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Abstract. We investigate the closed flow between coaxial contra rotating disks, at moderate

to high Reynolds numbers. We show that global ii.
e. spatially averaged) quantities can

be used

to characterize the state of the flow and its degree of turbulence. We first report measurements

on the driving torque and show how it depends on the manner momentum is imparted to the

fluid. We then show that pressure measurements at the flow boundary provide a good estimate

of the rms velocity fluctuations in the flow and that it reveals the transition to turbulence in

the flow volume. Finally, we show that once the transition has occurred, the knowledge of

the same global quantities allows the calculation of fundamental turbulence characteristics such

as the rms velocity fluctuations, the effective integral length scale L*, Taylor's microscale A

and Kolmogorov's dissipation length ~. That these quantities may be obtained from measuring
devices removed from the bulk of the flow is of importance for the study of fluid motion in

complex geometries and for using corrosive fluids.

1. Introduction

The turbulence properties of flows at high Reynolds numbers are usually described experimen-
tally in terms of the scaling properties of the local velocity field, as measured by a small probe

placed inside the flow [1-3]. This technique is widely documented and has produced most of

the existing experimental data on turbulent flows. Unfortunately the method is complex, local

and intrusive; in addition, depending on the flow conditions, it is not always possible to use an

anemometer probe
m situ. Simple examples are flows in which the temperature is very high or

not uniform, flows in corrosive liquids, flows in liquid metals [4], etc. The question then arises

of the experimental characterization of a turbulent flow in the absence of local anemometry

measureInents. The problem is to determine whether the flow is turbulent and to characterize

the intensity of the turbulence. if present. We note that the knowledge of the integral Reynolds
number is not always sufficient here integral means that it is determined by the values of

external parameters fixed in the experiment (for example, the flow rate and tube diameter in

a pipe flow). Turbulent flow characteristics may only be determined if one can compute an

internal turbulent Reynolds number~ I.e. based on internal flow parameters only. This is the
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case When local anemometry is available;
a

turbulent Reynolds number is defined using the

rms velocity fluctuations and the Taylor microscale A. In this article~ we justify the use of

global measurements to characterize the turbulent fluctuations and we propose alternate ways
of defining an internal turbulent Reynolds number, at least in the case of a closed flow.

Among possible non-local, non-intrusive measurements are: pressure at the flow bound-

ary; acoustic measurements, power consumption of the flow driving mechanism, etc. These

measurements are global ones, by which term we mean ~'spatially averaged"

gin)
=

/ gix,t)d~x, 11)

where the volume V covers the entire flow or a large part of it. We stress that such
a global

quantity is an average over space of the instantaneous realization of the flow; it is thus a

(fast-varying) function of time whose characteristics mean value j, and fluctuations

dg
=

g(t) j must be studied.

In some cases the scaling of j is known in the limit of very high Reynolds numbers. For

example, let us consider the case of a disk of radius R rotating at constant angular speed fl

in a fluid of density p and kinematic viscosity v.
Dimensional analysis shows that the mean

torque required to drive the disks is given by:

f
=

pR5n2fjRe)
,

j2)

where f(Re) is an unknown function of the integral Reynolds number Re
=

R~fl Iv. The

functional form of f is itself Reynolds number dependent and varies also with the experi-
ment's geometry, e-g- the surface condition of the disk. Indeed it has been observed that

f(Re)
r~J

const., in the limit of very high Reynolds number for (even so
slightly) rugose disks [5].

In the case of smooth, highly polished disks, one rather observes a
f(Re)

r~J

Re° behavior. We

will return in detail to this point in Section 3.I; for the moment we just stress that f depends

on the way the energy is injected into the fluid. The differences in behavior of f come from the

fact that the externally fixed parameters (such as
fl)

are not simply related to the internal flow

variables (such
as urm~). The fluid is set into motion via its boundaries whereas the energetic

cost is related to the flow velocity in the bulk. It thus can be expected that
a more meaningful

behavior is recovered when T is expressed in terms of internal flow variables only; e. g.
f

r~J

u)~~.
Our point is that such internal quantities can be accessed via global measurements that do not

require a probe to be inserted into the bulk of the flow; e.g. urm~[bulk]
r~J

prm~[at wall].
We describe in the next section our experimental set-up and measurement techniques. We

then present our results on torque and pressure measurements, and show how the two mea-

surements can be combined to characterize the transition to turbulence in the flow. We then

proceed with the deduction of internal flow parameters le. g. rms velocity fluctuations, energy
dissipation, Taylor microscale, etc.) and we propose an expression for the turbulent Reynolds
number.

2. Experimental Set-Up

2.I. FLow GEOMETRY. We use the von K6rm6n swirling flow [6] produced in the gap
between two coaxial counter~rotating disks of radius R, a variable distance H apart. Cylindrical

walls surround the flow volume. The experimental set-up is sketched in Figure I. We use two

different fluids, air and water.
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Fig. I. Sketch of the experimental set-up in water. The flow is set into motion by the disks counter-

rotating at equal frequencies. H
=

20 cm, R
=

9 cm. The pressure transducer, mounted flush to the

wall, is located in the mid plane between the disks.

.
In the case of air, R

=
10 cm, H

=
40 cm and the disks are fitted with a set of 8 vertical

blades, perpendicular to the disks surfaces, with height hb
"

2 cm and thickness 0.5 cm,

in order to increase entrainment. The disks
are

driven by independent 450 watt DC

motors, the rotation frequencies of which are adjustable from 0 to 45 Hz and controlled

by a feed-back loop. The disks are enclosed in a cylinder 23.2 cm in diameter. The

largest Reynolds numbers are thus about Re
=

flR~ Iv
=

10~.

. In the case of water, disks of radius R
=

9 cm, H
=

20 cm apart, are enclosed in a

cylindrical container, 19.3 cm of inner diameter and 19.8 cm in height. Light disks are

used in order to reduce inertia effects and thus increase the high frequency cut-off of the

torque measurements. The temperature is maintained constant with a regulated water

circulation. The disks are rotated independently by two Parvex-Alsthom RS420 motors

at controlled rotation frequencies in the range 0 40 Hz. The Reynolds numbers achieved

with water are larger than 10~. Experiments are performed with disks whose surface is

smooth or has a controlled rugosity. Calibrated waterproof sandpaper is used and its

rugosity is measured independently with an optical profilometer Iii.

We emphasize that in both cases, the forcing of the flow is such that the rotation rate of

the disks is kept constant through a feed-back loop. This means that other quantities such

as the torque applied by the disks or the energy input are fluctuating quantities in time. An

experimental study of these fluctuations has recently been done [8].

2. 2. MEASUREMENT TECHNIQUES. In each case the signal from the transducers are recorded

on a National Instruments NBA2150F 16-bits digitizing card which incorporates the necessary

anti-aliasing filters.
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.
Velocity measurements (local) are performed in air using a TSI subminiature hot-film

probe with a sensing element 10 ~m thick and I mm long. Velocities are deduced from

voltage measurements using the usual King's law fi
=

(e~ a)16, the validity of which

has been checked, and the coefficients a and b obtained from measurements in a calibrated

wind tunnel. The position of the probe is adjustable. We have checked that the presence

of the probe does not affect the flow measurements by performing identical measurements

with the probe support inclined at different angles.

.
Pressure measurements in water are done with

a 5 mm PCBHl12A21 piezoelectric trans-

ducer, mounted flush with the lateral wall, in the mid-plane between the disks. It is

acceleration-compensated and has a low frequency cut-off at -3 dB equal to 50 mHz; its

rise-time is I ms.

Pressure fluctuations in air are measured by a piezoelectric transducer PCB103A02, also

mounted flush with the lateral wall and in the mide-plane. Its active diameter is 2.I mm,

its low frequency cut-off at -5% is 0.05 Hz and its rise-time is 25 ~s.

.
Torque measurements are performed in the experimental apparatus using liquids. One of

the disks is connected to the driving Inotor by a calibrated Lebow torque sensor (strain

gage shaft, Model 1102-3.53Nm). Signal-to-noise ratio is improved by the use of an

EG&G lock-in amplifier to read the gage bridge output.

3. Results

We first report measurements on the driving torque and show how it depends on the manner

with which moInentuln is imparted to the fluid. We then show that pressure measurements

at the flow boundary provide a good estimate of the rms velocity fluctuations in the flow and

they permit to recast the torque data onto a very simple form. In particular it reveals the

transition to turbulence of the flow.

3.I. TORQUE AND PRESSURE MEASUREMENTS: INTERNAL FLow VARIABLES. We mea-

sure the torque applied on one of the disks when they rotate in opposite directions at equal rates.

The case of
a

disk fitted with blades of height hb is the simplest one: in that situation, the

driving torque is just equal to what is needed to set into motion the slices of fluid in between

the blades, and a very simple calculation leads to:

y ~2~2 hb
" ~ T '

so that referring back to equation (2), f(Re)
~w

const. and f
c~

fl~. This is also the case when

the entrainment of the fluid is done uia disks whose rugosity hb is larger than the boundary
viscous sublayer. This is eventually always the case at high rotation rates as observed by many
authors [5,9j and again in Figure 2 (asterisks).

The case of smooth disks is more subtle: the entrainment of the fluid is done through the

disks boundary layers and is thus viscosity dependent. The skin friction pv(0vjj /0z) involves

the thickness
e

-of the boundary layer, which decreases as Re increases; in addition its expres-
sion depends on whether the flow is laminar or turbulent. In the laminar regime e ~w

/fl

so that in equation (2) f(Re)
~w

lit&. This has been verified (see [10j for a review), but

cannot be observed in our experiment where the rotation rate of the disks is always to high.
In the turbulent regime Schlichting's argument using the empirical (-th-power velocity dis-

tribution law yields a boundary layer thickness e ~w

(v/fl)~/~; this gives f(Re)
c~

Re~~/~
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Fig. 2. Torque measurement in water for disks with varying equal and opposite rotation rates: case

of smooth (o) and rugose (*, b
=

37 ~Jm) disks. (a) Linear and 16) logarithmic coordinates.

Our measurements are in agreement with this result; see Figure 2 (circles) where we observe:

~
~

~~
~'~' p/fl2 ~

~~~ ~

'

with a ~w
1.82. We thus find f(Re)

~w

Re~° ~~.

We note in Figure 2 that these asymptotic scalings are observed in the entire range of

explored rotation rates so that the boundary layers are always turbulent. This in turn does

not Inean that the flow in the gap between the disks is itself turbulent. Indeed the state of

the flow depends on many other geometrical characteristics, such as the separation between

the disks, the geometry of the container, etc. The torque gives only some indication on the

forcing of the flow (power input), but the state of the fluid motion can only be obtained from

measurements that probe the bulk of the flow.
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Fig. 3. Evolution of the variance of the pressure fluctuations in the mid-plane, at the flow wall,

in water. In the asymptotic regime prrrs rw

~~ for rugose disks (*, b
=

37 ~Jm) and prrrs ~w

~~ ~~ for

smooth disks lo). (a) Linear and (b) logarithmic coordinates.

We now show that the intensity of the velocity fluctuations in bulk can be obtained uia

pressure measurements at the lateral wall, in the mid-plane- We stress that this is a global

measurement; just recall that the equation for the pressure:

AP
~

~Pv' ll~v)~l
"

~P~j)fl~
,

13)
j

is a Poisson one, the source term of which involves the velocity gradients of the flow

(see [11j for an extended review).
Figure 3 shows the evolution of the pressure fluctuation level prms as the disks rotation rate is

varied. It is readily observed that, contrary to torque measurements, the pressure fluctuations
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Fig. 4. Evolution of the Probability Density Function of the pressure fluctuations. Measurement

in water, at the wall in the mid-plane. (a) Comparison of low rotation rate (dotted line, Q
=

2 Hz)
and high rotation rate (solid line, ~

=
34 Hz). (b) Comparison of the variation of the PDFS' skewness

with the disks rotation frequency; (o): smooth disks and (*); disks with b
=

37 ~Jm rugosity.

display a change of behavior when going from slow to fast disk rotation. At low fl, prms remains

at an almost constant level, while in the limit of large rotation rates it scales asymptotically as

a power law, as expected in a turbulent flow [12,13]. Note, however that once again the scaling
depends on the entrainment mechanism, as illustrated by the difference of behavior between

smooth and rugose disks.

This change of behavior is also visible on the Probability Density Functions (PDFS) of the

pressure fluctuations (see Fig. 4a): at low fl the PDFS are Gaussian, while in the turbulent

regime they display the well known exponential tails towards low values [14]. This change of

behavior in the PDFS shape may be measured by its skewness (see Fig. 4b). At low rotation

rates, the skewness remains about constant while it decreases almost linearly in the turbulent

regime. We note that the transition seems to be more abrupt when rugose disks are being used.
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Fig. 5. Velocity rms fluctuations in air (disks fitted with blades) calculated from pressure fluc-

tuations at the lateral wall compared to the measurements using hotwire anemometry (both scaled

in m/s). (o): pressure measured at h
=

5 cm above the lower disk and velocity recorded at the same

height, at r =
5 cm from the axis. (*): h

=
11 cm and

r =
3 cm.

We thus observe that the pressure at the flow wall reveals the transition of the flow to a

turbulent state. We now show that prms yields a meaningful measurement of the variance of

the velocity fluctuations, urms, in the bulk of the flow. On dimensional grounds, one expects

prms =
pu)~~ g(Re) where g(Re) is an arbitrary function of the Reynolds number. In the

turbulent regime, the simplest case is g(Re) ~ const. as Re ~ cc, so that pr~s c~ pu)~~. It

has been shown to be the case in the quasi-Gaussian approximation [15,16], so that the pressure

fluctuations are mostly governed by the velocity fluctuations at the integral scale although the

source term in its equation involves the velocity gradients.
We have directly tested the proportionality of u)~~ and prms in the experimental set-up in air,

where simultaneous pressure and velocity measurements are possible. Velocity measurements

are made using hotwire anemometry, at different radial and vertical positions within the flow.

We obtain urms =

(0.22 + 0.03)udisk throughout the measurement volume, where udwk ~
2grRfl

is the disk rim velocity. On the other hand, we observe prms /p
=

(0.32 + 0.02) udisk when the

pressure is recorded at the wall either in the center of the measurement volume or nearer to one

of the disks. Altogether, it gives prms/p
=

(1.45 + 0.07)urms, independent of the locations

of the anemometer probe and of the pressure transducers, for all disks rotation frequencies
(see Fig. 5).

We then reconsider our torque measurements using fi (instead of Rfl)
as a charac-

teristic velocity scale (an approach already used in [17] ). The behavior is radically changed

as shown in Figure 6, where we have plotted f/Vprms
us.

fi V is the volume of fluid

in motion).

(I) a sharp transition can be observed at a critical value p)~~, giving evidence for a clear

transition in the flow, which becomes turbulent when the velocity fluctuations exceed a

certain threshold.

(it) for values of the rotation rate such that prms > p)~~, the torque scales as prms. This

scaling range is verified as soon as the entire flow becomes turbulent.
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Note that all curves
(with smooth or rugose disks) collapse on the same shape, showing

the very simple behavior of the driving torque when recast in term of internal flow variables

alone; it allows a determination of the transition of the flow to a turbulent state (of course

the threshold is not universal, it depends on the geometry of the experiment) and gives the

appropriate scaling for the global measurements performed on the flow.

3.2. TURBULENCE CHARACTERISTICS. The torque, rotation rate and pressure fluctuations

give access to two fundamental quantities: the power input (P
=

r fl, characteristic of the

forcing intensity) and the amplitude of the velocity fluctuations prms/p, characteristic of

the response of the fluid). These quantities allow the calculation of the characteristic length
scales of the turbulent motion: the integral length scale L* of the flow, Taylor microscale I

and the Kolmogorov dissipation length 1/.

3.2.1. Integral Scale L*. In most experiments L* is identified with a charactersitic scale L

of the experimental set-up (e.g. the grid mesh size in grid-turbulence). It is a
fixed parameter,

independent of the forcing of the flow, even though its physical meaning is to give the size of

the energy containing eddies. Its evaluation is made more precise in numerical studies which

define it through the velocity power spectrum:

2gr f kE(k)dk
fi ~ fE(k)dk

We propose to keep the spirit of this definition and to calculate L* as a characteristic size of

the energy input into the flow. Equating the power consumption of the flow to the rate of

change of the kinetic energy of structures of size L*, one obtains:

~ ~
_j 3/2

~w

)
~ L*

~w

~ f (4)
P P
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Fig. 7. Measurement with smooth disks. Integral length scale L*, calculated from the energy

consumption of the flow and the pressure fluctuations at the boundary.

The variation of L* with the disks rotation frequency is displayed in Figure 7. It decreases

rapidly from the height of the fluid (20 cm) at low rotation rates to about 2 cm at the transition

to turbulence. Above the threshold, it remains constant to that value. We note that in the

turbulent regime L* is 10 times smaller than the diameter of the disks and that it does not

correspond to any particular length in the experimental set-up. This confirms the need to

calculate it from flow measurements.

3.2.2. Taylor Microscale I. This is the scale characteristic of the maximum of enstrophy.
Its measurement gives the inner length scale of the turbulent motion. Together with urms it

yields a Renolds number R~ which characterizes the intensity of the turbulence, independently
of the experimental arrangement. In addition, it has been proposed [17,18] that I is the

characteristic length scale of the vorticity filaments observed in swirling flows. Traditionally,
the Taylor microscale is obtained from local hotwire anemometry, using:

j
~

) (VU)~,
lL~~~

and in the present computation, the Taylor hypothesis is used to relate time measurements at

a fixed location to the spatial velocity profile [19-21]. We propose to retain the above definition

of I, but to estimate the velocity gradients from the dissipation, equating the time averaged

power input and the viscous dissipation rate:

P
~

~jp~~2 ~2 '~)mS
~

Prms
j~~

pV ~'~' ~ ~ fl/pV fl/V

The numerical values see Figure 8a are close to the one directly obtained in similar conditions

from ultrasound scattering measurements of the filaments core size [17]. Figure 8b shows

the corresponding turbulent Reynolds number R~
=

urmsl/v;
one observes that the values

are
comparable to the one measured from local anemometry and that the usual asymptotic

behavior R~
~w

@ is observed in the turbulent regime.
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Reynolds number R>
=

itrrrsl Iv with the integral (experimental) Reynolds number Re
=

R~~ Iv. In

the turbulent regime R> cc
/$,

as expected.

3.2.3. Kolmogorov Dissipation Length 1/. This scale is characteristic of the viscous friction,
I.e. of the transfer of the kinetic energy of the turbulent motion to heat. It gives the size of

the smallest possible structures in the flow. In the turbulent regime it is estimated from the

power consumption of the flow:

~3 1/4

~ ~

/PV~
~~~

The variations of q with the disks rotation frequency are shown in Figure 9a. In the turbulent

regime, one recovers the usual relationship )
~w

Re~@, as observed in Figure 9b.

3.2.4. Comparison with Hot- Wire Measurements. To establish further the calculation of tur-

bulence small scales characteristics from global measurements, we have compared the results

with traditional hot-wire anemometry, in the setup using air as the working fluid. The dissi-

pation is estimated from the local velocity measurements as EL ~w
C~v < (0u/0z)~ >, where u

is the local flow velocity and a localized Taylor hypothesis [21] is used to relate temporal and
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energy input in the flow. (b) Scaling of1/ with the integral length scale L*, as a function of the integral
(experimental) Reynolds number Re

=

R~~ Iv. In the turbulent regime 1/ cc
L*Re~~/~

spatial derivatives. The constant Ce is considered to be equal to 15 since the velocity u is mea-

sured near center of the gap between the disks, where the flow is expected to be homogeneous.
The dissipation is also calculated from the motors power consumption as eG "

(Pm~~hanicai) /M.
Kolmogorov's dissipation scale is then calculated as 1/G,L ~

(v~ leG,L)~@ for several values of

the disk rotation frequencies. The results, displayed in Figure 10, show that both methods yield
the correct order of magnitude for 1/. However, the Reynolds number dependence1/

~w

LRe~~@

is only observed for the global measurements. It shows that it is very difficult to obtain a good
estimate of EL using local velocimetry in closed flows where the velocity fluctuation level is

very high (about 35% here). We have tried other alternatives for the calculation of EL, such

as using the Karman-Howarth relationship, again the order of magnitude is correct, but not

the Reynolds number dependence. It also affects the measurements of the Taylor microscale

I when it is estimated from the local velocity measurements: the order of magnitude is the

same as when derived from the mechanical power input in the flow, but it does not exhibit the

expected I
~w

Re~~/~ scaling.

We thus observe that the global measurements yield a correct and coherent estimation of

the turbulence small scale characteristics in a closed flow.
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Fig. 10. Calculation of Kolmogorov dissipation length, from power consumption and pressure

fluctuations (o), and from local hotwire measurements (*) probe position h
=

11 cm, r =
3 cm.

The inset shows the data in logarithmic coordinates.

4. Conclusion

We have shown here that it is possible to investigate the dynamical behavior of a closed flow

at moderate to high Reynolds numbers using global ii. e. spatially averaged) measurements

only. These measurements are very simple and do not require that sophisticated probes be

introduced in the bulk of the flow. The scaling of relevant physical quantities such as the

applied torque or power consumption in terms of internal flow variables (e.g. urms) reveals

the transition to the turbulent regime. It does so much more clearly than the corresponding
variations with the experimental control parameters (e.g. disks rotation rate). Furthermore,

once the transition has occurred, the turbulence can be characterized with the knowledge of

the same global quantities. Indeed, the measurements of the power input and of pressure

fluctuations at the wall are sufficient to calculate fundamental turbulence characteristics such

as the rms velocity fluctuations or the typical length scales L*, I and 1/. Then [L*,1/] is the

interval of motion sizes in the flow, of L* IA yields an estimate of the inertial range, while Rj

measures the overall intensity of the turbulence. That these quantities may be obtained from

measuring devices removed from the bulk of the flow is of importance for the study of fluid

motion in complex geometries and/or using corrosive fluids.
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