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Abstract. We consider the Langevin dynamics of a
Gaussian test polymer chain coupled

with a surrounding matrix which can undergo the glass transition. The Martin-Siggia-Rose
generating functional method and the nonpertubative Hartree approximation are used to derive

the generalized Rouse equation for the test chain. It is shown that the interaction of the test

chain with the surrounding matrix renormalizes the bare friction and the spring constants of

the test chain in such a way that the memory function as well as the bending dependent elastic

modulus appear. We find that below the glass transition temperature TG of the matrix the

Rouse modes of the test chain can be frozen and moreover the freezing temperatures (or the

ergodicity-nonergodicity transition temperature) Tc(p) depends from the Rouse mode index p.

1. Introduction

It is wellknown that for relatively short polymer chains the standard Rouse model can describe

the dynamics of a melt reasonably well [1, 2j. On the contrary, for chain length N exceeding a

critical length, the entanglement length Ne, the behavior is usually described by the reptation
model [1j. Here we restrict ourselves to chain lengths N < Ne, I.e. the entangled polymer
dynamics will be beyond of our consideration.

The reason why in a dense melt the Rouse model provides so well dynamical description
for short chains is connected with a screening of the long-range hydrodynamic as well as the

excluded volume interactions. As a result the fluctuations of the chain variables are Gaussian.

But there are further essential questions: how does the bare monomeric friction coefficient

(o and the entropic elastic modulus e
(which are simple input parameters of the standard

Rouse model) change due to the interactions of the test chain and the surrounding matrix?

Why does such a simple model work so well for describing short chain melts? Obviously, the

corresponding answers cannot be given by the Rouse model, which describes only the dynamics
of connected Gaussian springs without further interactions.

On the other hand, at relatively low temperatures close to the glass transition of the sur-

rounding matrix the deviations nom the standard Rouse behavior will be definitely more

(*) Author for correspondence (e-mail: vilgistlmpip-mainz.mpg.de)
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pronounced. For example, Monte Carlo (MC) studies of the bond fluctuation model at low

temperatures (but still above the temperature region where possibly the glass transition mode

coupling theory [3j applies) show that the Rouse modes remain well-defined eigenmodes of the

polymer chains and the chains retain their Gaussian properties [4j. Nevertheless, the relaxation

of the Rouse modes displays a stretched exponential behavior rather than a pure exponential.
It could even be expected that at temperatures below the glass transition temperature of the

matrix TG the Rouse modes are frozen out. In these temperature regimes the interactions

between monomers take a significant role and determine the physical picture of the dynamics

as will be shown below.

The Generalized Rouse Equation (GRE), which can be used for the investigation of the

problems mentioned above, has been derived by using projection formalism methods and Mode

Coupling Approximations (MCA) [5-7j. As a result of projection operator formalism the time

evolution of the test chain is expressed in terms of a frequency matrix, which is local in time.

and a memory function contribution due to the inter-chain forces exerted
on

the test chain

segments. With the assumption that the frequency matrix term has the same form as in the

standard Rouse model (linear elasticity with the entropic modulus e =

3kBT/l~) all influence

of the matrix chains reduce to the memory function contribution [5-7j.

The projection operator methods appears to be exact but rather formal, and to derive

explicit results further approximations have to be made, which can be hardly controlled often.

Therefore it is instructive to use another alternative theoretical method to derive the GRE.

Recently, a non-pertubative variational method which is equivalent to a selfconsistent Hartree

approximation was used for the investigation of the dynamics of manifolds (8j and sine-Gordon

model (9j in a random media. As a starting point the authors employed the standard Martin-

Siggia-Rose (MSR) functional integral technique [10,11j. Here we follow this approach to derive

a GRE and study the dynamics of a test polymer chain in a glass forming matrix.

The paper is organized is follows. In Section 2, we give a general MSR-functional integral
formulation for

a test chain in a polymer (or non-polymer) matrix. Under the assumption that

the fluctuations of the test chain are Gaussian the Hartree-type approximation is applied and

a
GRE is finally derived. The case when the Fluctuation Dissipation Theorem (FDT) and the

time homogeneity are violated is also shortly considered. In Section 3 on the basis of the GRE

some static and dynamical properties of the test chain are discussed. In particular the theory
of the test chain ergodicity breaking (freezing) in a glassy matrix is formulated. Section 4 gives

some summary and general discussion. The appendices are devoted to some technical details

of the Hartree-type approximation.

2. Generalized Rouse Equation (GRE)

2. I. MSR-FUNCTIONAL INTEGRAL APPROACH. Let us consider a polymer test chain with

configurations characterized by the vector function R(s, t) with s numerating the segments of

the chain, 0 < s < N, and time t. The test polymer chain moves in the melt of the other

polymers (matrix) which positions in space are specified by the vector functions rlP) Is, t), where

the index p =
1, 2,

,

M numerates the different chains of the matrix. The test chain is expected

to have Gaussian statistics due to the screening of the self-interactions in a melt [1j. We consider

the simultaneous dynamical evolution of the R(s, t) and rlP)(s, t) variables assuming that the

interaction between matrix and test chain is weak.
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The Langevin equations for the full set of variables (R(s,t),rl~)(s,t),. ,r(~l(s,t)) has

the form

(o
~

rj~~ (s, t) E ~~ rj~~ (s, t) +
~j /~ ds'v (rlP) (s, t) n'~) (s', t))

fit fiS
dr~~ Is, t)

~i
o

+
~ ( /~ ds'v (r(P) R(s', t)) =

fj(s, t) (2)
j~ P) j~ ~) ~

j m=1

where to denotes the bare friction coefficient, E =

3T/l~ the bare elastic modulus with the

length of a Kuhn segment denoted by I, VI-. and V(..
are the interaction energies of test

chain-matrix and matrix-matrix respectively, and fj(s,t), /j(s,t)
are the random forces with

the correlator

lfi(8, t)fj (8', t')))
= (f~(8, t)fj(8', t'))

=
2Tfobub(8 8')b(t t'). (3)

After using the standard MSR-functional integral representation [10j for the system (1-3), the

Generating Functional (GF) takes the form

Z (. )
=

DRj (s, t)Dllj (s, t) fl Drj~~ (s, t)Dfj~~ (s, t) (4)
~i

x exp
I- Ao (R(s, t), it(s, t)j Al (rlP) Is, t), f(P) (s, t)j

+

( ~

d8
~

d8' dt j jj (8 t)
~

v [Rj 8
t) r(P) (~' t)j

o

/
~ &Rj(s,t) ' '

Pji

+
~j ~

ds
~

ds' dt ifj~l (s', t)
~

V (r(Pl
(s', t) R(s, t)j

~=i br~~ (s', t)

where the dots represents some source fields which will be specified later and Einstein's sum-

mation convention for repeated indices is used. In GF (4) the MSR-action of the free test chain

is given by

Ao lR18 t)> his> )1
= -j~l8

dt(iRJ18>ti
(folRJi8 t) E$RJ18>tij+ Tfo lik(8>

)l~1.

15)

As we will realize later the explicit form of the full action of the medium Al [rlPl is, t), PIP) is, t))
plays no role. In principle it could have any form and in particular, for a

polymer matrix, the
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following one

-
~j j ds /

dt

~i o~ r~~
is, t) ~i

+ (

~

~~~ o ~

In order to
btain

an
equation

of motion for the test
chain

one should ntegrate over

ariables s,
t)

rst.
For this

end it is to
epresent GF (4) as

Zj. . j = j
DRj

is,
t)Dlij

here the luence is ven by
B

~

P=1

~
( /~

ds /~ ds' /
~

P=

In the spirit ofthe
Mode

Coupling [3,6j the
force between

the test chain

and the
matrix should be

expressed

as a bilinear product of the both bsystems ensities.

In order to assure this we expand the
influence

unctional (8) with respect to the

tween the
est

chain
the

trix up to the second rder. his leads to

B ,

~~

p=1

~

!
/ ~~~~~' / ~~

/

~'
/

~~ ~~J ~'~~ Rj(s, t) ~

~
/ ~' ~~~ ~" ~'~ Ri (~', t') ~ ~~" ~'~ '~ ~'~~ ~

~vlv[ lllll~> t)IIJI~'>t')li

I / d~rd~r~ /
d8

/
d8'

/
dt

~
dt' ihJ (8> t)

~~(~,

~~

v iR(s, t) ri

~ v l~' R18'> t')I vi lPl~> t)IIl l~'> t')11

+(t ~m t') + O(F~) (9)
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where the matrix density

p(r,t)
=

~j /
dsb (r r(P)(s,t)) (10)

~ ~

p=1

and the response field density

fly(r,t)
=

~j ds ifj~~(s,t)b (r r~P)(s,t)) (11)~i ~~

were introduced and (. )~ denotes cumulant averaging over the full MSR-action Al [r, Pi of

the matrix. In equation (9) the term it' ~m t) is the same like the previous one but with

permutated time arguments. The terms which are linear with respect to Fj vanishes because

of the homogeneity of the system. In the Appendix A we show that because of causality the

correlator (Hi (r, t)fly jr', t'))~ equals zero [10-12j. Taking this into a,ccount and performing the

spatial Fourier transformation the expression for GF (7) takes the form

Z I. I
=

/
DRj Is, t)Dhj Is, t) exP Ao IRIS, t), itI8, t)j

+ Ids ds'
/

dt dt' ilij is, t)
/ $kjki )V(k)

(~
S(k, t t')

x exp (ik [R(s, t) R(s', t')j) ihi Is', t')

+ Ids ds'
/

dt dt' ihj is, t)
/ )kjki )V(k)

(~
Pi (k, t t')

x exP lik IRIS, t) R(8', t')]1 (12)

where the correlation function

sjk,t)
~

jpjk,t)pj-k,o)j~ j13)

and the response function

Pi(k,t) m (p(k,t)fli(-k,0))~ (14)

of the matrix are naturally defined. Going beyond the MCA-approximation would bring us

multi-point correlation and response functions.

We should stress that in contrast to the matrix with a quenched disorder which was
considered

in [8, 9j in our case the matrix has its own intrinsic dynamical evolution which is considered

as given. For example, for the glass forming matrix, which is our prime interest here, the

correlation and response functions are assumed to be governed by the G6tze mode-coupling
equations [3j.

2. 2. THE HARTREE APPROXIMATION. The Hartree approximation (which is actually equiv-
alent to the Feynman variational principle)

was recently used for the replica field theory of

random manifolds [13] as well as for the dynamics of manifolds [8j and sine-Gordon model [9j
in a random media.

In the Hartree approximation the real MSR-action is replaced by a Gaussian action in such

a way that all terms which include more than two fields R~ Is, t) orland lip Is, t)
are written
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in all possible ways as products of pairs of R~ is, t) orland h~ is, t), coupled to selfconsistent

averages of the remaining fields. As a result the Hartree-action is a Gaussian functional with

coefficients, which could be represented in terms of correlation and response functions. After

these straightforward calculations (details
can be found in the Appendix B) the GF (12) takes

the form

Z (. )
=

/
DRj Is, t)Dhj Is, t) exp

I- Ao (R(s, t), k(s, t)j

N cxJ t

+
/

d8 d8'
/

dt
/

dt' ijij (8, t)Rj (8', t')1(8, 8'j t, t')
0 -oJ -cxJ

/~
ds ds' /~ dt ilij Is, t)Rj Is, t) /~ dt'l(s, s'; t, t')

0 -cxJ -cxJ

+( /~ d8 d8' /~° dt /~ dt' ijlj Is, t)ijlj Is', t')x18, 8'; t, t') lis)
0 -cxJ -cxJ

where

>js, s'; t, t'j
=

jars, s'; t, t') f ]k4
jvjk)j2 Fik; s, s'; t, t')sjk; t, t')

f )k2
jvjk) j2 Fjk;

s,
s'; t, t')pjk; t, t') j16)

and

xjs, s'; t, t'j
=

f )k2
jvjk) j2 Fjk; s,

s'; t, t')sjk; t, t'). ii?)

In equations (16, 17) the response function

cjs, s'; t, t')
=

(lips', t')Rjs, t))
,

j18)

the density correlator

~2
F(k( S, S'( t, t')

= eXp ~Q(8, 8'( t, t') (19)
3

with

Qls,s';t,t')
%

lRls,t)RIS,t)I-IRIS,t)R18',t')I

=
c(s, s; t, t) c(s, s'; t, t') (20)

and the longitudinal part of the matrix response function

P(k; t, t')
=

ikj l~ (k; t, t') (21)

are defined. The pointed brackets denote the selfconsistent averaging with the Hartree-type
GF (15).

Up to now we considered the general off-equilibrium dynamics with the only restriction

of causality [10-12]. We now assume that for very large time moments t and t', where the
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difference t t' is finite so that ~§~' ~ 0, time homogeneity and the Fluctuation-Dissipation
Theorem (FDT) holds. This implies

G18 8" t t')
=

G18, 8" t t')
=

PtQ18, 8" t t') t > t' 122)

~'l~'~'~')
"

~'l~'~ ~')
"

flj
~l~'~ ~')

'

~ ~' l~~)

where fl a
1IT. By using this in equation (15) and after integration by parts in the integrals

over t' the GF in Hartree approximation takes the form

Z (. )
=

DRj is, t)Dlij is, t)

x exp

~

ds ds'
~

dt dt' ilij is, t) (ob(t t')b is s')~m

~~~~
'~~/(~/3~~~~~~~~~~~~'~'~"~

~'~~~~'~ '~~l'~~~~"~'~

N cxJ
lfi2 d3 ~

ds ds' dt iRj(s, t) eb(s s')
j + fl ~k~(V(k)(~sst (k)

~ _~

as (2gr)3

x Fst (k; s, s') b(s s')
~

ds"Fst (k; s, s")lRj Is', t)

+ T
~

ds ds'
~

dt dt' (ob(t t')b(s s') + Bit t')fl~m

f fik2
jvjk) j2Fjk; s, s'; i t')sjk; t

')j
itj is, t)iij js', t') j24)

12~r)~

where the subscript "st" indicates the static correlation functions. This generating functional

immediately leads to the following Generalized Rouse Equation (GRE)

(o~Rj(s,t) + ds' dt'r(s,s';t-t'))Rj(s',t')
t

~
/~~

t

~

ds'fl(s, s')Rj is', t)
=

Fj is, t), (25)

where the memory function

rjs, s'; t t')
=

fl
f ]

k2jvjk) j2Fjk;
s,

s'; t t')sjk; i t'j j26)

and the effective elastic susceptibility

~~~' ~'~ ~~~~ ~'~
~2

~ ~
/

(~/3 ~~ ~~~~~ ~~~~~~~

x Fst (k; s, s') b(s s') /~ ds"Fst (k; s, s") (27)
o
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are defined. The correlation function of the random force Fj is given by

(F~(s, t)Fj is', t'))
=

2Tdj ((od(s s')d(t t') + Bit t')r(s, s'; t t')j. (28)

As a result we have obtained basically the same GRE as in the papers [5-7j but with one

additional elastic term. This term (see the 2-nd term in Eq. (27) is mainly inversely propor-
tional to the temperature and is, in contrast to the first term, of an energetic nature. The two

factors of kV(k) quantify the forces exerted by a pair of surrounding segments on the test chain

segments s and s', whereas the Sst(k) and F~t(k; s, s') factors quantify the static correlations

between the segments of surrounding and test chain segments, respectively. In [5-7j only the

entropic elastic part was taken info account. The memory function (26) has the same form as

in [5-7j and the relationship (28) is assured as soon as the FDT (22) and (23) is fullfilled.

2.3. GENERALIZED ROUSE EQUATIONS FOR THE OFF-EQUILIBRIUM DYNAMICS. In this

subsection we give GRE'S for the more general case when the time homogeneity (stationarity)
and the FDT do not hold (14j.

By employing the standard way [8j one can derive two coupled equations of motion for

correlators C(s, s'; t, t') and response functions G(s, s'; t, t')

[to
I El i~ dS" /~~ dt">iS> S". t> t")I GIS> S'; t t')

N t

~ ~~"
cx~

~~"~~~'~"'~'~"~~~~"'~" ~"'~'~ ~~ ~'~~~~ ~'~ ~~~~

[to
I

E i~ i~ dS" /~~ dt">18 8". t t")1C18 8" t t')

N t

+ ds" dt"I(s, s"; t, t")C(s", s'; t", t')loo
N t'

+ ds" dt"X(s, s"; t, t")G(s', s"; t', t")
=

2T(oG(s', s; t', t (30)/cxJ

with the initial conditions

iocjs, s'; i
=

i'+ o+)
=

~js s')

cjs, s'; t
=

if)
=

o, t ~ t' j31)

and

C18, 8'; t
=

t')
=

IRIS, t)R18', t)1 132)

In the stationary case all correlators and response functions in equation (29-32) only depend
nom the differences of time moments, t t'. If we assume again that FDT (22) and (23) holds,
then from equation (30) after performing the integrations by parts (in the integrals over

t")

one arrive at the GRE for t > 0

fi t N fi N

to ~C(s, s'; t) +
/

dt' ds"r(s, s"; t t')
~

C(s", s'; t') / ds"fl(s, s")C(s", s'; t)
=

0.
fit

-cc

fit
o

133)
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Of course, equation (33) could be obtained immediately nom equation (25) by multiply-
ing both sides with Rj Is', 0), averaging and taking into account that because of causality
(F(s,t)R(s', 0))

=
0 at t > 0. We will use the GBE (33), where the functions r and fl are

given by equations (26, 27), in the next section for the investigation of the test chain ergodicity
breaking (freezing).

3. Some Statical and Dynamical Properties of the Test Chain

The new features of the GRE (33) relative to the standard Rouse equation are that it contains

the integral convolution with respect to the s-variable in the frictional term as well as in the

elastic term. The frictional term is also non-local in time. All these things together should

change the statical and dynamical behaviour of the Gaussian test chain in comparison to the

ideal chain.

We also should stress that the GRE is substantially nonlinear because the memory function

(26) depends from the test chain correlator C(s, s'; t) in such a way that a positive feedback

obviously exists. That is the reason why one could expect that equation (33) shows an ergod-
icity breaking in the spirit of G6tze's glass transition theory [3j.

As usual it is convenient to introduce the standard Rouse mode variables [1j:

X(p, t)
=

/~ dsR(s, t)
cos (~~~ (34)

N
o

N

with the inverse transformation

R(s, t)
=

X(p
=

0, t) + 2
f

X(p, t)
cos

(~) (35)

p=i

In general one also needs a
2-dimensional Rouse transformation

rip ~. t)
-

1
£'~ d8~ £'~ d8'~r18~> 8~~.

t) C°S
l~i'l

C°S ~i"1 136)

where functions like r(s', s") should be treated like N x N-matrices. For example the density
correlator jig) should be considered as an exponential function from a N x N-matrix Q(s', s")

and the series expansion holds
:

~2 i ~2 2 N

~~ ~~ ~~~~~~ ~
~

~~~~ ~ ~
~ ~

~~ ~~~~ ~ ~~~~ ~

i ~2 3 N

~~

N

~~~ ~~ ~~ ~~~ ~~~

3~
~3~ ~~ ~~ ~~~~~ ~~~~ ~~ ~~~~ ~~~~ ~~~~

We also assume that matrices in the Rouse mode representation are nearby diagonal

rlP,q)
=

dp,qr(P) (38)

QIP,q)
=

dp,qQlP) (39)

Q(P,q)
=

dp,qQ(P) (4°)

for any p and q not equal zero [1j.
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Then as a result of Rouse mode transformation the GRE for the Rouse mode time correlation

function, C(p, t)
a

(X(p,t)X(p, 0)), takes the form (for p # 0)

to (CIA> t) +
/ dt'rip> t t') )CIA> t') + QIP)CIA> t)

=
° 141)

where

~~~'~~ ~
/ ~~~3 ~~ ~~~~~ ~

~~~
~~~~' ~~ ~~~'

~~ ~~~~

and

flip)
= E

()) ~
flN

/ $k~lvlk) l~sstlk) (Fstlk; p) Fst lk; p = 0)j 143)

For p =
0 the GRE describes the dynamics of the center of mass

Rc~ji)
~ xjp

=
o, i)

=

j f~ ds Rjs,1) j44)

and has the following form

to jR~_m(t) + fl /~ dt'
/ $k~(V(k) (~F(k; p =

0, q =
0, t t')

x S(k, t t') jR~_m(t') =
f~_m(t) (45)

with

lfc.m)j It) m

j /~ d8 Fj Is, t) 146)

and

i N N ~2
~~~'l~ ~'~ ~'~~

fil2

/
~~'

/
~~" ~~~

3
~~~"

"'~~)
~~~

As a result all Rouse mode variables relax independently. The conclusion that the Rouse modes

are still "good eigenmodes" even in the melt is supported by Monte-Carlo [4j and molecular-

dynamic [15j simulations.

For cases where the assumption of diagonality equation (40) cannot be justified, the Rouse

modes do not decouple and one have to go back to equation (33). In the Rouse mode repre-
sentation it reads as

to jC(p, t) +
/

dt'
/

dq r(p, q; t t')
~

C(q, t') +
/

dq ~(p, q)C(q, t)
=

0 (48)
t

~
fit'

3.I. STATIC PROPERTIES. As we have already discussed in Section 2.2. the interaction

with the surrounding segments renormalizes the elastic properties of the Rouse chain so that

the test chains elastic susceptibility is given by equation (43). The additional elastic term in

GRE leads to the renormalized static normal modes correlator

~~ ~~~ 2Nfl(p) ~~~~
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Renormahzed static correlatone (T=0 3)
4

'N20' o

'Nl00' +

2 'N500' J

f(x)
(xj

o ,, ~

h(x

''
,, J

~ +

~
n

+
', ~

b
+

'o *
+

4 ~

S ~
~3 '~

~ 6

8

io

12

14

0 2 4 6 8 lo 12 14

In(p~2)

Fig. 1. The static Rouse mode correlators for different chain lengths. The lines represents the simple
Rouse case. The temperatures are measured in units of the interaction potential with +i = a =

1.

Explicit evaluation of the flip)
can be done if

we use for the static correlator F~t(k; p) the

standard Rouse expression

Qj~)
~$~~~

~
~ ~$~~f~

~

~~ ~~~~(~)~~~st(k)9(~~~~)j + °(p~) §~ « 1 (sla)

~i~~~ ~ ~ i~ f~
~

~~ ~~~~(~)~~~st(~) (Pi~~ (~ e ~~~~) §~ cf 1 (sib)

Wh~~~
, fil~2

giz)
=

j
12

iz~ + 2z + 2)e~~l
,

RI
= m ~~~~

and we have chosen l~~
as a cutting parameter. It is evident nom the previous equations (51a,

51b) that at small p

.
the elastic modulus gains an energetic component which, in contrast to the entropic part

e, increase with the cooling of the system,

.
initially absolutely flexible chains acquires a stiffness because of terms of order p~ and

higher.

At large p the elastic behaviour reduces to the standard Rouse one, as it is expected. In

Figure 1 is shown the result of a numerical calculation of the static correlator (49). The Fourier

component of the potential is taken, as it is customary e-g- in the theory of neutron scatter-

ing [16j, in the form of a pseudo potential approximation, V(k)
=

7a~, where 7 and a have

dimensions of molecular energy and distance, respectively. The static structure factor S~t(k)
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is chosen in the form of the Percus-Yevick's simple liquid model [17j. One can see that for

N
=

500 the small Rouse mode index limit (51 a) starts at § < 3 x
10~~ whereas the opposite

limit (51 b) is fulfilled at § > 10~~. Because the correlator Cst(P) depends mainly from p/N,
for relatively short test chains the high mode index limit (51 b) is shifted into the window of

calculations (see Fig. 1 for N=20).

At least qualitatively this deviation from the standard Rouse behaviour have been seen by
Kremer and Grest in their MD-simulations (see Fig. 3 in [15j).

3.2. THE TEST CHAIN ERGODiCITY BREAKING IN A GLASS FORMiNG MATRIX. First we

consider the case p # 0. In the nonergodic state the Rouse mode correlation functions can be

represented as

~~~~ ~~ ~

j))(j~~
~~~~~~~ ~~ ~ ~~~~ ~~~~

where the non-ergodicity parameter

9(P) " ~flf~ i~(P,t) (54)

was introduced and flfreg(p, t ~ cc)
=

0.

For the correlation function of the glassy matrix we can use the standard result of the glass
transition theory [3j

#(k, t)
w ~~~() =

f~(k; /h) + h(k)/h~/~ ~))~ (55)

where the proximity parameter /h
a (TG T)/TG is defined and TG is the temperature of

the matrix ergodicity breaking (G6tze temperature). In equation (55) f~(k; /h) is the non-

ergodicity parameter of the matrix, r~ cc
/h~~/~~ is the characteristic time scale,

a is the

characteristic exponent, 0 < a < 1/2 and h(k) is some amplitude.

In order to derive the equation for g(p) let us take the limit t ~ cc in equation (41) keeping in

mind the definitions (54) and (55). Very close to the test chain ergodicity breaking temperature

T~(p), g(p) goes to zero
IA-type transition [3j) and we can expand the exponential IiJnction in

equation (42) up to the first order with respect to g(p). The solution of the resulting equation
has the simple form

6njp)2
~ ~ ~ J @k41vik)12sstik)folk, ~) ~~~~

The critical temperature Tc(p) is determined by the equation

glp, T
=

Tc)
=

0. IS?)

The numerical solution of equation (57) is given in Figure 2. It is obviously that if the entropic

part of fl(p) dominates, the critical temperature is given by

T~~p) cc

~
(58)

~rP~~

Figure 2 really shows that this law (58) is well satisfied due to the fact that the critical tem-

peratures T~(p) are quite high. But for low temperatures the energetic contribution in fl(p) is
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Fig. 2. The freezing temperatures of the Rouse mode correlators C(p) for different wavevectors

p/N, where the temperatures are measured in units of the interaction potential with +i = a =
1. The

dashed line represents the freezing temperatures, when only the entropic contributions to the elastic

susceptibility are taken into account.

enhanced which leads to a deviation from this simple (N/p)~-dependence.

Now we consider the case for p =
0. The equation (45) for the velocity of the center of mass

vjt) ~
jRc~jt) jsg)

leads to the equation for the velocity correlator

to lUjlt)U11°)1 + /~ dt'rlt t') lUj lt')U11°)1
=

llfc.m)j lt)U11°)1 16°)

where

Tit)
=

fl
/ ~~~

k~(V(k)(~F(k; p = q =
0; t)S(k, t). (61)

(2gr)3

Because of causality the correlator on the r,h.s. of equation (60) has the form

I(fc.m)j lt)Ui lo))
=

l~
' 162)

where, as it comes nom equation (45)

Ui10)
=

)
lfc m)~ lo)- l63)

Taking into account the definition of f~_m)~ it) and equation (28) this yields to the correlator

j( fc~)j jt)u~jojj
=

2T~~~jt)j f'~ ds' f'~ ds"~(s' s")
=

(~~~(tj. (64)
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Because of the causality property (61) only the d-functional term on the r-h-s- ofequation (28)
contributes to the correlator (64). Therefore the resulting equation for the self-diffusion coef-

ficient
~

~ ~~ ~~~~~~~~~~ ~~~~

takes the form

~
N I(o +

)
dtr(t)) ~~~~

which was obtained before in [5, 6j.

One can calculate the second term in the denominator of equation (66) selfconsistently.
Because now the relevant times t » rrou~e the approximation

Q(s', s"; t)
=

6Dt + l~ [s' s"[ + const. (67)

could be used in equation (45). Then the density correlator (47) is given by

F(k; p = q =
0; t)

= ~~ ~~ ~
exp (-k~Dt) (68)

W + N~

With the use of equations (68),(55) and (61) in the limit D ~ 0 equation (66) becomes

D
=

~
169)

~
~°

~ ~ f (~i)3 §fl@~~~~~
~2

where the denominator is given by static properties only. Similar statements have been sug-
gested already in [18,19j. The solution of equation (69) has the simple form

D
=

Do (I
~~y)

j70)
T

where

~ ~

j i lvlk)l~sstlk)
~j~~ j~~~

(2x)3 j + N-i

Finally, the temperature of the ergodicity breaking (localization) for the mode p =
0 of the

test chain is

TclP
~

o)
~

INK)~/~ 17~)

Figure 3 shows the results of numerical calculations of T~(p
=

0) and T~(p
=

1) as IiJnctions of

N. One can see that in the reasonable range of parameters T~(p
=

0) > T~(p
=

1). As a result

one can say that on cooling of a test chain in a glassy matrix the mode p =
0 is the first to be

freezed. On the subsequent cooling the modes p =
1, 2,.

,

N are heezed successively,

TG>T~(p=0)>T~(p=1)>T~(p=2)>. T~(p=N). (73)

It is apparent that the system studied here is a nontrivial polymeric generalization of the model

introduced by Sjsgren [20j. This model was used for the investigation of the fl-peak in the

spectrum of glass forming systems [21j.
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Fig. 3. The freezing temperatures for the p =
0 and the p =

Rouse mode correlators C(p) of the

test chain.

4. Discussion

In this paper we have derived a GRE for a test polymer chain in a
polymer (or non-polymer)

matrix which has its own intrinsic dynamics, e-g- the glassy dynamics [3j. We have used

here the MSR-IiJnctional integral technique which could be considered as an alternative to the

projection operator formalism [6j. One of the difficulties in this formalism is the necessity of

dealing with the projected dynamic, which is difficult to handle with explicitly. On the contrary
in MSR-technique the dynamic of slow variables is well defined and several approximations
which one have to employ could be justified.

In the interactions between the test chain and the matrix only two-point correlation and

response functions are involved. In terms of MCA [6j this obviously corresponds to the pro-

jection of the generalized forces only onto the bilinear variables: product of test chain density
and matrix density.

To handle with the action in the GF of the test chain we used the Hartree-type approximation
ii. e., equivalent to the Feynman variational principle) [8, 9,13j, which is reasonable when the

fluctuations of the test chain are Gaussian. In the case of a polymer melt (high density) this is

indeed the case due to the screening effects for the excluded volume [1j. Cases like the collapse
transition of the test chain, which correspond to the strongly interacting case, can be ruled

out, since we restricted ourselves to the weak interaction regime.

The use of the Hartree-type makes the problem that
we deal with analytically amenable

and results in the GRE'S for the case when the FDT holds as well as for the case when FDT

does not hold. In this paper we have restricted ourselves to the first case and have shown that

the interaction with the matrix renormalizes not only the friction coefficient (which makes

the chain non-Markovian) but also the elastic modulus (which changes the static correlator).
The form of the static correlator for the Rouse mode variables is qualitatively supported by

MD-simulations [15j.
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As regards the dynamical behaviour, we
have shown that the test chain in a glassy matrix

(with the matrix glass transition temperature TG undergoes the ergodicity breaking transition

at a temperature T~(p) < TG. The critical temperature T~(p) could be parametrized with the

Rouse mode index p and is a decreasing function of p. We have considered only the A-type
transition which is assured by the linear term in the expansion of equation (42). It seems

reasonable that keeping the whole exponential function in (42) would lead to a B-type transition

also. The result essentially would change if the off-diagonal elements in the matrix (36) cannot

be neglected. In this case only one ideal transition temperature T~ would be present. The

general theory of a A-type transition was discussed in reference [23j.

This picture of freezing should not be mixed with a different one, the underlying glass
transition by itself (e.g. the glass transition of the matrix at T

=
TG). According to the present

view of this phenomenon [3j, the spontaneous arrest of the density fluctuations is driven by
those'of the rlicroscopic lengthscale ko, where ko is the wave vector which corresponds to the

structure factor's main maximum. The freezing of these fluctuations then arrests the others

through the mode coupling.
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Appendix A

Response Field Density Correlator

It is more convenient to handle with the spatial Fourier transformation of this correlator

(fli(k,t)fly j-k, 0))~ (A.1)

( /
dsds' (if)~~(s,t)ifj'~~(s', 0) exp (ik (r(P)(s,t) r~'~)(s', 0)j ))

i
(P,m=ij

f ~, ( /
dsds' (if)~~ (s, t)ifj'~~ (s', 0) [ikr(P) (s, t)j~ [-ikrl'~) is', 0)j~)

a. i
a,b=o p,m=1

Such Multi-point cumulant Response Functions (MRF)
were considered in [12j. The causality

condition for these functions asserts that the time argument of at least one
r-variable should

be the latest one, otherwise this MRF equals zero. Because of the same reason self-loops of

response functions vanish [10,11j. MRF'S which consists only of f-variables also vanish.

In the case (A.1) all time arguments of the r-variables are
equal to the corresponding time

arguments of f-variables and as a result the MRF in equation (A.1) vanishes.
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Appendix B

Derivation of the Hartree-Type GF

In order to calculate the bilinear Hartree action, we follow the way mentioned in Section 2.2.

With these strategy in mind the 2-nd term in the exponent (12) is evaluated as

/~ dsds' /~ dtdt' ihj is, t)Rj is', t')Ii Is, s'; t, t')S(k; t, t')
o -m

+
/~ dsds' /~ dtdt' ilij is', t')Rj is, t)12 Is, s'; t, t')S(k; t, t')

2
~ _~

+
/~ dsds' /~ dtdt' ilij is, t)Rj is, t)13 Is, s'; t, t')S(k; t, t')

2
o -cx>

+
/~ dsds' /~ dtdt' ihj is', t')Rj is', t')14 Is, s'; t, t')

o -cx>

+
/~ dsds' /~ dtdt' ihj is, t)lip is', t')15 Is, s'; t, t')S(k; t, t')

2
o -oJ

+
/~ dsds' /~ dtdt' iRj is, t)Rj is', t')16 Is, s'; t, t')S(k; t, t') (B.1)

~ _~

where

Ii Is, 8'; t, t')
m j~~ ),,

~,~

/ $
kj ki lvlk)

l~ exP lik IRIS, t) R18', t')I I ijli Is', t')

I218, 8'; t, t')
m

~~~~,

~~

/ $kjki lvlk)
l~ exP lik lR(8, t) R(8', t')I I ijli (8,

)~

I318, 8'; t, t')
m

~~

~,

~~

/ )kjkilvlk)l~ exP lik lR(8, t) R(8', t')11 ijli Is', t'))

I418, 8'; t, t')
%

~

j
), ~,j

/ $kj
ki lvlk)

l~ exP lik IRIS, t) R18', t')I I ~jli Is, t)

i~js, s'; t, t')
+

/ jk~k~ jvjk) j2 exp jik IRIS, t) Rjs', t')j j)

~~~~'~"~'~'~ ~
~~J@'~~~~~@'~~JR»js,t~R»js,,t,j

x

/ $kj
ki lvlk)l~ exP lik IRIS, t) R18', t')I I lB.2)

The pointed brackets in equation (B.2) represent the selfconsistent averaging with the Gaussian

Hartree action. Taking this into account and using the generalized Wick theorem [22j, after

straightforward algebra, we have

Ii (s, s'; t, t')
=

G(s, s'; t, t') / ~~~
k~[V(k)

[~ exp

~~
Q(s, s'; t, t')) t > t'

3 (2gr)3 3

~~~~'~" ~'~'~
~~~'~"

~" ~~

/
(~/3 ~~~~~~~~~ ~~~ ~~~~'~"

'~'~~
~' ~
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13(s, s'; t, t')
=

G(s, s'; t, t') ~ ~
k~[V(k)[~ exp

~
Q(s, s'; t, t') t > t'

3
/(2~)

#

-11(S,S'(t,t')

1 d3~ ~2
14(s,s';t,t')

=

--G(s,s';t',t) jk~[V(k)[~exp -~Q(s,s';t,t') t'>t
3 ~(2~r) 3.

=

-12(s,s';t,t')

~~~~'~" ~'~'~
/ ~~~3

~~~~~~~~~ ~~~ ~~~'~"
'~'~~

16(s,s';t,t')
=

0 (B.3)

where the last equation comes from the fact that the response function Cit. t')
cc

Bit t') and

G(t', t)
CK

13(t' t).
The 3-rd term in the exponent (Eq. (12)) can be handled in the same way. The response
function for the isotropic matrix has the form

Pj(k,t)
=

-)P(k,t)
(B.4)

where P(k,t) is the longitudinal part of the matrix response function. Then the Hartree

approximation of the 3-rd term in the exponent (12) takes the form

/dsds' dt dt' (iRj is, t)Rj is', t')Ji Is, s'; t, t') + ilij is, t)Rj is, t)J2 Is, s'; t, t')
~ ~

where

~ ~~'~" ~'~'~
/

(~/3 ~~ ~~~~~ ~~~~~'~'~'~ ~~~ ~~~'~" ~'~'~

J2188"tt') /)k~ivik)i~Pik.tt')exPllQi88"tt~)I
=

-Ji(s,
s t, t'). (B.5)

Taking into account equation (B.1) with equations (B.2) and (B.5) leads to the Hartree-type
approximation (15).
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