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PACS.61.30.Gd Orientational order of liquid crystals; electric and magnetic field effect

PACS.11.30.Rd Chiral symmetries

Abstract. When a cholesteric liquid crystal is sandwiched between two horizontal glass
plates with homeotropic anchoring, chiral patterns named cholesteric fingers of first class,

are

known to occur. When a DC vertical electric field is applied, the Cholesteric Finger is then

observed to move perpendicularly to its long-axis with a velocity Vi. In this paper, we prove

analytically that this velocity may be related with the Lehmann rotation effect, and that it may

provide a new way to measure the electromechanical coupling coefficient.

R4sumd. Dans
un

cristal liquide cholestdrique pris en sandwich entre deux lames de verres

conductrices avec des conditions d'ancrage homdotrope, l'apparition de structures spatiales iso-

ldes, appeldes doigts cholestdriques de premiAre espAce, est maintenant bien comprise. Quand
on

soumet le cristal liquide h un champ Alectrique vertical, on observe alors que ces doigts choles-

t4riques se mettent h bouger perpendiculairement h son grand axe avec une vitesse Vi Dons

ce papier, on montre analytiquement que cette vitesse pourrait Atre relide h l'effet Lehmann, et

que sa mesure permettrait alors d'estimer la valeur du coefficient de couplage dlectromdcanique-

Chiral systems can sustain unusual cross couplings between hydrodynamic fluxes and forces [1j
A classical and spectacular illustratiolL is the Lehmann rotation effect [2j- In 1900, Lehmann

has observed that a cholesteric liquid crystal droplet, submitted to a thermal gradient par-

allel to its helical axis, displays a strong rotation of the local molecular axis. The effect has

been discussed by Oseen in 1933 [3j and can
be understood in the general framework of the

hydrodynamic theory of cholesteric liquid crystal [4-7j. From the experimental point of view,

the first measurements of the electromechanical coupling coefficient ve (analogue to the ther-

momechanical effect, the role of the thermal gradient been played by the vertical DC electric

field) has been performed in 1989 by Madhusudana and Pratibha [8j. They have observed

that ve is proportional to the wave vector of the helix, and have demonstrated its macroscopic
origin [9, 10j.

Cholesteric liquid crystals have also been the subject of many theoretical and experimen-
tal investigations of the unwinding transition. A typical experiment consists of a large-
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Fig. 1- Usual nail representation of a thermodynamic equilibrium configuration of a first class

cholesteric finger. The CFI is assumed to be invariant with respect to translation along its long-axis
(here the y axis) The picture displays the transverse configuration lx and z The numerical simulation

is performed with a 400 x 60 mesh points, a space increment dl
=

0.2 ~tm, Ki
=

5.3 x
10~~~ kg m

s~~,

K2
=

2.2 x10~~~ kg m
s~~ and K3

=
7.45 x10~~~ kg m

s~~,
ea =

-0.5, E
=

0.0 volts m~~, and

qo =
0.75 x

10~ m~~. The picture is an enlargement of size 24 ~tm by 12 ~tm around the cholesteric

finger. We have placed the origin of the z and z axis at the center of symmetry (see Eq. (7a))-

pitch cholesteric liquid crystal sandwiched between two horizontal parallel glass plates, with

homeotropic anchoring. When the distance d between the two plates is small compared to

the cholesteric pitch p, the boundary conditions force all the molecules throughout the sample

to be perpendicular to the plates. On the contrary, above a critical value of the confinement

parameter d/p, cholesteric winding takes place. The thermodynamical phase diagram of the

transition is very rich [11,12j, but we will deal here only with one single pattern, the Cholesteric

Finger of the first class (CFI) [13j, which is a long-shaped pattern, stretched between the two

horizontal glass plates. Its width is about the sample thickness, its orientational order param-

eter configuration is continuous (for a numerical simulation see [14j and Fig. 1), and the two

ends of the finger are not the same, one of them being sharper than the other. We focus onto

the CFI, because it has recently been experimentally observed to move perpendicularly to its

long-axis when submitted to a DC vertical electric field and then to give rise to the formation

of archimedian spirals which rotate uniformly around their core [15-17j.
In this paper, we want to theoretically establish the possible relationship between the elec-

tromechanical coupling and the perpendicular drift of the CFI pattern. We compute an ap-

proximation of perpendicular velocity, show that it is proportional to the electromechanical

coupling coefficient ve and finally we check, in agreement with the experimental results [13],
that the mean velocity has to vanish under the application of an AC vertical electric field.

In their pioneer paper, Hinov and Kukleva [15j have experimentally pointed out that the

current-voltage characteristic of the cholesteric crystal under study is extremely important
for the spiral formation. As usual in the study of the conductivity of dielectric liquids [18j,
they have observed the influence of the current-voltage prehistory of the cells, as well as the

strong dependence on the treatment of the electrodes or on the impurity content, and they

have concluded to the existence of a strong injection mechanism from the electrodes. Our
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Fig- 2. Current-voltage characteristic curves for MBBA/SB and 2LI5200-100/SB mixtures.

own observations are in agreement with their conclusions. For example, we have observed

the formation of spirals in MBBA but not in a ZLI-5200-100 (Merck corp-) liquid crystals,
both materials been doped (1.2%) with a chiral side chain co-oligomer furnished by Wacker

Chemie. This chiral dopant will be called SB in the following [19j. The temperature is

the room temperature (cf 23°) and the distance d between the two horizontal glass plates
d

=
12 pm. In the same time, we have measured the current-voltage characteristic of these

two mixtures and have found that, inside the voltage range used, the electric intensity in

the first mixture (MBBA/SB) is at least ten times higher than in the second one
(ZLI/SB)

(see Fig- 2). Therefore, the full description of the CFI drift mechanism requires not only
the general Ericksen-Leslie hydrodynamical theory of cholesteric liquid crystal [4-7j, but also

a description of the electric field E jr) through the sample (similarly the classical Lehmann

effect requires a description of the heat flux). A priori, this electric field E jr) differs from the

applied vertical electric field Eo because of the charge injection from the electrodes. Hence the

full theoretical description is expressed as

~
~ ~~ ~~ ~)

"
~~ (°~~ ~ °~~ ~ ~~"" ~~ ~ ~~~ ~ ~~"~ ~~ ~ ~~"l (la)

Fp + ve In ~ E)
~ =

71Np + ~2n~A~p with A~p
=

) (3~Vp + 3pV~)

l~q~ion fo/~~he ~le~tric~ field E(r) ~~~~

where p is the mass density, V the velocity field, a]~ the viscous stress, ~i and 72 linear
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combinaison of viscous coefficients, a[~ the Ericksen stress. F the molecular field, is defined by

F~
=

-$
=

~)
$

l)))
g~~ =

3~n~ (1c)
no i~n 9~~

where F is the Frank free energy density

J~
=

l~ iv n)~ + l~ iqo + n
iv ~ n))2

+
j~

In ~ Iv ~ n))~ (~ in E)~

N represents the rate of change of the director with respect to the background fluid and is

expressed as

~
~

~ ~~ ~~
~ ~° ~ ~ ~~~~

where
uJ =

)V ~ V stands for the antisymmetric part of the gradient tensor 3~Vp- Finally, pi

p2 and ve are the three coefficients characterizing the electromechanical coupling.
Now some assumptions have to be done.

The first assumption deals with the hydrodynamic velocity. In 1900, Lehamnn has found

that cholesteric liquid crystals spread between two glass surfaces, was set into motion by a flow

of heat coming from below. He has observed that the different drops of liquid seemed to be

rotating violently, but from optical studies, he concluded that it was not the drops themselves

but the structure that was rotating. For the electromechanical coupling, the Madhusudana's

observations [8j lead to the same conclusion. Finally, our own observations of the transverse

drift of a CFI are in agreement with these results. With the MBBA-SB mixture, electrohy-
drodynamical instabilities occur above a critical voltage of 3-5 volts, but we do observe spiral
formation below this voltage; in a range between 2.2 and 3 volts. Therefore, it seems reasonable

to assume a vanishing hydrodynamic velocity V.

The second hypothesis deals with the electric charge repartition inside the sample. The

equations describing the electric field involve physical and chemical processes as well (for
a

review, refer to [18j), and are so
complei that we will even not try to write them. From an

experimental point of view [15,18j,
we know that

a pronounced injection from the electrodes

exists, confirmed by the existence of an inverse potential (E~). Therefore, the simplest assump-
tion we can make, consist then in assuming that E is constant through the sample, and just
equal to the additional applied electric field

E=Eo-E~.

Obviously this first order approximation is open to criticism, and the only justification is that

it leads to the right qualitative behavior. It's worth noting that Madhusudana et al- [8j do

not realize that they make the same kind of assumption (although they do observe a threshold

voltage). Indeed, for their experimental measurements, they used the formula [8j (Eq. (11),

p. 1830)
fij fi2 ~j

~ii ~

K2w veE

where z is the direction of the applied electric field, #(z) is the angle between the director and

the z axis, and where E is not the local electric field but U Id with U the difference of potential
between the two plates. The confusion

comes to the fact that in the usual thermomechanical
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case, the temperature is a linear function of
z [20j, such that the gradient is constant through

the sample. With these assumptions, equations (1) are then reduced to

l~i
I

~
~ l~) + ~e~ ~ ~

with Fin)
=

I
12)

n2
=

1 ~

Note that, when E
=

0, the previous equation (2) is variationnal or potential [21j and just
describes the fall down toward one minimum of the Frank distortion free energy. Therefore, the

final asymptotic it -+ cc) orientational configurations are necessarily stationary. Moreover,

numerous experimental and theoretical results are available in this regime. Especially, the exact

orientational configuration of the CFI is numerically available [14, 22j. This suggests to study
equation (2) in a perturbative ~ray, for small in~lues of the electric field amplitude (E

=

eE,

e being a small dimensionless parameter), and by means of a MeInikov-type analysis [23j-
Because the CFI is a long-shaped pattern, and because we are interested in the velocity of

the perpendicular drift, we restrict ourselves to configurations invariant by translation along

one direction (defined
as the y direction, and parallel to the CFI long axis). Equation (2)

can
then be investigated through

a 2D lx, z) analysis, z being both the electric field and

the vertical direction. We then look for a solution of the perturbated equation (2) with the

following ansatz

n =

n° (z + ( (Eli, e~t2,
,

z) + en~ + e~n~

where n° (z + (, z) corresponds to the orientational equilibrium configuration of a
CFI pattern,

placed at x =
-( (Fig- 1)- Equation (2) is invariant with respect to translation along the z

axis, but the presence of a CFI breaks this continuous symmetry. As it costs almost no free

energy to translate as a whole the CFI along the x axis [24j, ( is then expected to slowly
depend on time. The perpendicular velocity Vi is given by

~~"T"~i+~~T+..

After substitution in equation (2 ), we obtain at first order in
e

~~
n°

i~~)
~ '~~

t1
~~~~ ~ ~ ~~~

and at second order

~~In° i~~)
~ ~~

Ill
~

1II
~~~ln° i~~ ~~) ~'~~ ~ ~ ~~~

where

(DF (V)j =

~~
(

n°
~

nJ

(D~F( (U,V)j =)~~~) Ujvk.
n°

i
nj nk

Equations (3) and (4) are just linear equations in n~ and n~- They are of the form £n~
=

rhs~

with I
=

1, 2, where £ is the linear operator £
= DF(

,

and where rhs stand for the right
no

hand sides. Solutions can be found provided that the right hand side rhs~ belongs to the image
of £. These conditions, known as the solvability conditions, are not trivial because the Kernel
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a~o
of £ is not vanishing since E Ker(£)- For our problem, it is easy but quite tedious to

fix
show that they are expressed as

ltt)l/~i~~(~°~~t)
~~~

It t l'~~1
~ ~~

Ill 1)
~ (~~~ln° i~~ ~~)

t
~~~

0

~ ~~

~~
~ ~'

t

where (, stands for the scalar product (A, B)
=

ff A~B~dxdz. The interpretation of the first

equation (5) is direct since n° is already known (at least numerically) from the potential study.
The resolution will give rise to a linear relation between the velocity and the electric field. On

the contrary, it is much less easy to find a solution of the second solvability condition, since it

requires the knowledge of n~. But as
n~ depends on E, the resolution of equation (6) will give

us some information about the way the velocity depends on
E~ and therefore the behavior of

the CFI under the application of an AC vertical electric field.

We are first considering equation (5)- With our assumptions (equilibrium CFI invariant by
translation along y, and electric field parallel to z) the velocity is expressed as

where U is the electric potential difference between the two plates (E
=

~) and G
a dimen-

d
sionless geometrical factor given by

~
i

i+r dxi/ [ni@ ni@j dz

~ f~lll dzf/ (l~ +
l~

+
l~j dz

G is a non vanishing coefficient. The exact dependence of G on U is investigated numer-

ically (Fig. 3) in the case of a cholesteric liquid crystal with negative dielectric anisotropy
(ea

=

-0-5)- We have used a simple gradient method, with a projection of the gradient onto

the constraint surfaces n~
=

1. At each time step, the total free energy is computed and

the new configuration is accepted only if the free energy is decreased. Spatial derivatives are

computed by finite difference scheme (second order),
on a grid of 200 times 30 collocations

points, with
a space increment dl

=
0.4 pm- Checking simulations have been performed with

400 times 60 points (dl
=

0-2 pm) and provide an error estimation. Finally we have used

periodic boundary conditions in z, and rigid homeotropic conditions in z- Using for ve the

value obtained by Madhusudana [8j v~ ci 0.93 x
10~6 C m~~

,

for 71 the typical MBBA value

m~i " 76.3 x
10~~ kg m~~ s~~, and U

=
0-5 volts, we

obtained for the perpendicular velocity

Vi the characteristic value Vi " 1 pms~~-
How can this result be compared with the experiment? In fact, we have not been able to

experimentally measure the perpendicular drift of a straight isolated CFI. After the long time

(several hours) application of a DC vertical electric field, the cholesteric sample is found to be

filled with steadily rotating spirals. Obviously each spiral is slowed down by the neighbouring
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Fig- 3- Evolution of the dimensionless geometrical factor G versus U. We have used 200 x 30 mesh

points with a space increment dl
=

0A ~m, Ki
=

5.3 x
10~~~ kg m

s~~, K2
=

2-2 x
10~~~ kg m

s~~,
K3

=
7.45 x

10~~~ kg m
s~~ and ea =

-0.5. Checking simulations with 400 x 60 mesh points provide

an estimation of the relative error less than 3%.
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Fig- 4- Experimental measurement of the perpendicular drift velocity of CFI versus the applied

tension U between the two plates. The mixture used is MBBA/SB, the thickness is 12 ~tm. For each

measurement, we have tried to select
a

steadily rotating, well formed double armed spiral.

spirals (accordingly
our theoretical result is higher than the experimental measure) and we

do not know how to estimate this breaking effect. However, in order to get an order of

magnitude, we
have then selected

a
single double armed spiral with at least 15 CFI arms,

have placed ourselves close to the sixth arm, and have measured the perpendicular velocity.
The results are displayed in Figure 4- Taking into account, first the crudeness of the second

assumption dealing with the homogeneity of the electric field through the sample, and second

the experimental difficulty to isolate a single CFI pattern, both theoretical and experimental
results are not in too bad agreement.
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Now we are considering the equation (6), in order to characterize the CFI behavior under

an ac electric field. This is an important point because it has been experimentally used by
Ribiere, Oswald and Pirkl [13j to establish the distinction between the cholesteric finger of first

and second class, the former being at rest, the latter moving to give rise to spiral patterns
(Ribiere [13j, Gilli [25j and Sixou [26j)- In this case, the injection mechanism can be neglected
and the electric field E inside the sample is just the applied electric field Eo.

The computation is based on symmetry arguments. Indeed, a careful analysis [27j of the

CFI equilibrium configuration n° ix, z) (see Fig- 1) leads to the following observations

n( I-x, -z)
=

n( (x, z)
~i (~~> ~Z) ~~i (~> Z) (7a)
n( (-x, -z)

=

n( (x, z)

Therefore, the right hand side of equation (5) (rhs~) obeys to

hsl l~~> ~z)
= +~i

fl # VeEnl l~x, -z)
=

rhs) ix, z)
(~~>~Z)

~hs~ (~~> ~Z)
# 'fi

) ~i
+ Ve£n~ (~x, -Z)

=
+ rhs( lx, Z) (7b)

(~~,~Z)

rhs~ (~X> ~z)
= ~/i

) #
=

rhs( (x, z)
(~~,~Z)

and the linear operator DF( to
no

afi
3Fi 3Fi 3Fi 3Fi 3Fi

S G G ~S ~G ~$
~' ~' ~'

=

-~'+~'-~'
(7c)

ant an2 an3 ant an2 an3
3F3 0F3 0F3 3F3 3F3 3F3
S G $ n°j-z,-z) ~S ~$ ~S n°jx,z)

These rules of transformation (7), together with equation (5), force n~ to satisfy

RI I-x, -z)
=

-RI (x, z)
n( (-x, -z)

=

+n( (x, z)
n( (-x, -z)

=

-n( (x, z)

Finally, as D~F( obeys to
no

3~Fi 3~F2 3~F~ 3~Fi 3~F~ 3~F~
~ 0ni~ 0ni~ ~ 3ni~ 3ni~ ~ 3ni~

3~Fi 3~F2 3~F~ 3~Fi 3~F~ 3~F~

3n13n2 3n13n2 3n13n2 3n13n2
~

3n13n2 3n13n2
3~Fi 3~F2 3~F3 3~Fi 3~F2 3~F~

3n13n3 3n13n3 3n13n3 ~
3n13n3 3n13n3

~
3n13n3

3~Fi 3~F2 3~F3 3~Fi 3~F2 3~F~
4 3n2~ 3n2~

~
3n2~ 3n2~

~
3n2~

3~Fi 32F2 3~F3 3~Fi 3~F2 3~F3

3n23n3 3n23n3 3n23n3 3n~3n~
~

3n23n~ 3n23n~
3~Fi 3~F2 3~F3 3~Fi 3~F~ 3~F~
~

3113~ 3n3~ n~ (-Z, ~Z)
~

fin3~ 3n3~
~

3n3~ n~ (f,Z)
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we end with the conclusion that

l~~~In° i~~ ~~)
'

t
~

~ ~~

~~
~ ~

II
~

~

and this, thanks to the power of symmetry analysis, without any computationsl Therefore the

right hand side of equation (6) (rhs~) is in fact reduced to the single non-vanishing term

fi~i fi~o
~'~~ 3ti~ fix

This term is proportional to E and does not depend on
E~. The CFI is then at rest under the

application of an ac electric field, as observed experimentally.
In conclusion, we have shown that the Lehmann rotation effect may be at the origin of the

drift of the first class cholesteric finger perpendicular to its long-axis. The estimated order

of magnitude, as well as the computation of a vanishing velocity under an AC electric field,

are both characteristic features in good agreement with the experimental results. However it

is worth to remember that ve is just a phenomenological coefficient, derived from symmetry
considerations, and that the underlaying microscopic physics, especially the role played by the

charge injection mechanism [15j, is still not understood. Works in this direction are in progress.
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