on the latteral coordinate p [27j.) For times

fl~i « t «
@ the integration limits can be set to zero and infinity respectively, and the

integral is evaluated to give [16j

~
j

((Ah(t))~) ~f o-1? ~~)~)
~ ~~~t (12)

~

From equation (ii)
we can see that the MSD saturates at the equilibrium value (which is

denoted by omitting the argument t)

(iAh)2)
=

2 lh~)
c~

~ ~i~~ ~~~~

as required from ergodicity. The saturation occurs effectively with times t / Ts, where Ts is

obtained as 1/uJ IQ =
gr/L) I-e-

Ts Cf

'~~~
(14)

gr ~

Note, however, that if the membrane is entirely free to move in the solvent, the absolute

transversal MSD, in contrast to the one measured relative to the base surface (and discussed

previously), will not saturate, but rather will crossover at t
rw Ts to a linear time dependence

that is controlled by the diffusion of the center of mass.

An interesting implication, resulting from this analysis, concerns the dynamic structure

factor S(q, t) (where q is the scattering wavenumber), which was discussed in references [16, 28].
The t~/~ increase of the MSD (Eq. (12)) was found to lead to a stretched exponential decay,

S(q, t)
~w

e~l~~~)~~~ This relaxation has been observed in sponge and powder lamellar phases
with large wavenumbers q that are sensitive to single membrane dynamics [29]. The good
quantitative agreement between theory and experiment provides a sound basis for the whole

approach.
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2.2. SEMI-FLEXIBLE POLYMERS. Next we consider a semi-flexible polymer of length
L $ Lp, which is the 1-D membrane analog. Two well known examples; of particular bio-

logical importance, are actin filaments, where Lp ci 4 -17 pm [5,30j, and microtubules, where

Lp m 6 mm [22j. The bending energy here can be described in a similar way to equation (3),
with a 1-D integral replacing the 2-D integral. The scalar membrane displacement is replaced

by a 2-D vector h(z)
=

(hlY)(z), hl~) (z)) (perpendicular to z) describing the displacement in

the two (assumed equivalent) transverse directions [31]. Thus

H
=

)~ /dz (~~))~ =

( ~j ~k~hk h-k, (15)
z

~

where hk
=

f dze~~~h(z). Here the bending modulus ~ has dimensions of energy x length. The

undulation correlation functions for the two transverse directions are similar to equation (5)

~hi°~lt)h~i lo))
=

hap ~)j~e-"i~~~, l16)

but the relaxation frequency uJ(k) is different. The 1-D Fourier transform of the Oseen inter-

action (Eq. (6)) is

A(k)
=

~
~" ~~~~ dz, (17)

/
4gr1/z

(where
a is basically the cross-section diameter playing the role of a short wavelength cutoff),

which is roughly independent of k. This is in contrast with the 1/k divergence for the 2-

D, membrane, case. More accurately, A(k) diverges logarithmically as ka ~ 0 and uJ(k) is

asymptotically [18]

uJ(k) m

~~
ln[1/ka]. (18)

gr~

The long-range hydrodynamic interaction thus has only a marginal effect on the relaxation

frequency because of the one-dimensional nature of the problem. The transversal MSD is the

sum of contributions from the two equivalent (but independent) directions y and z and becomes

((Ah(t))~)
=

~~~~ ~~~
(~ (1 e~"l~)~) (19)

~r~
«

IL

In evaluating the integral in equation (19), the logarithmic dependence of uJ(k) is incorporated

to the leading order. The asymptotic behavior for times fl~~ « t «
f is evaluated to

give [18. 32]

(Ah(t))~
ci 0.082

In
~~~ §~ j ~~~ ~~t)

(20)
4grlla ~ 1/

As for membranes, the MSD saturates, as it should, at the equilibrium amplitude mean square
difference

((Ah)~)
=

2 (h~)
=

~ ~~~L~. (21)

In equation (21) the numerical prefactor has been evaluated by exact summation over Fourier

modes (using k
= pgr IL where p is a natural number and ~j p~~

=
gr~ /90), rather than

P=1,2,...
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the integral approximation in equation (19). The saturation occurs effectively on times t / Ts,
where

4 ~/L~
~

gr3 t~In[L/gra] ~~~~

The subdiffusion described by equation (20) has been found [18] to lead to a stretched expo-

nential relaxation of the dynamic structure factor S(q,t)
~w

e~l~~~J~~~ with a relaxation rate

rq
~w

f)I fqw~ This was first observed in a dynamic light scattering experiment [6].
More recently, this evolution has been observed in real space by optical videomicroscopy [7, 20].

So far we have dealt with the transverse motion in either polymers or membranes, summa-

rizing previously obtained results. Next we will use these results and consider the evolution

of longitudinal fluctuations that are coupled to the transverse motion and cause a reptation
(creeping) motion of both polymers and membranes.

3. Projected Length (Area) Fluctuations and Reptation Motion of Semi-Flexible

Polymers (Membranes)

3.I. REPTATION OF FREE POLYMERS. We will begin with a discussion of semi-flexible

polymers, since the concept of reptation is probably more relevant to them. When a polymer
undulates, its arc length is conserved, and therefore the projected length, I.e. the end-to-end

distance, is smaller than its actual length. Since undulations are random, the projected length
also fluctuates around its mean value. We will show that these fluctuations allow the polymer
to reptate along its baseline axis. If the polymer is free to move in the solvent, this mechanism

will simply add to the conventional translational diffusion of
a stiff rod. The reptation we

discuss becomes more important in semi-dilute solutions, in the "large" concentration regime
where the entanglement length is shorter than (or equal to) the persistence length. Here the

translational diffusion of a persistence segment is inhibited. Nevertheless, the whole poly-

mer can still diffuse by moving excess length, somewhat similarly to the well known reptation

process of flexible polymers, where the persistence length is however much shorter than the

entanglement length. The classical reptation model is sometimes used for interpreting results

even when the opposite limit holds [5], which is obviously not adequate. The following calcu-

lation for the projected length fluctuations will provide a method of determining the correct

curvilinear diffusion coefficient that should replace the Rouse diffusion coefficient used in the

classical reptation model. Once the curvilinear diffusion coefficient is found,
we can proceed

to calculate other observables, such as the long time diffusion coefficient, as was done for the

classical reptation model.

3.1.1. Projected Length Fluctuations. We first have to calculate the dynamics of projected
length (end-to-end distance) fluctuations. We shall start with the usual Monge gauge relation

between the true length L and the projected length Lo(t). The latter is a stochastic time-

dependent variable, as a result of the undulations. Thus

L
=

~~~~~
dz 1 + ~~~l'~~

~

m
L~(t)

1
+ ~~l'~~

j
,

(23)
o z z

where we have defined, for convenience, the spatial (not to be confused with the ensemble)
average

~hjz t) 2 1 L~jt) ~~j~
~~

2

°~

11%
~~l

°~ ~~~~
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Both (0h(t) /0z)~ and Lo(t) are stationary stochastic variables that are related by the above

constraint (with L kept constant). Performing an ensemble average in equation (23) (exactly

summing over Fourier modes, using ~j 1/p~
=

gr~ /6), and inverting the result to the same

p=1,2,...

order in kBT/t~, we obtain a known expression [13,14] for the mean projected length Lo e (L~)

f~
ci L 11- ~~~L) (25)

6 '~

The fluctuations in the projected length are calculated from equation (23) by solving for Lo(t)
to first order in (0h/0z)~. The time-dependent mean square (MS) difference of the projected
length is obtained as

1(ALoit))~) a (iLo(t) Lo10))~) =

~ ~ )
(26)

The ensemble average in equation (26) is calculated in Appendix B. We find that it can be

exactly related to the transverse MSD calculated in Section 2, and we obtain

j(~Lu(t))2)
=

)
L jj~h(2t))2

,

(27)

where ((Ah(t))~) is given by equations (19) or (20). (Note however, that the argument on the

right hand side is 2t.) This implies, for example, that at short times, ((ALO(t))~) is roughly

((ALO(t))~) ci const L (~~~) (~~~t) (28)
'~

~~~

~l

~~~

The latter is valid for t « Ts where Ts is given by equation (22). As t ~ cc
(t j~ Ts /2 effectively),

the projected length MS difference saturates, as it should, at the equilibrium value

((ALO)~)
=

2 ((bL~)~)
=

j
(~~~) L~ (29)

5 '~

~

where we have defined ((bL~)~) + ((L~ to)~). Note that we express the right hand side

of equations (27-29) using L rather than Lo, since the difference between the two is no longer

important (to the given order of the calculation) [33j.

3.1.2. Reptation. The fact that the projected length fluctuates implies that both ends of the

polymer move at random, with equal probability to jump to either side, left or right. As
a first

approximation, the two ends of the polymer can be assumed to move independently. It takes

some time, of order Ts, for one end to know about a hop of the other end, during which the

first end can explore its phase space. These dynamic fluctuations can thus cause a longitudinal

reptation (or creeping) motion of the polymer (along its baseline axis), since excess length can

be transmitted by these fluctuations from one end of the polymer to the other. When, for

example, the left end makes a jump to the right, this creates a local excess length "defect" [1j

on the left end which, when transmitted to the right end after the time Ts, causes the whole

polymer to move to the right [34j.
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In a linear mode analysis of polymer conformations (e.g., as in the Rouse model of flexible

chains [2]) the lowest, q =

0 mode, which corresponds to the translation of the center of mass,

only gives the usual Stokes translational diffusion coefficient of the object as if it was rigid
ii. e., coherent translation). A complete treatment of the reptation motion therefore requires

a non-linear theory that couples between different modes. Nevertheless, we shall estimate

the diffusion coefficient associated with this reptation motion on time scales t m Ts, without

requiring such a description. A more refined calculation, which still involves a linear-type
description but is made self-consistent with our calculation of the projected length fluctuations,

is described in Appendix C. Here we shall use only our intuition, which does correctly yield all

scaling properties, but cannot give the precise numerical prefactors; these will be taken from

Appendix C.

From the physical picture described above, clearly, the basic hopping length of the random

walk that the polymer makes at long times is basically
rw

((AL~)~)~~~, which is calculated

above. The time interval during which these hoppings occur is the saturation time Ts. Thus the

reptation diffusion coefficient of a free semi-flexible, rod-like polymer, can be simply estimated

as Dr~p m ((AL~)~ /Ts [35]. In the more refined estiInate (Appendix C) we confirm this result

and obtain
a more accurate numerical prefactor. The reptation diffusion coefficient is then

(where Lp is the persistence length, Eq. (2)).
Interestingly, Dr~p is effectively independent of L (to within a logarithm). This is a counter-

intuitive result, and is due to the fact that both the grid spacing ((AL~)~ )~~~ and the hopping
time Ts, scale as L~, which cancels out this dependence. Note, however, that the overall

longitudinal diffusion coefficient is the sum of Dr~p found above, and the conventional rod

translation diffusion coefficient [2] Djj ci
kBTln(L la) /2gr1/L which is associated with a coherent

translation (only the latter is obtained from the q =
0 mode in a linear theory). Therefore,

since the scope of our discussion is L $ Lp, the contribution of reptation motion to the overall

diffusion is at best marginal (when L i Lp) and negligible when L < Lp.

3.2. REPTATION OF SEMi-FLEXIBLE POLYMERS IN ENTANGLED NETWORKS. We now

consider a network of polyIners ii.
e. a semi-dilute solution) with the following properties: first,

the persistence length Lp is much longer than the monomer scale a, Lp » a, as always assumed;
second, we now consider (contrary to the previous discussion) polymers that are much longer
than their persistence length, L » Lp; third, and most important, Lp is longer than, or of the

order of, the entanglement length L~, which means that there is at least one entanglement per

persistence (Kuhn) segment. To summarize, we assume that a « L~ $ Lp « L.

We define the entanglement length L~ as the mean distance on which a monomer is free to

move without collisions with monomers of neighboring chains [36]. (This definition has been

used also for the regime L~ » Lp [2].) We are not concerned here with the precise dependence
of L~ on the monomer volume fraction #. However, knowledge of this parameter is needed

to make our results useful. A way to circumvent this difficulty has been offered by Kfis et

al. [5], who, by using video microscopy to view the single actin polymer motion in the network,

were able to estimate the length L~. They determined that L~
rw

#~°.~".~~ Comparing
their data for L~ to data for the network mesh size (m [5] (I.e. the mean distance between

adjoining polymers) obtained from permeation measurements, we find, within experimental

error, that L~ ci (m. Several theoretical predictions for the concentration dependence of Le
(which, unfortunately do not agree with one

another) appear in the literature [2, 37-39].
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A low bound for L~ persumably should be the mesh size (m (which contradicts, however, the

result of Semenov [37], L~
+u

()/~/Lj/~). In the limit Lp » (m, for which, on the local scale,

the system appears like a system of stiff rods, (m has been found [40] to scale with the polymer
volume fraction # as (m

+u
#~~/~ The latter scaling behavior has been confirmed in actin by

fluorescence photobleaching measurements of monomer diffusion [6].

Because of the entanglement constraints, a persistence length segment cannot move as a

whole. Nevertheless, excess length is able to diffuse from one persistence unit to another, and

so through the whole polymer, resulting again in a reptation motion of the whole polymer.
This is somewhat similar to the classical reptation model [1, 2]. The latter, however, cannot be

applied straight forwardly here since it holds only in the limit Lp « L~. To use the concepts of

the reptation model, we first must replace the Rouse dynamics, which are used to describe the

curvilinear diffusion of a flexible chain, by a new calculation. Our results will be conveniently
expressed in terms of the persistence length Lp

=

t~/kBT (instead of ~) since this quantity is

more natural for describing polymers with L » Lp.

Our approach is very much different from that of Semenov [10, 41], who used the Rouse

diffusion coefficient, D~
=

kBT/(N,
as an input for curvilinear diffusion, where N

=

L/Lp is

the effective polymer index, and ( is a "monomeric" (I.e. persistence unit) friction coefficient.

The latter is estimated as 2gr1/Lp /In(Lp la) [2,10]. Hence Semenov's approach appears to ignore
the problem of how persistence units mm,e around "corners" imposed by the entanglement
matrix.

3.2.1. A Polymer in a lbbe. We first modify the above calculation for Dr~p to deal with

a polymer in a titbe whose diameter is set (self-consistently) to the entanglement length L~.

The polymer collides with the tube walls at different points with a mean distance (i between

consecutive collisions (the "deflection length" [42], which is the 1-D analog of the so-called

Helfrich-Servuss "patch size" [11, 43] for a membrane held between two plates. It is related to

L~ by

11
~

(45)~/~L)/~L(/~, (31)

where the numerical constant (45)~/~ depends somewhat on the method of calculation. To be

consistent with the rest of the calculations, ii has been found by equating ((Ah)~)
=

2 (h~)
(where, say, h m hlY~) with L( for a polymer of length ii This yields equation (31) with the

given numerical prefactor.

The fluctuations of the projected length are cutoff by ii (rather than by L). The size of

a collision segment (I.e. the piece of polymer between two consecutive collision points)
can

flitctuate around its mean value ii Using L
=

ii either in equation (27) with ((Ah)~)
=

2L(,

or in equation (29),
we find the variance of these fluctuations (using also Eq. (31))

j j~2 j~8/3
~~~~~~~~

P~ ~~~~~~L)~~ ~~~~

The time T~ for these fluctuations to explore their phase space, which we shall call the entan-

glement time, is found from equation (22) with L
=

ii to be
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The variance of the tube contour length is easily obtained by simply taking ((Ah)~)
=

2L( in

equation (29). Thus

(iALo)2)
= ~)~~ 134)

Using an alternative viewpoint, which is very useful in connection with the dynamics, AL~ is re-

garded as the sum of the fluctuations in the size of different collision segments,

AL~
=

~)~~ A()~~ The number of segments in this sum is n =

to/(I This sum has

the form of a random position of a random walker in i-D. We may thus use the Gaussian

random walk result

((AL~)~)
=

~°
((A(1)~ (35)

Ii

Using equation (32) in equation (35) leads exactly to equation (34).
Next we consider the dynamics of these fluctuations in L~. This process is cooperative,

since a
dynamic fluctuation in the position of

a given collision point changes the length of the

two neighboring collision segments to which this point connects. To describe this process, we

use the analogy to the "bead and spring" (Rouse) model of Gaussian flexible polymers. Let us

denote the curvilinear position of a collision point along the tube contour by sj. The length of a

collision segment j is then given by ()~~ = sj+i sj. We may construct a fictitious Hamiltonian

for a chain of beads connected by springs, H
=

Ks/2 ~~ (sj+i sj -11 )~. The spring constant

Ks is chosen in such a way that the equipartition theorem is obeyed, I. e. Ks
=

kBT/ (Ail )~
The Langevin equations of motion for the positions sj are derived in a way similar to the

flexible polymer case
(Rouse model) and solved using normal coordinates [2]. The result is

that the longest relaxation time TR is proportional to n~,
so

that

TR t
~

Te, (36)
l ~

(Numerical factors were omitted on purpose in Eq. (36) but the final result for the diffusion

constant will be more precise.) An equivalent route is to calculate the time it takes for a

perturbation to diffuse from one end of the polymer to the other, taking its diffusion coefficient

to be () /T~. The latter also leads to equation (36), which allows us to express the curvilinear

diffusion coefficient as D~1
~~/j~~~.

Using equations (31), (34) and (36) leads to (using the

numerical prefactors from Appendix C)

If we use this curvilinear diffusion coefficient in the theory of reptation, we immediately obtain

the time it takes for the chain to disengage from its original tube Tr~p =
L~/gr~D~, i.e.

~~~ ~(45)~/31n[(1/gra]

L~~
kBT' ~~~~

The long time (t » Tr~p) chain diffusion coefficient is estimated as Dr~p ci R(/Tr~p, where Rg
is the radius of gyration, Rg ci (LpL)~/~ Thus we obtain (using

a more accurate numerical

prefactor [2])

~~~~ ~~
~~~~~~ ~~ ~ ~~~~~~

~~~~
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Note the scaling behaviors D~
rw

L~~, Tr~p rw

L~, and Dr~p
rw

L~~ These scaling properties

are identical to those of the classical reptation model for flexible polymers. The prefactors,
however, are different and can lead to a significant quantitative difference. To appreciate this,
consider the limit Lp » L~. From equation (37) we see that, for a given L, D~ is smaller here,

by a factor of (L~/Lp)~/~, than that of classical reptation D~
+u

kBT/1/L. As a result, Tr~p
(Eq. (38)) is larger by a factor of (Lp/L~)~/~ These results are quite intuitive, since a flexible

chain has much more excess length (relative to the tube contour length) available to it, to be

used in the reptation, than the semi-flexible chain. However, the reptation diffusion coefficient

Dr~p in our
semi-flexible network is

+u
(Lp/L~)~/~ times larger (for a given L) than that of a

flexible network. This counter-intuitive result may be explained by noting that in a flexible

network the radius of gyration is much smaller (for a given L) than that of a semi-flexible

polymer, leading to this unexpected result. If we redefine, however, the polymer index as

N
=

L/Lp (rather than N
=

L la), and compare the two expressions at a given N (rather than

a given L), Dr~p of the semi-flexible network now appears much smaller than that of a flexible

network.

3.2.2. Curvilinear MSD of a Monomer. Let us now focus on an arbitrary monomer j and

evaluate its MSD, ((Asj(t))~), along the tube contour. (In this part we shall concentrate only

on the main scaling behaviors.) This quantity can sometimes be directly measured, e.g., in

fluorescence video microscopy [5], but it is also needed for the calculation of the real space
MSD described next. It is characterized by three regimes.

The first regime, t < T~, corresponds to the free diffusion (discussed in Sect. 3.i) of a semi-

flexible polymer having an effective length ii Here the curvilinear MSD (Asj it) )~ is shown in

Appendix C to be proportional to the projected length fluctuations. This is intuitively clear at

least for the two end monomers of
a collision segment. Assuming that these move independently

of each other on a timescale much shorter than Te implies that ((A(i It) )~) m 2 ((Asj (t))~).

The second regime, T~ < t < TR, corresponds to the short time behavior of the Rouse-like

motion previously discussed, in which the monomer is diffusing among different tube collision

segments, but the saturation (equilibrium) limit of ((AL~(t))~) (Eq. (34)) has not yet been

reached. Following Doi and Edwards [2] this is simply

((Asjit))~)
ci

) ((Aii)2) ()) ~~~

i
(iAii)2) ()) ~~~

No)

The third regime, t > TR, corresponds to regular curvilinear diffusion with the diffusion coeffi-

cient D~. To summarize, we
find that

~ ~~
3/4

§~
~~

~lt for t « T~;
L~

~

((/~8J (t))~) ~
§~ ~lt

~~~

for T~ « t « TRI
~~~~L~

~

~
2/3

~ ~ff) @t for t » TR.
P

~
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3.2.3. Real Space MSD ofa Monomer. We may now proceed to calculate the real space MSD

of a tagged monomer (following the calculations for the classical reptation model [2,44]). Since

this is usually measured by collecting signals from many different atoms along a single chain

and on different chains (e.g.,
as in NMR or fluorescence photobleaching measurements [6]), we

should average the motion over all polymer configurations. The MSD then becomes isotropic.
For t < T~, both longitudinal and transversal motions contribute in general to give

1(/~rJ (t))21 c~

i
+ coast

iii /~j [ii~ j ~~~

142)

where const
+u

1. Note that for L~
+u

Lp, both the first and second term in equation (42)
(first square brackets) contribute similarly. If L~ < Lp, the second term, resulting from the

longitudinal motion, is negligible.

When t > T~, the transversal motion is constrained to the tube cross-section and only the

longitudinal motion can proceed. (Analogous to classical reptation [2j, the regime T~ < t < TR

may be called the "breathing" regime.) Let us first focus on the subregime T~ « t « Tp~r,
where

~
~17/3 ~ 16/3

~~~~ "
kBT ~/3

L~~
~~ ~~~~

is the diffusion time over a single persistence length. Here configurational averaging amounts

only to averaging over the random orientations that the different persistence units take.

We now seperate the discussion into two situations: (I) L » L(/L( for which TR » Tp~r,
and (it) L « L(/L( for which TR « Tp~r.

Consider first case (I), L » L(/L$. In the regime T~ « t « Tp~r this gives

1(/~rJ (t))~i ~
Li + coast

IS jTtj ~~~

~~~~

The second term in equation (44) is negligible up to times t
~w T~ where

T~ ci

~~~~ ~~~
= ~~~) T~ (45)

~T~ ~

Le

~~~

corresponds to the longitudinal diffusion time over one entanglement length. For t » Tc the

second term is dominant. For later times, where Tper « t « Trep, the segment diffuses on

length scales much larger than Lp along the (assumed Gaussian) tube; however, the chain has

not yet disengaged from its original tube. This suggests that ((Arj it) )~ m Lp ((Asj it) )~ )~~~.
Finally, when t » Tr~p the diffusion of a polymer segment is identical to the diffusion of the

center of mass, with a diffusion coefficient Drep given previously. These results, taking now

(for simplicity) L~ < Lp, are summarized below.
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Case (I): L W L(/L$

@~j
~~~

for t « T~;
~Lp

j~2 for Te « t < Tcl

~~/~ §f~j
~~~

for
T « t < Tper'L~/~ ~ ~ '

(46)~~~~J ~~~~~~
j~/3

~8/3 rift) ~~~
for

T < t « TR'
P ~ ~ ~~~

kBTL~~~~~~~
) ~~~

for TR « t « Trep'~L

~ ~~jfi
f~r

T « t
~L2 ~~P

Case (it) L « L(/L(. Here we find that

3/4
@t for t « Te'

~L)
'

j~j
~

for Te St < Tc;

L(~~ bitj ~~

for Tc « t « TRI

~~~~~ ~~~~~~

~
~~

it for TR « t < Tper.

~~~~

Lp ~ '

~ ~~4/3~2/3
~/~

fit for Tper < t « Trep;
~

~fit
for Trep « t.

Note that cases ii) and (it) differ only in the intermediate time regime min [Tp~r, TR) « t <

maX (Tper, TRj

3.3. REPTATION OF MEMBRANES. In membranes the projected area can also fluctuate,

and this can cause reptation motion of the membrane. It will modify the longitudinal diffusion

coefficient, and is a very interesting concept in itself. There is, of course, no membrane analog
(in 3-D) to the entangled polymer network where this motion is dominant. However, if the

membrane is sandwiched between two plates that do not allow slippage upon contact, the only
mechanism of transport is again reptation.

3.3.1. FFee Membrane. We approach this process by considering now the fluctuations of

the excess area. The short time behavior can be related, similarly to equation (27), to the

transversal MSD

liAsoit))~)
=

~))S liAhi2t))~l, 148)

with S
=

L~, L being the linear dimension. Equation (48) saturates at the equilibrium limit

((ASO)~) m

~
(~~~) S~. (49)

4~r '~

~

The saturation time is
~w Ts, equation (14).

To consider the longitudinal reptation motion of a free membrane, we
first find the fluc-

tuations of projected length in an
arbitrary direction. The projected area is written as
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So(t)
=

L~(t)Ly(t), where L~ and Ly are projected lengths along the z and y axes. They

are assumed to be independent (but, by symmetry, equivalent) stochastic variables (with
mean

lo ). This is not entirely correct but is sufficient for our approximate description. Accordingly

we find

1(ASO(t))~)
=

2 ((Ll) (L]) iL~10)L~ it)) iL»10)L» it))) 150)

Noting that the two axes are equivalent, we obtain the following relation between the MS

difference of the projected length in an arbitrary direction (dropping the axis subscript) and

the MS difference of the projected area,

((AL~(t))~)
m

2L~ (1- ~~~)~(~~~~j
~j

(51)

Using equation (48) in equation (51) with ~ / kBT leads to

li&Loit))21
m

j
11&h12t))21. 152)

The short time fluctuations of the projected length are thus independent of the membrane size,
which strongly differs from the 1-D case, equation (27). To discuss reptation, we require for

the equilibrium variance

(AL~ )~ i
~

~~ ~ ~

L~. (53
8gr t~

The long time reptation diffusion coefficient of a free-membrane is then

(The numerical prefactor is only roughly estimated here because we did not perform a more ac-

curate calculation, as was done in Appendix C for 1-D.) Thus, apart from numerical prefactors,

Dr~p is basically kBT/~ times the Stokes-Einstein (coherent) translation diffusion coefficient,
D

~J

kBT/1/L. The overall diffusion coefficient is again simply the sum of the two coeffi-

cients. For ~ » kBT, reptation is therefore negligible, and becomes marginally important
when

~ ~w
kBT.

3.3.2. A Membrane Sandwiched between Two Plates. Next we consider the reptation of a

membrane sheet held between two plates with gap d. The collision length (or the Helfrich-

Servuss "patch size" is now [11, 43]

(2 Cf (2gr~)~/~(~/kBT)~/~d. (55)

The overall fluctuations in the projected area are obtained from equation (48) by replacing
((Ah)~) by d~, leading to

((AS~)~)
= ~)~Sd~. (56)

Then, using equation (51), the fluctuations in the linear dimension along an arbitrary axis

obey

I(ALO)~l flf
(id~, (57)

which is independent of L.
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The Rouse-like time TR of these fluctuations is given by equation (36) (with a prefactor of

1/2 because of the 2-D nature of the problem) with

Te =

'~~~ (58)
ir

~

Using Drep
=

((liLo)~) /TR we obtain

~~~~ 16V5
~ 1~L2

~~~~

This result crosses over to equation (54) when L ci (2. Note that Dr~p
~w

L~~, which is

very different from the scaling behavior of the (curvilinear) reptation diffusion coefficient of

semi-flexible polymers in a tube, D~
~w

L~~ (but spuriously identical to the scaling of the

long time reptation diffusion coefficient in a
network). Reptation of a membrane between two

plates, as in a lamellar phase, is thus very slow. If there are slip boundary conditions on the

plates, and they do not curve in space, the usual (coherent) translation diffusion coefficient

will dominate. However, if the two plates slowly curve in space (but remain parallel),
or if the

membrane cannot slip at the contact points, coherent translation diffusion will be inhibited,

and the reptation mechanism will take over.

4. Polymers and Membranes under Tension

4.I. MEMBRANES. Here we shall consider the effect of tension a
(units of force per unit

length)
on the transversal mean-square displacement of a tagged (fixed) point on a membrane.

Tension can be imposed externally le. g., using micropipettes [21] or laser tweezers [19]) on

a membrane sheet that has been initially in equilibrium. In addition, when vesicles are pre-

pared by non-equilibrium processes the membrane is often under tension. This is because the

volume-to-surface ratio does not have time to relax to the minimum energy (due to the small

permeability of the membrane).
The equilibrium spectrum of undulations is again derived from the Helfrich bending free-

energy, equation (3), now with the addition of surface tension (evaluated again for small de-

formations)

H
=

/
d~p (a (Vh(p))~ + ~ (V~h(p))~j =

~j (ak~ + ~k~] hkh-k. (60)
2 2

~

The transversal MSD now becomes

((Ah(t))~)
=

~~~j
/ / ~

~~(1- e~"l~)~) (61)
2gr ak ~

with the relaxation frequency uJ(k) given by

w(k)
=

~~ ~ ~~~
(62)

4~l

This expression shows a crossover behavior in time that is controlled by the natural inverse

length scale k*
=

/fi. Short time behavior is influenced by large wavenumbers k W k*, and

is thus equivalent to that of a tenseless membrane. The long time behavior is controlled by the
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long wavelength undulations that are strongly suppressed by the tension. The crossover time

t* obeys
~~~i/2

t*
= ~~~

(63)

The asymptotic behaviors of equation (61) are then

~ ~~ jj ~z) I ~z j
~~

/
~~ ~~ ~*(jAhjt))~)

~t ~ ~
~

~
(64)

@ [In ()) + 0.58) for t* « t «
f

The MSD saturates at times t ~ ~~f at the equilibrium value ((Ah)~)
=

flirt ()fi)
as

required from ergodicity. In practice, logarithmic dependences are usually hard to detect.

Thus, the slow, logarithmic increase of the MSD at the long time regime suggests that it may

appear to saturate (at times t
rw

t* at the value
rw

kBTla, which could be several times smaller

than the equilibrium value.

We can see that the two asymptotes in equation (64) match to within a numerical constant

when extrapolated to t
=

t*, yielding ((Ah(t* ))~) ~t
kBTla. It is therefore interesting to check

whether the full evolution can, at least to a good approximation, be described by a single
scaling function f(t/t*), I.e.

((Ah(t))~)
=

~~~
f(t/t*), (65)

a

where, for consistency with equation (64), f(z) must have the following asymptotes

~2/3 for Z « 11 (66)fix)
'~ In ix) + const for Z fi 1.

The validity of this scaling ansatz in the crossover regime z rw
I, which is not verified in the

above asymptotic analysis, is checked numerically in Figure I. We can see that, with the

appropriate rescaling of variables, the data for three different values of
a collapse with very

high precision onto a single curve.

An interesting implication resulting from this analysis concerns the dynamic structure factor

S(q,t). As discussed previously, the t~/~ increase of the MSD was shown [16] to lead to a

stretched exponential decay, S(q, t)
rw

e~l~q~)~~~ Using the approach described in reference [16j,

we can conclude that for scattering geometries in which the scattering vector q lies roughly

perpendicular to the membrane plaquettes, or when the angular distribution of plaquettes is

isotropic, S(q, t) will decay algebraically at the long time regime t » t*, S(q, t)
rw

t~", where

a m
q~kBTla. This should be detectable for q < q* (q*

=
k* above). For large scattering

wavenumbers, q » q*, this decay is much less relevant since the structure factor has already
relaxed (up to times t

rw

t*) to a vanishingly small value that is difficult to measure in practice.

4.2. SEMI-FLEXIBLE POLYMERS. For semi-flexible polymers under tension, the mean-

square displacement becomes, instead of equation (19),

((Ah(t))~)
=

~~B~
/"~~

dk

j~
~~~~~j

~r
«

IL
ak2 + ~rk4 ~

,

(67)

with uJ(k) given by (for ka < 1)

uJ(k) m

°~ ~ ~~
ln[I /ka]. (68)

7ril ~
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Fig. I. Transversal MSD ((Ah(t))~) of a tagged membrane molecule, against reduced the time t It"
(with t* given by Eq. (63) ), for three different values of surface tension a

(arbitrary units);
cx =

a/2;

~ =
kBT

=
1 used in all cases. Note the clear data collapse, and the crossover from power-law to

logarithmic behavior at t/t* ci 1.

The logarithmic dependence in uJ(k) is again considered only to the leading order. High order

effects are ignored by replacing k with k*
=

/fi. As in the case of membranes, we find a

crossover behavior to a tension-dominated (anomalous) diffusion that is set by the characteristic

length scale I/k*
=

/fi. The crossover time here is

t*
=

~~(~ (69)
a

The asymptotic behavior becomes

~

°'°~~ ('~
(i@j ~i~l ' %~) ~

~°~ ~~ ~ ~~'
((ah(t))

r~
~

~

j~o)

~'~~
~~ ~~ ~~) ~

~°~ ~~ ~~ ~
~

The MSD saturates, as it should, at the ensemble average value ((Ah)~)
m

~TL for times

~2
t ~ f.

The two asymptotic laws match (to within a numerical constant) at t
=

t*, which means

that again the MSD may be expressed by a single scaling function g(t/t*), I.e.

(lAhlt))~)
=

~$)~~~glt/t*).
171)

The additional asymptotic logarithmic dependencies described in equation (70) slightly break

this scaling hypothesis. If these are ignored, g(x) must have the following asymptotes



N°12 REPTATION OF SEMI-FLEXIBLE POLYMERS AND MEMBRANES 1779

° a"1, w10~
loo

' a"1, w10~
~

~° ~ a*10, w10~
~

WI

~ ~'
%s "

m i
/

$(
,

J
~i

o-i
vu°'

CCL
u

°,'
o.ol '

o.ooi

o.ooi o.oi o-i i lo loo iooo

t/t*

Fig. 2. Transversal MSD ((Ah(t))~) of a tagged momomer belonging to a semi-flexible polymer,

against the reduced time t It" (with t* given by Eq. (69) ), for three different combinations of the surface

tension a
and the bending modulus ~

(arbitrary units); fl
=

a~/~ /(4~~/~); kBT
=

I used in all cases.

This scaling ansatz is checked numerically in Figure 2. To obtain these numerical results, the

hydrodynamic interaction corrections to uJ(q) were calculated to a high order (o(q~)) beyond
the logarithmic term. We see that the scaling is less good than in the 2-D membrane case,

presumably because of the additional logarithmic dependences.

4.3. FLEXIBLE POLYMERS. It is interesting to compare these results to the transversal

MSD of flexible polymers under strong tension. A simple static picture, designed for polymers
under good solvent conditions, has been provided by Pincus 11, 45j, and we would like to

generalize his heuristic approach for the dynamics [46j. In this approach, a
flexible polymer

under tension may be viewed as being separated into blobs of size (~
=

kBT/b. Within each

blob the chain does not feel the tension and is swollen in the usual way, I.e. the number of

monomers in each blob is given by ga =

((~la)~/~, where a is the monomer size. The blobs

make a sequential array in a
direction parallel to the force, with no

backward steps. In the

vertical direction to the force the blobs make a Gaussian random walk. The extension of the

chain is then easily calculated using L m
(N/g~)(a, where N is the polymer index. This gives

L i
Na(aa/kBT)~/~. The radius of gyration in the vertical direction is (r ()

m L(a, which

gives (r ()
m

Na~(kBTlaa)~/~ Thus ri IL
rw

(ga/N)~/~ « l in this strong tension regime.

Since in each blob the chain does not feel the tension, the dynamics at short times must

be identical to that of a free chain in good solvent. The latter is well described by the Zimm

model. This implies that a tagged monomer will perform an anomalous diffusion (Ari (t) )~ m

(kBTtlil)2/~ This behavior will in fact occur in all directions. When the rout MSD reaches the

blob size (~, the monomer will move in the vertical direction to the force by collective difusion

of blobs. The hydrodynamic interaction between these moving blobs can be neglected (to
"zero" order) since the array they form is I-D (since ri « L) and the interaction is therefore

weak (logarithmic). The diffusion of blobs can be then described by the Rouse model. In

fact, since ri < L the Rouse model becomes identical to the model of a string under tension,
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namely, the MSD will be the same as in equation (70). Indeed, the Rouse model predicts
((Ari (t))~) m

(kBT(~tlil)"~, which is similar to equation (70) if we use (a
=

kBTla [47]. To

summarize, therefore

(hZt) ~ for ila~ /kBT « t < r~;jjA~~jt))2j
~

~

~

~~~
(73)

(~~~)~ t) for r~ « t « i~(«L~ /kBT,
~"

where ra is the Zimm time of a single blob

~

~lfl
~

~llkBT)~ j74)
" kBT a3

Note that although the long time evolution in equations (73) and (70) is similar, the relevant

tensions can be quite different in the two cases. For flexible polymers we require a » kBT/Rg
for the tension dominated evolution to exist (MSD

rw

t~/~), whereas for semi-flexible polymers

we need to have a » kBTLp/L~.

5. Transversal Motion in Lamellar Phases

Membrane bilayers often form dilute lamellar phases that are stabilized by the Helfrich steric

undulation forces. For simplicity we have assumed that the bilayers are uncharged so that the

only long range interaction between the bilayers is due to stearic undulation forces. Thus on

length scales shorter than the Helfrich-Servuss "patch size" (2
r~

(~/kBT)~/~d, the membrane

behaves like a
free membrane. On longer length scales the inter-membrane collisions become

important. The short time transversal motion of a tagged membrane particle should therefore

be identical to that of
a

free membrane. However, when the MSD reaches the interlayer spacing,
collective membrane motion should begin to play a role.

In order to describe this collective membrane motion, we shall use the common description
of the elasticity of smectics. The elastic free-energy, which is applicable to wavelengths ~ m (2,
is written as [48]

Here, u(r) describes the displacements of all layers in the system; K is the smectic bending

modulus and is related to the single layer modulus ~r by K
= ~r

Id; 11 is the effective compression

modulus, which for the undulation-controlled Helfrich type interlayer repulsions, is given by ii ii

jj
=

9«~ @
64 ~d

Before we turn to the dynamics, we will first review some known results for the equilibrium

fluctuations. From equation (75), the equilibrium spectrum of uq is given by

~'~~'~~~~ Kq~~llql' ~~~~

where qz and qi are the two components of the wave vector in the transversal (z) and longitu-

dinal directions, respectively. (Note that qi e k was denoted in the previous sections without
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the subscript I.) The mean square amplitude is calculated [48j using equation (76)

~~~~ 4j~~~~ l~
'

~~~~

where L is again the lateral system linear size. The logarithmic divergence in equation (77) is

well known as the Landau-Peierls effect, which indicates that the layers are wandering a lot in

space and true long-range order is absent.

If we would like to focus on the displacement profile h(p) of a single layer located at, for

example, z =
0, it can be obtained from the 3-D field u(r)

=
u(p,z) by putting z =

0.

This leads to the following relation between the correlation functions of the planar and spatial
displacements

~~~~ ~~~~~
7r ~~j

~~~ ~~~'~~~~ ~~~~

Using equation (76) in equation (78) we obtain

(hq h
q =

~~~ ~

=

~ d~

~ ~ 21i q ( 37r q
( '

(79)

where the second equality holds only for undulation force stabilized smectics. Interestingly,
the scaling behavior (jhq~ ii r~

qi~~ is identical to that of a single membrane under tension.

If we now calculate (h~) using equation (79) we get of course the result equation (77).
We now turn to discuss the transversal MSD of a tagged particle attached to one of the

layers. The result equation (77) implies that the MSD will continue to increase with time

even after it has reached
r~

d~, since the long time limit (u~) is larger than d~ by a factor

of In(L/(2). To consider this evolution we need to know the relaxation frequency of a certain

Fourier component of the displacement field. It is in principle dependent on the two components
of the wave vector, qz and qi An approximate expression for a general oblique q has been

obtained in reference ii?]

uJiq)
=

~j~ +/~( qi 180)
~lq +

d2 qz

In the limit
/jq ( < qz, equation (80) reduces to the dispersion relation of the barodinic

mode [49j
~2

LJlq)
=

$flq [. 181)

This mode corresponds to a modulation of the interlayer spacing. The relaxation is limited by
the Poiseuille flow within the layers, since the membranes are assumed to be impermeable. In

the opposite limit, )q ( » qz (assuming that )
r~

d, I.e. ~r r~

kBT), the pure undulation

mode dispersion relation

LJlq)
=

)ql 182)

is obtained. This corresponds to coherent sinusoidal bending of the layers keeping the local

interlayer spacing intact.

Given uJ(q), we may proceed to calculate the MSD using the 3-D analog of equation (11)

~~~'~~~~~~~
~ /

Kq
/~llq] ~~ ~ ~~~~~~' ~~~~
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Since this is a complicated integral, we approximate it by separating the integration over qz

into the two regimes, jqzj < )q ( and jqzj >
)q (, and approximating uJ(q) in each regime

by equations (82) and (81), respectively [50j. Thuslfi~j
~~~'~~~~~~~

~
~

/
~~~~ ~

~

~~~~ ~

Kq/~Bq)

+
/ d~~i Ii e<~~~~l /j~~

~i~l~~il.
184)

The upper limit of qi is again set to 7r/(2. Performing the integrations we obtain

where C is a numerical constant, C
=

3/(16@). The second equality in equation (85)
holds for smectics stabilized by undulation forces. A similar logarithmic increase is obtained

even when only the undulation modes are present, e.g., when 11 is large due to coulombic

interactions, for example, so that the baroclinic modes are fastly decaying and do not influence

the long time evolution of the MSD. The effect of constraining the membrane in a lamellar

phase is thus quite similar to the effect of imposing tension (compare to Eq. (64) ).
To summarize these results, the MSD in a lamellar phase behaves roughly as

((Au(t))~)
r~

d~ l~fi~
~~~

~~~~~~ ~°~ ~ ~~'

~

(86)
In ()) for t* « t < jt*,

where t* cf
ild~~/(kBT)~.

6. Conclusions

We have examined here the transversal and longitudinal motion of I-D (polymer) and

2-D (membrane) semi-flexible objects subject to various constraints such as confinement and

tension. Particular attention was given to the reptation of semi-flexible polymers confined in an

entangled network. This generalizes the classical model of de Gennes and of Doi and Edwards

for flexible polymer networks. With the polymer being relatively stiff between two consecutive

entanglement points along the chain, reptation becomes significantly slower than in the flex-

ible polymer case, but still exists. We have shown that the concept of reptation also applies

to membranes, for which this concept is new. Although for membranes this phenomenon is

usually expected to be less relevant to real experimental situations than in polymer systems,

it may be extremely important for understanding the transport of membranes (e.g., vesicles)
through porous material.

Probing local motion in membranes and semi-flexible polymers can be a very powerful tool

for measuring the bending constant of these objects and, when applicable, the tension they
endure. The latter situation is mostly relevant for systems far from equilibrium. The rich

variety of power-laws characterizing the anomalous diffusion of tensed and untensed objects

can be used to distinguish between them and as a tool to determine the value of the tension.

The mean-square displacement was also shown to be sensitive to excluded volume constraints

in the liquid crystalline order. Experimental applications to entangled microtubule systems

have been recently put forward [20].
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Appendix A

Here we derive equation (ii) for the mean-square displacement. The stochastic field h(p,t) is

expressed through its Fourier transform

This leads to

jjhjp,t) hip, o)j2j
t

j ~ jh~jt)h-~jtjj + jh~jo)h~~jo)j 2 jh~jtjh~~jo)j
,

jA.2)

~

where we have used (hk(t)hq(t'))
c~ &k,-q. Consistent with the Langevin equation (8), and as

ergodicity also requires, the equal time correlation functions (hk(t)h-k(t))
are independent of

time (I.e. hk(t) is a stationary stochastic process) and are equal to L~kBT/~rk~. Using also

equation (5) for (hk(t)h-k loll and transforming the sum on k to an integral, we immediately
obtain equation ill).

Appendix B

Here we derive the relation (27) between the projected length MS difference and the MSD of a

monomer in the transversal direction. Since the statistics of undulations in the two transversal

directions is identical, we may calculate the average in equation (26) for one direction (say

"y" and multiply the right hand side by 2. Opening the square brackets in equation (26) and

denoting h m
h(Y)

we obtain

iiALoit))~i
-

L~ Ill Ill ~
~)

[~~li ~~
~

[~~li°~
)j

iB.i)

Next, using Fourier expansion we may easily find the relations

I(~~li ~~
~

l~~li °~
)

-

(ill )~
+

l i k~ ihkitih-ki°ii~ iB.21

Inserting
B.2)

and B.3) nto ation and
equation

=

2

~l ~ ~
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Appendix C

Here we propose a more complete treatment of the reptation motion of a free semi-flexible

polymer. The approach described here is inspired by a similar calculation in the classical

reptation model for the contour length fluctuations [2j. It can easily be generalized to describe

the reptation of membranes, and we shall therefore avoid doing it explicitly. In contrast to the

Monge gauge (h(z) representation) used throughout the text, we shall use here the function

z(s) where s is the curvilinear position of a monomer from one of the ends (the origin) and

z(s) is its position in base coordinates. The two representations are related by

According to our definitions

(Z(L) Zlo)I
"

Lo. (C.21

We shall express z(s) in a Fourier series [2j

z(s, t)
=

Xo(t) + 2 ~j Xp(t)cos (p7rs/L) + s

~°
(C.3)

p=1,2,..
~

(We have used, for convenience, a real Fourier transform.) The third term, which is linear in

s, insures that (I) the constraint given by equation (C.2) is obeyed, (it) dz/dsjo
=

dz/dsjL,
which is forced because the two ends are equivalent, and (iii) that (d~z/ds~)

=
0, which follows

because, in the absence of spontaneous curvature, the polymer is, on the average, uncurved

(straight). Note that although our approximate approach is a linear one (I.e. the modes in

equation (C.3) do not interact), the exact description should involve non-linear free-energy
terms that will couple different modes.

The power spectrum of fluctuations (X)), and the spectrum of relaxation times rp, will

be determined self-consistently by using equation (C.3) to calculate ((ALO(t))~) in both the

short and the long time limits, and equating it with equations (28) and (29). This will require
certain assumptions regarding the p-dependence of (Xj) and rp.

From equation (C.3)
we obtain

L~(t)
=

z(L, t) z(o, t)

=
Lo + 2 ~ Xplt) ICOS lP7r) 1)

=
L~ 4

~i~
x~(tj. jc.4j

p=1,3,5

The projected length mean quare fluctuation becomes

((ALO(t))~
=

32 ~j ((X)) (Xp(t)Xp(0))) (C.5)

p=1,3,5.

A~~~~i~~ ~°~

~ j~~ x jo~j
=

x2j e~~~~~ lC 61
P P P

~/~ °~~~~~

iia~~jt~~21
=

~~ ~ (xii ii e-t/TP) iC.7)

p=1,3,5...
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Now let us introduce the Ansatzs (Xj)
=

Cip~~ and rp~
=

C2p~~ln (fi),
where Cl, C2

and p are yet unknown constants, to be determined by comparing equation (C.7) to equation
(27) at different time regimes. Let us first consider short times. For t « ri equation (C.7)

may be approximated by transforming the sum to an integral to give ((ALO(t))~)
rw

t~~l We

compare this to equation (28), which uniquely specifies the value p =
4. By comparing the

t ~ cc limit of equation (C.7) to equation (29), I.e. by looking at the equilibrium fluctuations,

we obtain (using ~j p~~
=

7r~ /96) the coefficient Cl, which leads to

p=1,3,5...

~~Pl
~ W

(~)
~ ~ ~~'~~

C2 can be obtained, either from equating the short time evolution, or the saturation time for

the projected length fluctuations r~/2
= ri (Eq. (22) ). These two options do not give exactly

the same numerical prefactors (in the expression for C2), but the difference is very small (less
than 10%). Using the second choice leads to

~~
~3 ~In

())
~

~P 2 ilL4 ~ ~~'~~

Note that (Xj)
c~

(kBT/~)~, which again demonstrates that the hidden description behind

this linear self-consistent approach is in fact non-linear.

It is useful to construct the Langevin equation describing the dynamics of Xp. This must

have the form

~~P
=

-~P
+ (~jt). (c.io)

at r~

The random force (p(t) obeys

1(pit)(p It'))
=

211 + &pal ~~ bit t')

j~ ~ ~ ~~
jkBT)21n (j)

=
~~)

~~

bit t'). lC.ii)

Here, the expressions for (Xj) and rp~, which were determined for positive p, are assumed to

hold also in the limit p ~ 0. Equation (C.10) is well behaved in this limit (in which rp~
=

0)
except for the logarithm in the power spectrum of (p. We can eliminate this problem by using

p =
I in the logarithm instead of p =

0, without further justification.
We are now able to calculate the MSD of an arbitrary monomer s in the longitudinal direc-

tion. Using equations (C.3, C.8-C. ii we
find

((Az(s, t))~)
=

2Dr~pt + 8 ~j (X))
cos

~(pxs/L) (I e~~/~P) (C.12)

p=1,2,.

where

~
l (kBT)~In (~)

~~~ $
y~~

"~ (C.13)
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Thus for long times where t » ri (= r~ /2)
we obtain

((Az(s, t))~)
i 2Dr~pt, (C.14)

which shows that the polymer center of mass is performing regular diffusion that is controlled

by the reptation mechanism. On short timescales, t « ri, the first, regular diffusion term in

equation (C.12) is negligible, and the sum can be approximately transformed into an integral.
For the two efl monomers s =

0 and s =
L, comparing this result with equation (C.7) (using

~j
1

~
dp), we obtain the relation

p=1,3...
~

((ALO(t))~)
(C 15)((Az(0, t))~)

=
((AZ(L, ~))~) "

2

This indicates that the motion of the two ends is not correlated on the short timescale where

t < r~. This is physically reasonable since we do expect that a perturbation at one end will

travel to the other end on a time scale of the order of rs. For monomers that are closer to

the middle point of the polymer, cos ~(p7rs IL) in the sum is oscillating fast with increasing p,

and we may (approximately) replace it by its average 1/2, to obtain (transforming again to an

integral)

((Az(L/2, t))~) i

~~~~°~~~~~~ (C.16)
4

These relations are used in equation (41) to obtain the short time regime t « r~.
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