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Abstract. We present a systematic study of spiral waves in the Belousov-Zhabotinsky re-

action in a spatial open reactor, where the concentrations of sulfuric acid, sodium bromate, and

malonic acid are varied. Within this parameter space, three kinds of instabilities arise: two

of them, which we identify as the retracting wavefront and convective instabilities, lead to the

destruction of the spiral pattern, and mark the boundaries of the spiral existence domain in

parameter space. Inside this domain, there exists a region where simply rotating spirals undergo
the meandering instability. Quantitative measurements of the asymptotic characteristics of sim-

ple spirals provide scaling relations between the observables: the pitch varies as the square root

of the period. They both diverge with simple exponents at the retracting wavefront instability.
This organization, reminiscent of a second order phase transition, allows us to consider the spi-
ral a critical pattern. Comparison with several models and numerical simulations indicates the

validity or discrepancies of applying these theoretical approaches to our experimental results.

Rdsum4. Nous pr6sentons une 6tude syst6matique des ondes spirales dans la rdaction de

Belousov-Zhabotinsky en r6acteur ouvert, en fonctions des concentrations d'acide sulfurique, de

bromate de sodium et d'acide malonique. Dans cet espace de parambtres, trois types d'insta-

bilitds surviennent :
deux d'entre elles, que nous appelons instabilitd de rdtraction de front et

instabilitd convective, finissent par ddtruire les structures spirales, et marquent les limites de leur

domaine d'existence. II existe, dans ce domaine, une rdgion oh les spirales en rotation simple
bifurquent vers l'instabilitd de sinuage. Des mesures quantitatives des caractdristiques asymp-

totiques des spirales simples fournissent des lois d'dchelles entre les observables le pas varie

comme le carrd de la pdriode tous deux divergent avec des exposants simples h l'instabilitd de

rdtraction. Cette organisation, rappelant celle des transitions de phases du second ordre, nous

autorise h considdrer la spirale comme une structure critique. La comparaison de nos rdsultats

exp6rimentaux avec diffdrents modAles et simulations num6riques montre accords et ddsaccords

des approches th60riques.
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1. Introduction

In his book On Growth and Form, D'Arcy Thompson speculated that a quantitative description
of natural patterns and forms, or what he called "a dynamical morphology', would originate
from a consideration of geometrical constraints and the physical laws of nature [Ii. The real-

ization of this goal is far from complete, but much information on the dynamics of patterns

has been gained in recent years [2-4]. These efforts intersect the formal theoretical study of

nonequilibrium systems, due largely to the work of the Brussels school [5, 6]. A major achieve-

ment in these areas was made by Turing in 1952 [7]. He mathematically showed that a spatial

pattern can spontaneously arise from homogeneous initial conditions in a
reaction-diffusion

system, and proposed this as a possible explanation for morphogenesis. His work initiated

numerous investigations of reaction-diffusion systems.
Such reaction-diffusion systems are ubiquitous in nature: in addition to morphogenesis, they

may be responsible for many other forms, structures and patterns that arise in the living

world [8]. They consist of a spatially extended system, where local concentration changes are

due to either local reactions or to diffusion due to local gradients. This definition excludes

mixing and other bulk motion. A great amount of work has been devoted to the analysis of
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Fig, i. An experimental zoology of spiral shapes from the ([H2S04], [NaBr03], [MA]) parameter

space: la) simple: (0.20 M, 0.40 M, 0.40 M); (b) small meandering: (0.50 M, 0,15 M, 0.80 M); (c) large
meandering: (1.0 M, 0.10 M, 0.04 M); id) Eckhaus instability: (0.65 M, 0.40 M, 0.40 M). See Section

2.2 and Table I for experimental details.

the wide variety of patterns which develop in reaction-diffusion systems, but there is not yet

a general theory giving the common characteristics of the stable, hence observable, solutions.

These questions are fundamentally related to a problem pointed out by Feynman in his Lect~res

on Physics: we have no general q~alitatme understanding of the solutions of partial differential

equations [9]. This represents one of the most profound shortcomings of modern physics and

mathematics.

A rotating spiral wave provides a simple case of a reaction-diffusion pattern that is experi-
mentally tractable and nevertheless retains enough of the richness of the general problem. In

the experiments we report here, we observe a variety of different spirals, several of which are

shown in Figure I. Spiral waves are mainly, though not exclusively, observed in a class of

reaction-diffusion systems called excitable media [10]j if properly stimulated, such media can

sustain propagating fronts. Archetypal excitable media are nerves and cardiac muscles [11-13],
but these require delicate experimental handling. Under appropriate conditions, the Belousov-

Zhabotinsky reaction provides an adequate excitable system, suitable for controlled laboratory
experiments.

Since the original publication by Zaikin and Zhabotinsky on the wave sustaining property of

what is now known as the Belousov-Zhabotinsky (BZ) reaction [14], and the seminal article on

spirals by Winfree [lsj,
a large amount of work has been devoted to these remarkable patterns;
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the reader can
find

a recent overview in [16]. Many qualitative properties of either free of

forced spirals have been observed and analyzed, experimentally or theoretically. Their most

basic and striking properties were already summarized in the abstract of Winfree's article: "The

Zaikin-Zhabotinsky reagent propagates waves of chemical activity. Reaction kinetics remain

to be fully resolved, but certain features of wave behavior are determined by purely geometric
considerations. If

a wave is broken, then spiral waves, resembling involutes of the circle, appear,

persist, and eventually exclude all concentric ring waves" [15]. Although these spiral waves are

intrinsically out-of-equilibrium patterns; most studies have been conducted in closed reactors,
where the system is (slowly) relaxing to equilibrium. Few experiments have been run in open

reactors where the "distance to equilibrium" can be imposed and controlled [17-19). Hence

quantitative results are scarce. In particular, there is essentially no way to quantitatively

compare spirals made in reagents with different concentrations.

In this article, after a rapid presentation of the BZ reaction, and of our experimental method,

we report our results on the behavior and stability of a single spiral. They are threefold:

first, the phase diagram structure in the parameter space that we have explored; second, the

description of the observed instabilities, which either limit the existence domain of the spiral,

or modify its dynamical behavior; third,
a set,a quantitative laws, which link these results with

the actual concentrations of the chemical species, and show that the spiral can be considered a

"critical pattern". At the end of the article, we analyze our results in view of existing theories,

and compare them to other available experimental studies.

2. Description of Experiment

2. I. BELousov-ZHABOTINSKY REACTION 0vERvIEw. Bicause of the remarkable property
of exhibiting oscillations during a long transient approach to equilibrium, the BZ reaction has

served as a prototype of nonlinear dynamical systems in chemistry, and has been thoroughly
studied both experimentally and theoretically. When it was first discovered in the 1950's by
Belousov [20], it was generally thought that such behavior was forbidden by thermodynamics;

the scientific community refused to accept it. Nevertheless, the recipe circulated in the Soviet

Union, and was proposed as a Ph. D. subject to Zhabotinsky in 1961 [21]. Few outside of

the USSR knew of the existence of such a reaction until its publication in 1970 [14]. It has

been widely studied since it is simple to perform, visually striking, and an abundant source

of phenomena. In a well-stirred beaker, the oscillations can be easily observed by the naked

eye, since the solution changes color between blue and red. When confined to a thin layer, the

system can produce different dynamical patterns, such as targets or spiral waves.

From a chemical point of view, the BZ reaction is the oxidation by bromate of an appropriate
organic species catalyzed by a metal-ion /organic-compound complex in an acidic solution [22].
Possible organic acids include carbonic acid, the dicarboxylic acids, the ketons, the diketons,
citric acid, and malonic acid, and possible metal ions include Ce~+, Mn~+, Fe~+, Ru~+. Cr~+

or
Co~~ [23]. Though the initial discovery was made using citric acid with a cerium catalyst,

the most commonly used organic species are malonic and bromomalonic acid, and the most

common catalysts are Mn~+, Fe(phen)j+ (ferroin) and Ru(bpy)j+ (ruthenium). Soon after

its publication, chemical mechanisms were proposed that can be translated into kinetic equa-

tions [24, and references therein]. Nevertheless, a full elementary chemical description of the

underlying processes has not yet been agreed upon.

Many studies have been devqted to the diverse behavior exhibited by this reaction: transient

oscillations in batch (closed) reactors [24], or sustained oscillation and chaos in continuously

fed stirred tank (open) reactors (CSTRS) [25]. Because they are well mixed, these systems are

homogeneous, and can be considered zero dimensional. Qualitative new phenomena appear
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when spatial degrees of freedom are introduced. This is achieved by constraining the solution

in the desired geometry with no stirring, to allow for spatial gradients. When appropriate
experimental precautions are taken, diffusion is the only other mechanism added to the reaction

[26, 27].
Here we focus on

the two-dimensional (2-D) case. The reagent can be prepared such that it is

no longer self-oscillatory, but remains in the reduced catalyst state, requiring a local stimulation

(local potential pulse or acid excess) in order to trigger an oxidation wave. This property, called

excitability, is a basic concept in biology. In particular, it has been used to describe nerve

impulse propagation [28] and cardiac waves on the surface of the heart [29]. The BZ reaction is

well known as a convenient laboratory medium for the study of excitable systems [12]. In our

study, we have not systematically analyzed nor distinguished the experimental conditions in

which the medium is excitable
or

oscillatory, since it does not seem to affect the characteristics

of the spirals.
For most concentrations of the BZ reaction, spirals do not appear spontaneously, but have

to be created. A simple way to do this is to break an oxidizing front, either mechanically with

a gentle local disturbance, or chemically by locally inhibiting the reaction. Once a front is

broken, the two free ends start to curl up and eventually form two stable spirals of opposite
chirality, spinning at the same rate.

2. 2. EXPERIMENTAL SETUP. Our experiment was conducted in a spatial open reactor which

was first described in [30], and is similar to the one used for the study of Turing patterns [31].
The reactor allows for the study of true asymptotic states, since the chemical reagents are

continuously refreshed. It is the 4th generation of the spatial open reactors developed in

Bordeaux [32,33] and Texas [17,34]. Our reactor was built at the University of Texas at Austin.

The heart of
our reactor is a thin porous glass disk (Vycor glass, Corning), 0,4 mm thick

and 25.4 mm in diameter, which serves as the matrix for the chemical reaction. The porous

glass disk is used to prevent hydrodynamic motion in the reaction medium; it has 25$l void

space and 100 I
average pore size. It is translucent, and inert to the BZ reaction. The

diffusii~e motion which occurs within it has
a

diffusion constant D < DH~O. For the BZ

components in an aqueous medium, a value of D
=

2.0 x
10~~ cm~ Is has been measured [35].

For Vycor, an estimate of the effective diffusion constant relevant to waves in the BZ reaction

can be made by comparing the pitch of two spirals in the same
chemical solution, one in

Vycor and the other in aqueous medium restricted to have the same thickness [36]. One finds

D ci 4.2 x
10~~ cm~ Is, in fair agreement with other measurements [37]. Another diffusion

constant, namely the transverse diffusion constant across the porous glass, has been measured

with a gradient of ions: Di C~ 7 x
10~~ cm~ Is [38]. However, the in-plane coefficient is more

relevant to our spiral patterns. This subject is in need of more precise measurement.

The porous glass provides a reaction medium homogeneous over at least a
distance of two or

three spiral wavelengths (rwl mm ). A slight inhomogeneity on larger length scales (rw10 mm)
is observed in some porous glass. However, in our experiment, its presence did not influence

the dynamical behavior of the spiral tip, and had little effect on the chemical waves. Different

Vycor porous glass disks differ by a few percent in their thickness and density, so that changing
the disk may induce a shift in the parameter space. In order to avoid this, the same piece of

porous glass was used throughout the entire experiment.

The reactor itself is comprised of two Plexiglas halves, each a CSTR 7.5 ml in volume

(Fig. 2). Each CSTR is agitated by two magnetic stir bars at the bottom, and the chemicals

are delivered by a peristaltic pump (Ismatec IPC-8) at a rate of 67 +1 ml /h (residence time of

about IS min). The porous glass disk is attached to a Plexiglas holder with silicone glue, and

is held between the two CSTRS
so

that each side is in contact with a bulk fiiedium where the
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Fig. 2. A diagram of our experimental setup with the arrangement of the chemical species.

chemical concentrations are kept constant and homogeneous. The whole reactor is surrounded

by a copper thermal jacket, with which the temperature was regulated to within 0.I °C.

We use malonic acid as the organic species, and ferroin (Fe(phen)j+ ), a complex of iron and

11,10) phenanthroline as the catalyst. The components of the reaction are distributed in such

a way (see Fig. 2) that multi-gradients in chemical concentrations exist normal to the plane of

porous glass disk: malonic acid (CH2(C00H)2, abbreviated MA) is supplied only to CSTR A,
and ferroin only to CSTR B. This means that the actual values of these concentrations within

the porous glass are unknown, and that the location where the pattern forming reaction takes

place may vary. The other chemical species, sodium bromate (NaBr03), and sulfuric acid

(H2504)
are fed in equal amount to both CSTRS. A certain amount of sodium bromide and

Sodium Dodecyl Sulfate (SDS) ([SDS]
=

0.I mM) is also fed into CSTR A to keep the bulk

from oscillating and to prevent large bubbles from forming [39, 40]. Without the catalyst,
the chemicals in CSTR A are not reactive. In CSTR B ferroin reacts immediately (within

a

second) with bromate to produce ferriin (Fe(phen)(+) in the presence of sulfuric acid. In order

to maintain the chemical gradients across the reaction medium, the flow rate of the CSTRS

must be much larger that the diffusive flux across the porous glass disk. The diffusive flux

was estimated to be 2 ml /h, much smaller than the pump flow rate. We have not studied the

influence of the flow rate in detail.

The arrangement shown in Figure 2 imposes practical limits on the maximum concentrations

which can be used for a given flow rate. For [MA] > 0.6 M, we observe that the bulk of CSTR B

begins to oscillate below a certain value of [H2504). This means that enough malonic acid is

diffusing into CSTR B to induce the full BZ reaction in the bulk. However, the observations

on spiral dynamics made in the presence of these oscillations did not show any differences

with lower [MA], where the oscillations are suppressed. Thus the spiral is insensitive to these

oscillations.

The reactants from each CSTR diffuse into the porous glass disk where the pattern-forming

reaction takes place. For a typical set of concentrations, traveling waves spontaneously appear.

They are
emitted either by sources at the boundary or by spirals. Early experiments showed
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Table I. Parameters for the BZ reaction in o~r experiments. The s~perscrtpts on the con-

centrations indicate the CSTR into which each species is fed.

[H2S04]~~ [NaBr03]~~ [CH2(COOH)2] ( [ferroin]~ [NaBrj~ temperature flow rate

0.03-1.0 M 0.05-0.6 M 0.04-1.0 M 1.0 mM 30.0 mM 23 ~ 0.i °C 67 ml/h

that the sources at the boundary have a higher frequency than the spirals, and thus gradually
destroy them [17]. To eliminate this problem, we make the area of reaction medium in contact

with CSTR A (the malonic acid side) slightly larger than that in contact with CSTR B (the
ferroin side), by using an asymmetric Plexiglas holder. This results in a boundary condition

along the perimeter of the porous glass disk for which the malonic acid concentration is higher,
and ferroin lower, than elsewhere. The result is that the sources at the boundary have a lower

frequency than the spirals in the reaction medium. Thus the spiral waves also act to suppress

these pace-makers, and dominate the system.
We have found that the spirals in our system are sensitive to red light, by using either a

diode (3 mW, 1
=

670 nm)
or helium-neon laser II mW, 1

=
633 nm). It has been known

for some time that the ferroin-catalyzed BZ reaction can be affected by visible light [41, 42],
though it has not been used in pattern-forming experiments until recently [30, 43]. Studies

using light in the ruthenium-catalyzed system have been more common [44-46]. The reduction

of ferriin to ferroin is known to be accelerated by light in the range of 580-700 nm, but the

detailed chemical processes are still not understood [42]. This effect allows us to manipulate
the spirals in the system by focusing the light beam on the center of the spiral. Initially if

there are many spirals, we bring one spiral to the center and drive the rest to the boundary.
If there is no spiral in the beginning, we create a pair of counter-rotating spirals by using light

to break the wavefront. Then the same technique is employed to remove one of them.

For an experimental survey of the BZ reaction in an open reactor, a large number of external

parameters are available: temperature, the chemical flow rate through the reactor, and five

chemical concentrations. We restrict ourselves to three variables: the input concentrations

of sulfuric acid, sodium bromate, and malonic acid, which we vary within a range of about

0.03 to I M. The other parameters are
held fixed at: [NaBr]

=
30 mM, [ferroin]

=
1.0 mM,

and temperature 23 + 0,I °C, with a flow rate of 67 ml /h. The experimental conditions are

summarized in Table I.

We choose [H2504] and [NaBr03]
as control parameters since it is known that the speed of

waves in the medium depends primarily on these two species, and is by comparison independent
of ferroin and malonic acid [47, 48]. Malonic acid plays a unique role since it is consumed during
the reaction cycle (see Sect. 2.I). This is a crucial point for closed systems, which eventually

run out of malonic acid. Thus, although there is no such limitation in an open system, the

concentration of MA is potentially interesting. Indeed, qualitative changes actually do occur

as [MA] is varied.

Once a single spiral has been prepared, it is studied by changing stepwise (increasing or

decreasing) one chemical concentration while fixing the others. Enough time is allowed between

changes so that the system can relax to its new asymptotic state. The typical waiting time is

I to 2 hours (4 to 8 residence times).

2. 3. MEASUREMENT TECHNIQUES. Our raw data are images. They originate from a charge
coupled device camera (Sony XC-77CE) and are either grabbed directly onto a computer or are

stored onto a H18 video recorder (Sony EVO-9650P) for later processing. The frame grabber
(Image VGA+, Mu Technologies) digitizes the input signal into a 256 gray level, 512 x 726 pixel
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Fig. 3. A typical single spiral wave in our experiment, with the best fit Archimedean spiral super-

imposed. Note the edges of the reactor (diameter 2.0 cm).

image. Special care was taken to have true square pixels, and thus to avoid spatial distortion.

The field of view was chosen to cover the largest useful part of the cell:
a

typical image
represents about 19 mm x 13.5 mm, with

a resolution of 26.4 pm/pixel. Our images are

usually well contrasted, with clear features: the spiral appears as a light front over a dark

background, as shown in Figure 3.

Mfiller et al. have shown that the shape of a simply rotating spiral in the BZ reaction is ex-

perimentally indistinguishable from an Archimedean spiral or from the involute of a circle [49].
The algorithm they used to extract the geometric and kinematic characteristics of a spiral has

two parts. First, they find either the highest intensity pixels, which are close to the middle of

the wavefront, or the lowest intensity ones, which are between two fronts. In the second part,
the Cartesian coordinates of the selected pixels are transformed into polar coordinates, and a

nonlinear fitting routine is used to find the parameters of the spiral (Archimedean or
involute)

that provide the best agreement with the experimental points.
Since our spirals often have up to 20 turns, whereas Mfiller et al. were working with at

most 2 or 3 turns, their algorithm would have been too time consuming. In addition, the small

deviations from the Archimedean shape that are important in the neighborhood of the spiral
center become negligible a few turns away. Our algorithm relies on the assumption that the

shape of the spiral is Archimedean, I.e. a curve best described in polar coordinates, where the

radius r varies linearly with the polar angle 6:

rA(6)
=

I(6 60), with 6 2 60,
,

II)

where p is the pitch of the spiral, and 60 the angle of the spiral with respect to a reference

axis. The two possible chiralities (clockwise
or

counterclockwise)
are

described by choosing the

direction in which the angle is increased.

Our computer program extracts the location of the edge of the spiral front from its maximum

contrast side, and then finds the best-fit Archimedean spiral. The user indicates the chirality

and provides an estimated center and outer radius by clicking on the image. Starting from the
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outer radius and moving inwards, the program finds the radial position of the front at equal
angle steps from the estimated center, until it arrives at the center. The collection of points r(6)
gives a straight line if the estimated center is the true one; otherwise a sinusoidal component
is superimposed. The average straight line is subtracted and the projection of the modulation

onto the sine and cosine functions are calculated. They are proportional to the offset vector

6r between the true center and the estimated one. The center of the coordinate system is

then corrected, and the entire procedure is iterated until the corrections to the center become

small enough (arbitrarily chosen to be a hundredth of
a

pixel). For usual cases, convergence is

obtained in 3 or 4 iterations. In Figure 3, (he best fit Archimedean spiral is superimposed on

the experimental image.
The period can be obtained by following So as a function of time, but is usually measured

by stopwatch over many rotation periods (usually between 5 and 10).

3. Results

3. I. PHASE SPACE STRUCTURE. We start with a simple observation. For a given set of the

external parameters, a spiral either exists or it does not Ii ). If it exists, it is either regular (this
corresponds to a nearly Archimedean spiral, undergoing simple, rigid-body rotation), distorted

(the pitch looks uneven, and the spiral is meandering),
or ~nstable (to three different instabil-

ities described below). This defines different regions within the three dimensional parameter

space. Note that none of the boundaries are "fuzzy" all of the transitions are direct.

Figure 4 contains the framework which encompasses our experimental study: four phase
diagrams corresponding to four different planes in the 3-D parameter space. About 200 different

points are included in this survey, each labeled according to the observed pattern: simply
rotating spiral "S", meandering spiral "M", or convectively unstable spiral "C"; the other

possibilities are a disordered, turbulent state "T", or no pattern at all. There is a sort of

balloon in parameter space within which spirals can exist; its boundaries are defined by the

instabilities of the spiral. This divides parameter space into three domains: the balloon interior,
in which either simple or meandering spirals occur, and the two homogeneous states, either

chemically oxidized or reduced. In the lower left corner of Figures 4a-c, where either the

concentration of H2504 or NaBr03 is low, the medium is homogeneously red, corresponding to

a completely reduced catalyst. At the other limit, when these concentrations are high enough,

a homogeneously blue medium is observed, corresponding to a completely oxidized catalyst.
The low concentration boundary (square symbols) represents a simple transition from spirals
to a reduced (red) state, occurring, within our experimental precision, at a single line which

coincides with what we identify as the retracting wavefront instability (see Sect. 3.2.I). The

boundary between the spiral region and the oxidized state (circle symbols) is more complicated,
since there the spiral undergoes a convective instability leading to defect-mediated turbulence.

The first three diagrams, each taken at different fixed [VIA], have a similar structure: the

spiral existence boundaries hardly vary with [MA]. But [MA] strongly affects the transition

between simple rotation and meandering. At [MA]
=

0.04 M (Fig. 4a), only meandering spirals

are observed, whereas at [MA]
=

0.4 M (Fig. 4b), only simply rotating spirals are observed; at

[MAj
=

1.0 M (Fig. 4c), both simple and meandering spirals are observed. The fourth phase
plane (Fig. 4d)

was taken perpendicular to the previous three at fixed [NaBr03)
=

0.15 M,
chosen so as to intersect the meandering transition at [MA]

=
1.0 M (Fig. 4c). One clearly

(~) By this we mean, is it possible to maintain a spiral pattern for the given conditions? The spiral
is usually created at other values of the parameters, which are then slowly changed to the ones under

study.
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Fig. 5. Three dimensional representation of the explored phase diagram extrapolated from the

data in Figiire 4. The three concentrations vary between about 0.04 and i M. The backinost (medium
dark gray) state is the homogeneous (red) reduced state. The frontniost (dark gray) state is the

homogeneous (blue) oxidized state. Next to it are the turbulent (black) and convective instability
(light gray) state. The medium light gray regions correspond to the meandering spirals. The rest

(transparent white)
are the simple spirals. For more details, see text and Figure 4.

sees a "re-entrance" of meandering in the ([H2S04), [MA]) parameter plane: starting from

[MA]
=

1.0 M, the meandering instability disappears as [MA] is decreased, then reappears

again at low [MA]. Thus with all other concentrations fixed,
one sees two transitions from

simple to meandering by varying [MA].
The overall qualitative structure of this three-dimensional phase space is represented in

Figure 5. Note that it is an extrapolation and a qualitative summary of the actual data

represented in the four phase diagrams. One clearly sees the striking geometry of the two

meandering regions (medium light grey ifi the figure) are they connected? Also, we have not

seen any instabilities along the [MAj axis which limit the existence balloon, though they surely
must exist, at least for low enough [MA] (below 0.04 M), which we have not investigated.

3.2. SPIRAL INSTABILITIES. We have observed three different spiral instabilities in our

experiment. These correspond to cases in which either the fronts break apart and the ends

do not curl up, the spiral structure itself loses its stability, or a second frequency appears
in the motion of the spiral tip. The first two cases account for the boundaries of the spiral
stability balloon in the (H2504, NaBr03) plane. The third case corresponds to meandering, a

modulating instability which does not destroy the spiral. In a slightly different experimental
situation, we have observed another case, in which the center of the spiral is destroyed, but we

will not discuss it here [50].

3.2.i. l~ansition to the Clien£cat(v Reduced State: Retracting Wavefront Instability. The

lower boundary in our four phase planes represents some minimum condition for the existence
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Fig. 6. Four progressive images of the retracting wavefront instability, as the spiral reaches the

edge of the stability boundary: (a) t
=

0 min; (b) t
=

6 min; (c) t
=

10 min; (d) t
=

18 min.

of spirals. In this region the medium is excitable. At the critical line, the spiral disappears, and

beyond it, the medium is in the reduced state. The experimental points defining this bound-

ary are the critical concentrations ([H2504)c, [NaBr03]c). The simplest fit of1/[NaBr03)c
vs. [H2504)c is a straight line going through zero, as shown in Figure 7 for the three phase
diagrams at fixed [MA]. This implies the relation:

[H2504)c x [NaBr03]c
% xc ~

0.022 + 0.003 M~. (2)

Thus the critical line is a hyperbola, which provides a quantitative minimum condition for the

existence of spirals: [H2504] x [NaBr03) > xc. It also identifies what we will later show to be

the control parameter for the spiral.
The instability associated with this critical line is illustrated in Figure 6, for which we have

observed three qualitative characteristics. First, the spiral rotates more slowly as this line is

approached, and indeed its frequency vanishes at the line (see Sect. 3.3.I). Secondly, large
sections of the wavefronts simply disappear, resulting in a break. This break takes place in

preferred regions of the cell, probably related to inhomogeneities of the porous glass. Thirdly,
the free ends of these broken fronts usually do not curl up and form new spirals, but instead

retract, a clear indication of a condition for which spirals cannot exist.

As seen in Figure 7, there is no significant difference in the critical line at each [MA].
This is particularly interesting for [MA]

=
0.04 M, implying that the critical line defined by

equation (2) applies equally to meandering and simply rotating spirals. However, at high [MA]
(> 0.6 M), the bulk is oscillatory at the critical line. This affects the wavefront which tends

to vanish through some kind of wave amplitude collapse. Also, the free ends still tend to curl

up, though slowly.
Though we have not observed a continuously retracting wavefront without front breaking,

we interpret this boundary as the location of the "retracting wavefront" transition that is ob-

served elsewhere [51-55]. We believe that the other phenomena either come from the setup
(global bulk oscillations)

or from the narrowness of the stability region for wave propagation.
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Fig. 7. A plot of the critical values 1/[NaBr03)c
vs.

[H2S04)c. for various [MA]. The line shows

the best fit hyperbola, representing the condition [NaBr03)c x [H2S04]c
" xc, as defined in the text.

Our experimental procedure does not allow us to observe this stability region for retracting
wavefronts, nor to distinguish this spiral stability boundary from the boundary of wave stabil-

ity [56, 57]. However we have not searched for these distinctions in detail.

3.2.2. ~ansition to the Chemically 0xydized State: Eckliaus Instability. This instability

was first reported in [30], which the reader should consult for details. In the phase diagram,

it occurs close to the limit where the system becomes homogeneously blue (oxidized), see

Figures 4a-c; this is the opposite limit to the retracting wavefront instability. Starting from

experimental conditions within the existence balloon ([H2504]
"

0.3 M, [NaBr03)
~

0.4 M,

[MA]
=

0.4 M),
we increase a control parameter (the sulfuric acid concentration) so that we

gradually approach the homogeneous state.

This instability occurs in the region where one would expect the medium to be oscillatory.
At low sulfuric acid concentration ([H2504) < 0.6 M), the spiral is stable, simply rotating.
When concentration is increased to [H2504)

~
0.65 M, a modulation appears: the distance

between successive wavefronts (the local wavelength varies spatially, instead of being constant.

It becomes an oscillating function of the distance to the spiral center, with an amplitude that

increases with distance [30]. Far enough from the center, the modulation reaches such a large
amplitude that the spiral cannot sustain the deformation and the wave breaks up, nucleating
pairs of spiral defects with opposite chirality. This process produces a large number of small

spirals around the edge of the stable spiral. Such a process is similar to the one observed in

coupled oscillator systems and known as defect-mediated turbulence [58, 59]. It is illustrated

in Figure 8, which shows
an enlargement of the turbulent region beyond the stable spiral.

The wavelength modulation is interpreted as an Eckhaus instability, the most common phase
instability of a periodic pattern [60]. The fact that its amplitude increases with distance,
without the center being destroyed, is the signature of its convective nature [61, 62].

In general instabilities can be either convective, when small perturbations are carried away
faster than they grow, or absolute, when they grow faster than they are carried away. In the

latter case, the instability invades the whole space. As our control parameter is increased up

to [H2504]
~

0.8 M, the stability radius of the spiral decreases. For [H2504) > 0.8 M, the

spiral disappears completely into a swarm of spinning spiral defects.
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'

Fig. 8. An example of the turbulent state beyond the convective instability of the spiral, for

[H2S04)
"

0.7 M, [NaBr03)
"

0.4 M, and [MAj
=

0A M. The picture is 4.8 mm across.

The boundary of this instability is difficult to define precisely. Nevertheless it systematically

occurs when the period of the spiral Ts becomes of the order of 4 s. Hence this transition takes

place when Ts decreases down to Ts
=

Tcr~t, where this critical period is in principle a function

of the chemical concentrations, though the range of our data is too small to see any variations

in Tcr~t. In other words, there is an upper cutoff frequency in the BZ reaction beyond which

the medium cannot sustain stable wavetrains. This is in agreement with other investigations
of spiral instabilities [63, 64).

This experimentally observed scenario is remarkably well reproduced by the complex
Ginzburg Landau equation, which fipermits one to check the theoretical interpretation of the

instability mechanisms [65] (~ ). This equation describes the spatio-temporal evolution of the

slow varying amplitude of an oscillatory medium close to the onset of oscillation. It has been

widely studied, and a similar transition to a
spatio-temporal turbulent state is also seen. More

details can be found in a recent extensive theoretical study [66].

3.2.3. ~ansition to Aleandering Spirals: Hopi Bifurcation. The transition to meandering

was the first spiral instability recognized and studied as an intrinsic property of the spiral

pattern [26]. The term was coined by Jahnke, Skaggs and Winfree to describe the nonpiriodic
motion of the spiral tip observed in their experiment: instead of following a circular path, the

spiral tip (~ describes an epicycle-like path [26]. Further experimental [18, 67] and theoretical

studies [68-73] have sho~&.n that the motion is quasiperiodic, and that the meandering instability
is a Hopf bifurcation. It should be noted that all previous studies have mainly focused both

on the tip motion and on the instability itself. Few studies have been made on the shape of a

meandering spiral, or on the locus of the bifurcation within the spiral phase diagram.

(~) Rigorously, this comparison is valid close to the onset of the oscillatory state where oscillations

are sinusoidal.

(~) Note that this notion of spiral tip requires a precise definition. Experience shows that this is

delicate to formulate; it is often considered as the point of maximum curvature.
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Fig. 9.- Two examples of meandering spirals (see text): (a) retrograde meandering
([H2S04)

"
0.5 M, [NaBr03)

=
0.2 M, [MAj

=
1.0 M): (b) prograde meandering ([H2S04)

"
1.0 M,

[NaBr03]
=

0.i M, [MA]
=

1.0 M). Compare the chiralities of the spirals and the distortion patterns.

The main characteristics of a meandering spiral appear more clearly in the uneven wavefront

spacing, rather than in the detailed analysis of its tip motion. In other words, a single picture
of a spiral is enough to recognize whether it is simple or meandering, provided enough turns

are present. The history of the quasiperiodic tip motion is somehow inscribed in the shape of

the spiral wavefronts.

Although the tip motion not rigorously that of an epicycle, the difference is usually indistin-

guishable experimentally [18,67]. Thus the tip executes its primary rotation around a circle

(sometimes labeled "moon" [26] with a frequency fo, and this circle is itself rotating around

a secondary circle ("earth" with a frequency fi. The ratio fo Ill determines the number of

"flower petals" per turn in the spiral tip trajectory. We also define the amplitude of mean-

dering, as the ratio of "earth" circle and "moon" circle r2/ri Two kinds of meandering are

possible depending
on the relative directions of the two orbiting motions. Either they both or-

bit in the same direction (corotating
or prograde meandering)

or they spin in opposite directions

(contrarotating
or retrograde meandering). Although the theory predicts a continuous change

from one to the other, experiments have until recently only observed retrograde meandering,
which was sometimes referred to as Agladze's rule [74]. We actually observe both kinds, as

shown in Figure 9.

At low malonic acid concentration ([MA]
=

0.04 M), all spirals undergo retrograde mean-

dering. For a fixed bromate concentration, the number of petals and the amplitude are larger
at high sulfuric acid concentration than at low. For [NaBr03)

"
0,I M, the number of petals

is 30 for [H2504)
=

1.0 M, and 5 for [H2504)
=

0,I M. Plesser et al. also report an increase of

the number of petals with increasing [H2504), but observe a decrease in amplitude [67].

At high malonic acid concentration [MA]
=

1.0 M, the picture is different (see Fig. 4c). First

of all, there is a
"meandering tongue" within the stable spiral region, where the meandering

is either prograde or retrograde, depending on the concentrations. The dynamic behavior of

the two types of meandering spirals are similar: their meandering amplitude is small near the
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Table II. (p~ (pm), Ts (s))
vs. [H2S04) for variow [NaBr03), at [MA]

=
0.4 M.

[H2504) [NaBr03) (M)

(M) 0.1 0.15 0.2 0A 0.6

p~ Ts ps Ts ps Ts p~ Ts ps Ts

0.1 1429 92.4 595 25.71

0.2 lsll 96.0 1095 58.1 565 17.7 416 11.2

0.3 2200 168.6 925 37.3 721 26.3 423 9.9 345 7.5

0A 1066 52.6 697 21.9 565 17.4 383 7.3 355 5.8

0.5 888 37.6 589 16.4 481 12.3 331 6.2 323 4.5

0.6 681 23.9 478 11.5 422 9.6 350 5.4 314 3.9

0.7 589 18.9 422 9.53 345 4.6

0.8 524 ISA 396 7.63 339 b-S

0.9 464 12.1 385 6.71

1.0 435 9.8 373 6.06 303 4.5

onset and increases as the control parameter is changed beyond the onset. The phase diagram
obtained for a fixed [NaBr03) (see Fig. 4d) is thus similar to the theoretical prediction made

in [71]. A more systematic study of the transition between these two types of meandering has

since been performed [75].
Note that within the concentration range presented here, we do not observe the "hyper-

meandering" seen in computer simulations, where more than two frequencies are needed to

describe the tip motion [51]. We have seen some preliminary evidence that, if such meandering
exists, it would be at very low malonic acid concentrations.

3.3. QUANTITATIVE RESULTS oN SIMPLE SPIRALS. We now restrict our analysis to simple
spirals in the BZ reaction. In this case, pitch and period are well defined quantities, whereas

this is not true for meandering spirals.

3.3.i. General Scaling Relations. For a given point in the appropriate region of parameter

space, an initially straight wavefront with a free end will curl up into a simple spiral with a

uniquely defined pitch ps and period Ts. These quantities are determined by the dynamics of

the reaction, which depend on the chemical concentrations. What is the selection mechanism?

To answer this question, we have measured the pitch and the period of the spiral at each

indicated point in Figure 4, using the technique described in Section 2.3. Our measurements

allow us to identify the control parameter for the system, and the dependence of the pitch and

period on it. To first order, the quantitative laws for spiral selection are scaling relations; the

corrections to these relations provide a more detailed dependence on chemical concentrations.

Hopefully this framework will eventually be extended to incorporate the case of meandering.
Since in this section we focus uniquely on the data for simple spirals, which are represented

by an "S" in Figure 4, the simplest phase plane is Figure 4b, in which no meandering spirals are

observed. In this diagram, the pitch ranges from 0.3 mm to 2.5 mm, and the period from 4 s to

200 s; for each point we associate the numbers (ps, Ts). A compilation of our data can be found

in Table II. Though most of our analysis is done for the data in Figure 4b, we also include the

simple spirals from Figures 4c-d, which gives an indication of the dependence on [MA].
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[NaBr03]: += 0.I M, O= 0.15 M,

x= 0.2 M, o= 0.4 M, u= 0.6 M
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[H2S041 (~)

Fig. 10. The inverse of the spiral period T7~
us. [H2S04] for several different bromate concentra-

tions at [MA]
=

0.4 M (Fig. 4b).

Starting with a simple spiral somewhere in the stable region, its period and pitch diverge as

the state of the system approaches the retracting wavefront instability boundary (represented
by the black squares in Fig. 4). For concentrations above this line, the inverse of the measured

spiral period Tj~ is a linear function of [H2504], as shown in Figure 10 for each value of

[NaBr03) in Figure 4b. Although the relation is remarkably linear in each case, the slopes and

intercepts are different for each bromate concentration. These different lines can be collapsed
by plotting Tj~ against the variable

x m [H2S04) x [NaBr03), (3)

as shown in Figure II. Close to zero, the spiral frequency varies linearly with x, and vanishes

at a finite value of x, equal within the experimental error to xc as defined in equation (2).
The spreading at larger values of x is due to a second order dependence on the chemical con-

centrations (see Sect. 3.3.2). As a first approximation, the variable x captures the dependence
of the spiral period on the chemical concentrations.

The dependence of Ts on [MAj is found by analyzing the data from Figure 4d. In Figure 12

we plot T/I
as a function of [H2S04) for all simple spirals in this phase plane. In this case

bromate concentration is fixed, so that the rescaling of the x axis to x would not change the

relative positions of the curves. We observe no large displacement of these curves, which would

indicate a dependence on [MAj, except for a small separation at high [H2S04], which we will

discuss in Section 3.3.2. The general fit shows a linear dependence as before. Thus for simple
spirals Ts is independent of [MAj to first order, and the general scalings observed in Figures II

and 12 are summed up by the following experimental law:

Ts
~

lx xc)~ 14)

We therefore consider x as the control parameter for the three variable phase space we are

studying.
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Fig. 12. The inverse of the spiral period T7~
vs. [H2S04) for several different [MAj, at

[NaBr03)
"

0.15 M (Fig. 4d).

The selected pitch of the spiral p~ is its most obvious length scale; it is also the wavelength of

the emitted waves. Without reference to any chemical concentrations, the dependence of the

selected pitch p~ on the period Ts is shown in Figure 13 for the simple spirals
we

have observed

in Figure 4. Remarkably, without any adjustment or normalization, all points follow the same

general curve, given by:

p~ =
(139 + 5) x Tf.~~~°.°~, (5)

with p~ in pm and T~ in seconds. From this measurement, we assume the following scaling
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Fig. 13. The spiral pitch ps vs. the period Ts (log-log plot) for all simple spirals in Figures 4b-d

(103 data points). The straight line corresponds to the scaling relation p r~

T) ~~

relation, which we might call the constit~tive relation:

Ps ~
T/~~ 16)

We also conclude from Figure 13 that in the range 0.I M < [MA] < 1.0 M, the observables of

a simple spiral are independent of [MA] to first order, although the concentration of MA does

play a role in the transition between simple and meandering spirals, as discussed above.

The scaling relation given by equation (6) is in fact a strong statement on the spiral selection

mechanism, since it implies that p]/T~ is a constant. This ratio has the units of a diffusion

coefficient, indicating that the spiral is governed essentially by diffusive processes. For all of

the simple spirals in the ([H2S04), [MA]) plane of Figure 4d, and for the simple spirals with

[NaBr03) < 0.6 M in Figure 4b, this constant is given by:

~~
=

22 + 4 x
10~~cm~ Is, (7)

Ts

For [NaBr03) > 0.6 M, the value is significantly different and will be discussed in the next

section. Since molecular diffusion thus plays a crucial role in the selection mechanism of the

spiral, it is natural to consider the dimensionless ratio defined in [51], which we call the spiral
dijfwion n~mber

~
=

P~ j~j
~ DT~'

If we use the value D ci 4.2 x
10~~ cm~ Is (see Sect. 2.2), we find Ms ci 52. Using the accepted

value for BZ in solution, D
=

2.0 x
10~~ cm~ Is [35], would give his m 10. The extreme value

of Di
"

7 x
10~~ cm~ Is measured for a transverse gradient of ions in porous glass [38] gives

Ms ci 290. We will discuss this in Section 4.3. Thus though we cannot report with certainty
the value of this selected spiral number Ms with much precision, we emphasize the general

result that p~ mu

Tj/~ for all of our spirals, as shown in Figure 13.

For all simple spirals in our experiment, the observables p~ and T~ can be completely specified
by the distance in parameter space from the critical line defined by xc. There was a hint of
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this possibility in the numerical simulations of [51]. This strong resemblance to the physics of

second order phase transitions, with the retracting wavefront instability at the critical point,
leads us to define a dimensionless similarity variable p:

p %

~~
~~~, (9)

Xc

which for our experiments ranges from about 0.2 to IS. In terms of this variable, we show for

example the inverse spiral period in Figure 14, for all of the simple spirals we have observed.

The linear fit in this figure, and the fit shown in Figure 13 (Eq. IS)) are summarized by the

general scaling relations:

T~
=

To/L~~i (10)

p~ =
po/L~~/~, Ill)

where the time and length scales are given by To
~

41.5 + 2.5 s and po ~
920 + 33 pm. The

retracting wavefront instability thus occurs for p ~ 0 and the convective instability for p large
(about 12). We also note fi.om Figure 14 that the scaling is quite accurate for p < 4, and that

for larger values of p there are systematic corrections, which are discussed in the next section.

3.3.2. Towards a Microscopic Chemical Description ofBZ Spirals. Although the scaling laws

in equations (10, 11) provide a concise and simple summary of the characteristics of the selected

spiral, they are not exact relations. This is not surprising, since the control parameter x is

symmetric with regard to sulfuric acid and bromate concentrations, whereas it is known that

these two species do not play the same chemical role. The asymmetry appears as corrections to

the scaling relations: for large enough p systematic variations are seen, which depend mainly

on the bromate concentration. These deviations from a universal scaling law for spirals in

the BZ reaction reveal the detailed connection between the macroscopic pattern observables

and the underlying chemical mechanisms of the reaction. Although we propose no theoretical

framework in which to understand them, these experimental observations provide hints and

constraints for a theory of spirals based on the microscopic chemistry of the BZ reaction.
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of p~ with /~ (see the text).

Table III. Corrections to scaling. Vanes of the a2 and b2 coejficients, as a f~nction of
/NaBr03). for [MA]

=
0A M.

[NaBr03)(M) 0.1 0.15 0.2 0A 0.6

a2 0.066 0.057 0.023 -0.012 -0.017

b2 0.078 0.028 0.022 -0.027 -0.027

Bromate Corrections to Scaling.- We first consider the variations of period as a function of

the control parameter p, at a fixed value of malonic acid concentration. As seen in Figure II,

To /T~
mu p for small enough p, but these curves fan out for large p, with a systematic depen-

dence on bromate concentration: the lower [NaBr03), the more concave this curve is. In the

absence of any theoretical functional form, and within the precision of our data, the only term

we can give is the beginning of a development in powers of p:

To /T~
= p + a2/L~ + °(/L~j. ~~~~

where a2 contains the bromate dependence. In order to obtain the a2, we
make a least mean

square fit of To/Ts to the functional form given by equation (12), with a2 being the only free

parameter. We check this procedure by making a linear fit to To /T~ p as a function of p~:
the slope in each case is close to the obtained value of a2, and the intercept with the y-axis is

always close to zero.

Results are shown in Figure IS, and listed in Table III. Error bars are difficult to evaluate for

numbers that result from so many fits; they are on the order of 20$l. Nevertheless, a2 is clearly

a decreasing function of bromate concentration. Though the graph hints at some curvature,

we cannot distinguish between a linear or a
parabolic dependence, given the imprecision and
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the relatively small number of available data points. They are:

a2([NaBr03])
~

-0.17x ([NaBr03)-0.43), (13)

a2([NaBr03))
~

0.52 x ([NaBr03) 0.71)([NaBr03) 0.32). (14)

where all concentrations are expressed in moles per liter, and the a2 are dimensionless. The for-

mer relation is the simplest, but the latter takes into account the curvature, giving a minimum

value for a2. which might have
some chemical meaning. Beyond this, our study is inconclusive,

and fiJrther measurements are required.
Since the scaling law for the pitch is written po/Ps

-~
/L~/~, corrections might be written

either as powers of p~/~ or p. We have found that by considering

lpo/ps)~
= ~ + b~p2 + ojp2j, jisj

we obtain values of b2 which are close to the a2 at each [NaBr03) (see Fig. IS ). Fitting the

data in this way gives:

b2([NaBr03))
~

-0.19 x ([NaBr03] 0.36). (16)

b2([NaBr03))
"

0.72 x ([NaBr03) 0.70) ([NaBr03) 0.26). (17)

Note that the near equality a2 ([NaBr03)
Cf b2 ([NaBr03) ), and the definitions in equations (12

and (15),
mean that these bromate corrections cancel in ~Is, so that M~ m

p(/DTO + o(p~).
Thus Ms is constant even to second order in p.

Malomc Corrections to Scaling. As presented in Section 3.I, the spiral parameters for various

malonic acid concentrations, at a fixed bromate concentration, show no [MA] dependence to

first order. We have not examined the systematic corrections due to malonic acid which occur

within the spread of points in Figure 12.

Corrections to the Constit~tive Relation. Although the scaling relation ps rw

Tll~ (Eq. 6)
implies a fixed value of the spiral dijf~sion constant

Ds +
pl/Ts, (18)

there are also systematic corrections. They appear as the thick spread of points around the fit

in Figure 13, which translate into an
18Sl variation in the value of p] /T~ (Eq. (7)).

In order to characterize these corrections, we first analyze D~ as a function of x for fixed

[MA]. Since only simple spirals are considered, we focus on the phase diagram for [MA]
=

0.4 M

(Fig. 4b). For each experimental point, the corresponding value of Ds is plotted as a function

of x in Figure 16. The different
curves correspond to different values of [NaBr03). To first

order, all curves collapse and have the same V-shape, with a minimum at

xmjn([MA]
=

0.4 M) ci 0.10 M~. We observe qualitatively that the width of these V-shaped

curves increases with [NaBr03). Note that we have excluded data for [NaBr03)
"

0.6 M (the
highest bromate concentration we have studied) since the behavior is markedly different, as

discussed below.

The dependence of xmin with [MA] is obtained by considering the simple spirals in the phase
diagram at fixed [NaBr03) (Fig. 4d). We find that the curves

Ds(x) for different values of

[MA] have the same V-shape, but the minimum is shifted along the [MA] axis. Subtracting off

the value of x where these minima occur, xmin([MA]), allows the different curves to collapse

onto each other, as shown in Figure 17. The variation of xm~n appears to be fairly linear with

[MA], as shown in Figure 18.
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Fig. ii. The spiral diffusion constant Ds
=
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symbols as Figure 12.

Thus for the simple spirals in our experiment, the minimum value of Ds is given by

D~(xmin([MA])) =18.5 + 0.5 x
10~~ cm~ Is, (19)

with

xmjn([MA]) ci 0.082 x [MA] + 0.065, (20)

where all concentrations are expressed in moles per liter. In terms of the dimensionless control
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Fig. 18. The value of the control parameter for which Ds is a minimum, Xm,n([MAj) vs. [MAj. The

straight line corresponds to a linear fit (Eq. (20)).

parameter p, this minimum Ds occurs at (using xc =
0.022 M~):

Is there a global cause for this minimum in D~? Although
we have no definite answer to this

question, we have made preliminary measurements of the medium itself, which show whether

it is excitable or oscillatory. By using the laser to displace the spiral center without allowing
it to rotate, we can open a hole where the medium is unperturbed by wave fronts. We then

observe whether the medium spontaneously oscillates or not. For [MA]
=

0.2 M, we find that

the transition occurs around x " 0.08M~, in accordance with equation (20). This suggests
that Xmin([MA]) might correspodd to the boundary between an excitable and an oscillatory
mediura, though

no other changes
are seen in the spiral characteristics.

A complete description of D~ would require a more thorough study as a function of [NaBr03)
We have seen quantitatively that [MA] displaces the V curve, whereas [NaBr03) widens it. But

for [NaBr03)
"

0.6 M, the values of p] /Ts are significantly lower than at other concentrations.

We have not systematically investigated this effect, but we have two examples from the phase
diagrams at [MA]

=
0.4 and 1.0 M, shown in Figure 19. Although the minimum value of Ds

is significantly lower, the value of xm~n where it occurs is still in agreement with the line in

Figure 18. For [NaBr03]
"

0.6 M, we find that

Ds(xmin([MA])) =14.0 + 0.5 x
10~~ cm~ Is, (22)

using xmin given by equation (20). This difference at higher [NaBr03] may be the beginnings
of another instability, possibly the signature of a boundary of the existence balloon.

3.3.3. Extension to Meandering Spirals. Both the general scaling relations and the correc-

tions to these relations presented above come from
an analysis of simple spirals. How can this

framework be extended to the meandering spirals? Here we will only give the beginnings of
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what might be such an extension. The final result of this endeavor would be a q~antitative un-

derstanding ofthe different aspects of meandering,including the dependence ofthe meandering
amplitude and frequencies on the chemical concentrations, or control parameters.

The meandering instability is an instability of the spiral core [71, 72], but experimentally
this is not straightforward to define. Can we measure some aspect of the spiral core? In

order to evaluate its size, we have time averaged images of simple spirals from Figure 4d, for

[MA] larger than 0.5 M. For simple spirals between the meandering tongue and the critical

line, the averaged image clearly exhibits an unexcited dark region at the center, with a radius

of about 10$lo of the pitch. They are represented by an
"0" in Figure 20. We identify this

radius with the core radius. For spirals on the other side of the meandering tongue, no
dark

region was observed ("o" in Fig. 20). This implies that the radius is smaller than one pixel;

given the measured values of the pitch, 10$l would correspond to a few pixels. We tentatively

conclude that the ratio of the core radius to the pitch on this side is smaller than a few percent.

This implies a qualitative transition from large-core type near the critical line (p near 0) to

small-core type at larger p. This agrees with the qualitative picture given by Barkley in his

spiral phase diagram [71], and also with the recent definition of '-dense" and "sparse" spirals
in numerical simulations of spirals in a model for excitable medium [76].

The problem of measurements for meandering spirals is related to the fact that pitch and

period now vary with position. As a first attempt, we have measured the minimum and

maximum oscillation period (Tmjn and Tmax) at a single point a few turns from the center of

the meandering spiral (so that curvature corrections to the velocity are negligible, see Sect. 4. I ).
We then include the inverse of these periods in a

plot of Tz~
vs. [H2504], as shown in Figure 21.

The line is a Iinear fit to the simple spirals only corresponding to equation (4). From this

we find that the maxim~m freq~ency Tjj~[ (represented by squares) continues to follow the

selected spiral period given by equation (10), with the minimum frequency T£]~ (asterisks)
below. Further quantitative measurements are needed, in particular to characterize the width

of this frequency band as x is varied. However, we do not yet understand why a spiral meanders

at a given set of concentrations, which is to say we do not understand the role of [MA].
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Fig. 20. Upper part of phase diagram 4d. o: small core simple spiral; O: large core simple spiral;
P: prograde meandering spiral; R: retrograde meandering spiral. Other experimental points have not

been analyzed.

300

[NaBr03)
"

0.2 M

[MA] =1.0 M

zoo

w
E'

loo

0 08 1

[H2S04] (M)

Fig. 21. The inverse of the spiral period T)~ la) for simple spirals, and the inverse of minimum

and maximum periods Tjj( (lH) and Tz]~ (*) for meandering spirals (see the text),
us.

[H2S04j, at

[NaBr03)
"

0.2 M, [MAj
=

1.0 M.

4. Discussion

4. I. EXPERIMENTAL COMPARISONS: THE VELOCITY RELATION. To our
knowledge, there

exist no systematic quantitative studies of spiral waves in an open BZ reactor as a function

of the chemical concentrations; the study of meandering by Skinner and Swinney is an excep-

tion [18]. However, the dependence of the velocity of a single front on these concentrations

has been well measured in a number of studies [47,48, 77-80], allowing for comparison with
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our results. From our measurements, we can deduce the velocity of the spiral wavefront using

cs a p~ /T~ [50]. In general, the velocity of a curved wavefront is written as c = cp D~, where

cp is the velocity of a single plane wave, tc is the curvature of the wavefront, and D is the

diffusion constant [54, 81, 82]. Since D ci
10~5 cm~ Is, and typically

~ m 20 cm~~ for distances

beyond one turn from the center, the measured velocity for a spiral (ci 40 pm s~~) is very

close to cp. Hence we can neglect curvature effects and compare our spiral measurements with

the literature values for single plane waves. We should however keep in mind that wavefronts

within a spiral are actually interacting, which is represented by the dispersion relation [50].
From equations (10, II ), the spiral wave velocity varies like the square root of the distance

to the critical line:

c~ =
co/L~/~, (23)

where co %
Po/To

"
22.2 pm Is. A plot of c] vs. /J does indeed show a linear relationship as

illustrated in Figure 22 for [MA]
=

0.4 M; the solid fine is equation (23). Note that the points
taken at [NaBr03]

#
0.6 M fall systematically below this line, another sign of the possible high

bromate transition discussed above. For the other concentrations there is excellent agreement
for /J < 4, and small deviations for larger /J.

The experimentally determined scaling relation in equation (23) is similar to the square root

law first postulated by Luther in 1906 for the speed of a diffusion limited wave [83], which can be

derived from dimensional arguments in the following way. For a reaction Substrate +A+B ~ C

with a reaction constant k, one expects the characteristic time scale TR to be set by the rate

of the reaction: Tj~~ =
k[A][B]. Any length in the problem can only come from the diffusion

constant of the medium D: the distance diffused in a reaction time is given by @%. Thus

the speed should be c mu

@%/TR
~

Dk[A][B].
Such a square root dependence has been found in a number of experiments on single fronts

in the BZ reaction, where the wave speed c is usually fit to the function:

c =
Ax~/~ co, (24)

with x a [H2504] x [NaBr03], co ranging from 30 to 70 /Jm s~~, and A from 300 to
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500 /Jm s~~ M~~ [77, 79, 80, 85]. Analysis of chemical models of front propagation in the

BZ reaction [47, 48, 79, 85] as well as more general models [86] justify this functional form, but

without the constant co. It is merely used as an additional fit parameter, and as far as we

know is unjustified, with the exception of a suggestion by Showalter that it is related to the

concentration of Br~ [48]. Note that the product x varies over a small range in most of these

studies (the largest being from 0.07 to 0,14 M~ [77] ), and that in addition to equation (23),
a

linear relation c mu x is often also a good fit of the data.

In our experiments, the velocity c~ is consistent with a square root dependence on x xc,

with x varying from 0.02 to 0.36 M~. The value of x on the "critical line", xc, plays the role of

the constant co in equation (24), defining the concentrations for which c =
0. Thus the speed

of waves within the spiral have the same scaling as the single wavefront speed, indicating an

internal self-similarity of spirals over a wide concentration range; this was also suggested by a

recent measurement of the dispersion relation c(T) in a BZ open reactor [50].

4.2. MODELS FOR SPIRAL BEHAVIOR. There are several different theoretical approaches

to the dynamics of spirals in reaction-diffusion systems, and in particular to the problem of

spiral selection. To compare with our experimental measurements, we focus on the models

which may be suited to spirals in the BZ reaction. In the first two sections we consider two

different approaches: chemical modeling and singular perturbation methods. In both cases we

evaluate the predictions in light of our experimental results, though it is not our intention to

give a
comprehensive review. In the third section, we discuss possible reasons for the differences

between these models and our observations.

Note that we do not describe two other approaches which have proven successful in different

areas of spiral dynamics, but which cannot be quantitatively compared to our results. The

first one is a kinematic theory developed by the Russian school [54,87, 88]. The other one is

the normal form approach of Barkley [71, 72], which successfully provided a framework for the

understanding of the meandering instability; it included a
spiral phase diagram qualitatively

similar to those in Figures 4c-d. In particular, the large-core spirals are next to the existence

boundary, and close to the prograde meandering spirals (as in Fig. 20), which is also the

organization observed in the 0regonator model [51].

4.2.i. Chemical: The FKN Model and the Oregonator. A coherent, simplified model of the

chemical mechanisms underlying the BZ reaction was proposed by Field, K6r6s, and Noyes in

1972, and is known as the FKN model [89-91]. Kinetic equations can then be derived from

this model, and a simplified version is given by three coupled differential equations known

as the 0regonator [47, 92]. It was derived for well-stirred batch reactions where there are no

concentration gradients; in these cases it is in excellent quantitative agreement with experiment

[90]. It has also been applied to spatially extended systems by the inclusion of diffusion terms;
this is generally believed to be sufficient, though no theoretical reflection seems to have been

made on this point. Nevertheless, this chemical reaction-diffusion model indicates the possible
relevant concentrations to spiral dynamics. In this section we compare our experimental results

with numerical simulations of spirals using the 0regonator. This indicates some fiJndamental

disagreements between the measurements and these chemically-based models.

Originally the FKN model was derived for the oxidation of malonic acid catalyzed by cerium.

It
can

also be adapted to other variants of the reaction, but the rate constants of the elemen-

tary reactions have to be reconsidered. The approximations which lead to the 0regonator

may then need to be modified, resulting in different models [79, 93-95]; unfortunately, these

distinctions are often not specified in the literature. The 0regonator also explicitly assumes

that
a

number of species concentrations, including malonic acid, are constant. Although this
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allows in principle for the steady state regimes that are obtained in an open reactor, some care

should be taken with any quantitative comparison between the 0regonator and experimental
results from

an open system. There is notably no flow rate or other mechanism in the 0regona-
tor which maintains the nonequilibrium conditions, whereas such things are obviously present
experimentally. This difference may in fact be crucial [96]. However, in what follows

we con-

sider only our experimental conditions, namely the oxidation of malonic acid in the presence
of ferroin. A rigorous justification of the spiral simulations with which we compare our results

would require a careful re-examination of the models, which we will not attempt here.

Amidst the many elementary reactions that take place in the BZ reaction, the FKN model

distinguishes three processes: bromide consumption (A), the autocatalytic stage (B), and re-

generation (C). Each process is controlled by the concentration level of a particular species,
with a particular role in the oscillation cycle. Process A involves the transformation of the

bromide ion (Br~) into different oxidized forms. Since this ion is an inhibitor for the autocat-

alytic process B, the role of process A is essentially Br~ removal. When [Br~] reaches a lower

critical value, process B starts, leading to a rapid increase in the amount of HBr02, which is

called the activator. An additional result of this reaction is the oxidization of the catalyst,
which transforms (~) Fe~+ into Fe~+ Process C transforms the catalyst back into its reduced

state (Fe~+), at the expense of oxidizing the malonic acid. But this latter reaction produces
Br~ ions, which block process B and restart process A; the cycle is complete. In the overall

reaction, the malonic acid is degraded, which is related to the decrease of the free energy as

required by thermodynamics.
The heart of this mechanism is the autocatalytic process B, which controls the leading front

of a single wave moving into a fiJlly recovered medium [47, 48]. Its overall stoichiometry is:

Br0j + HBr02 + 2Fe~+ + 3H+ ~ 2HBr02 + 2Fe~+ + H20. (25)

An analysis of the intermediate steps show that its effective time constant is given by [91]:

Tj~
=

kiH+jjBr0[j, j26)

where k varies between 10~ M~~s~~ [86] and 10~ M~~s~~ [47, 48]. This effective rate sets the

time scale for the wave, and one expects the speed of a front to be given by c mu

@~
(Luther's law, see Sect. 4.I), which is nearly equation (24). This indicates the fundamental

role played by the product [H+][Br0j], which is essentially our x (Eq. (3)).
Based

on the FKN model, a set of coupled differential equations can be written for the three

intermediate products that characterize each process [47, 94]. These equations are known as

the 0regonator:

~

X

~

T
~

~~ VIZ q),

dy

(27)

~~
dT

~~ ~Y + fZ,

dz

(28)

[ ~ X Z, (29)

where ~ ~4

[HBr02), il r~

[Br~], and z mu
[Fe~+]. The concentration variables, the time

T and the parameters El, E2, and q are all normal12ed by average chemical concentrations

and rate constants [24]. The f which appears in equation (28) is not directly related to the

(~)For simplicity, we represent the state of the entire catalyst (ferroin
or ferriin) by that of the

metal ion.



1454 JOURNAL DE PHYSIQUE II N°10

Table IV. Tyson's "Lo" constant rates for the Oregonator (jkom /9$j).

kj k2 k3 k4 k5

M~l s~~ 10~ M~~ s~l 2 M~~ s~~ 2 x
10~ M~~ s~l 10 M~~ s~l

concentrations, and represents a partial knowledge of the actual chemistry involved in process

C. It is thus taken as a free parameter, which from chemical arguments is between 0 and 4 [51].
The three dimensionless parameters are given by [26, 94]

El =

~~ [°rganics)

k5 [H+j j~~~-j ,

3

(30j

E2 =

~~~~4 [organics)

~~~~ ~~~j~ Br0~ '

j~~)

2k~k
q = ~ ~

4,
~ ~

(32)

where [organics]
=

[BrMA] + [MA], and the k~ are the various rate constants defined in [94].
Following [51], we consider the version with Tyson's "Lo" parameters, see Table IV.

These parameters are typically: El ~
4 x 10~~, E2 ~

2 x 10~~, and q rw
8 x

10-~ [94]. Since

E2 « El, time scales are well separated and the y variable can be considered at its equilibrium
value y =

fz/(q + x). Thus equations (27-29 become the two-variable 0regonator:

El

~~
= ~

~~ fz ~ ~, (33)
dT ~ + q

~~
= ~ z, (34)

dT

with the parameters El and q still as defined in equation (30) and (32). Since q depends only

on the nature of the chemical reaction, it is fixed. But El and f can vary, and are usually
considered as two independent parameters [26, 51], with El « I and f

rw
I. They are both

determined by the chemical concentrations of the reagents, though the exact dependence is

not known.

The qualitatively important features of the two variable 0regonator are best seen in its

nullclines, represented in Figure 23. The nullcline d~/dT
=

0 has an h-shape, whereas that for

dZ/dT
"

0 iS linear. We Only CoUslder the Case Where they have a Single lUtersectloU, Whlch

is the fixed point. The relative position of the nullclines, which depends on the parameter f,
determines whether the point is unstable (the medium is oscillatory) or stable (the medium is

excitable). The relative speed of evolution on the branches of the cycle is set by Eli it is the

ratio of the typical time scales of the "slow" reaction to the "fast" one. Many studies have

been devoted to this model (see [22] ).
In order to allow for the study of spatial patterns in extended systems, the diffusive terms

Dxi7~~ and Dzi7~z
are added to equations (33) and (34). With this modification, the Dreg-

onator has been successful in qualitatively reproducing the same spiral behavior observed in

experiments. The most complete survey to date of simple and meandering spirals in this model

was carried out by Jahnke and Winfree [51]. For fixed values of q =
0.002, Dz

=
1.0, Dz

=
0.6

(based on the molecular weights of HBr02 and ferroin), they surveyed spiral dynamics, includ-

ing p~ and T~, in the two dimensional parameter space (El, f). Since their simulation did not

include enough spiral turns to measure ps directly, it was obtained by combining the measured
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Fig. 23. The shape of the nulldines for the two variable Oregonator (Eqs. (33-34)). The solid

straight line correspond to the excitable case if
ci 4); the dashed one to the oscillatory case if ci i).

The dotted line visualizes the relaxation oscillations. The arrows represent the relative speed. This is

also the shape of the nullclines for equations (37-38).

Ts with the dispersion relation from a I-D circular simulation. Also, the measurements for

both simple and meandering spirals were treated together.
From a general qualitative point of view, there are common features between their phase

diagram and quantitative relations and ours. Indeed, they observe a boundary for the existence

of spirals, where both pitch and period (lo and To in their notation) diverge as power laws.

They also observe well defined regions of different dynamical behavior, notably, simple and

meandering spirals. In addition, the relevant parameter, though not explicitly written, is said

to be the distance from the divergence boundary.
This boundary constitutes a well defined feature for matching to our results. In the parameter

region studied by Jahnke and Winfree, it occurs at high values of f, corresponding to an

excitable fixed point in a chemically reduced state. Our critical line is close precisely to the

homogeneous reduced state (see Figs. 4a-c). Moreover, our preliminary measurements of the

spiral core (see Fig. 20) show that close to the retracting wavefront instability, the spirals

are of the large-core type, which seems to be what Jahnke and Winfree observe based on our

estimates from [51]. A finer comparison between theories and experiments would require the

knowledge of the ratio of the core radius to the spiral pitch in the 0regonator, but this has

apparently not been measured.

A closer look at their results, however, reveals a number of qualitative inconsistencies that

rule out a fiJll agreement. First, the phase diagram of such a model (Fig. 9 of [51]) is essentially
two-dimensional, whereas ours has a conspicuous three-dimensional structure; at the best, the

Oregonator's phase diagram is a projection of ours. In their phase diagram, most conditions

lead to meandering spirals, whereas experimentally we see the opposite. This suggests that El

and f are not likely to give the right scaling. In addition, they have not tried to scale their

results with the distance to the boundary (a function of El and f), instead focusing on the

limit as El goes to zero; this limit corresponds to that of a sharp wavefront.

Finally we note that the scalings with El reported by Jahnke and Winfree,

Ts
mu

E)/~, (35)

ps mu
E)/~, (36)

also lead to the constitutive relation, equation (6). However, the spiral diffusion number
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M~
=

p] /DT~ (Q in their notation), which they also measured directly, varies from 72 to 900.

We discuss this further in Section 4.3.

The spatially extended Oregonator thus shows both similarities and disagreements with our

experimental results, and also with previous theories; Jahnke and Winfree write in their con-

clusion: "we have not been able to interpret our results quantitatively in terms of theory" [5 Ii.
Nevertheless, the 0regonator is well known to give satisfactory quantitative agreement with

well-mixed experiments (no spatial dimensions). This may mean that simply adding diffusion

terms to the original 0regonator misses some aspects of spatially extended patterns. Inter-

pretation of our experiment may also require a more detailed analysis of the experimental
conditions: though our spiral patterns are embedded in the thin porous glass, there are also

strong perpendicular concentration gradients since the chemicals are not fed symmetrically
into the two chambers of the cell. We discuss this in Section 4.2.3

4.2.2. Asymptotics: Singular Perturbations Methods. Although spirals are experimentally

easy to produce in the BZ reaction, mathematically they pose a difficult problem. Two main

questions have attracted attention: given a set of reaction-diffusion equations, is it possible

to prove that a simply rotating spiral solution exists? If it does exists, what is the selection

mechanism? Much theoretical work has been devoted to these questions [82, 97].
A particularly fruitful approach comes from what is known as the singular perturbation

limit. This approach reformulates the spiral selection problem for two coupled equations into

a free-boundary problem, in the limit of a small parameter which is the ratio of reaction time

scales E.

Although once again it is difficult to connect experimental results to these analyses, com-

parison can still be made with some of their consequences. We begin by briefly describing
the basis of the approach. Consider a generic representation of two coupled reaction-diffusion

equations:

where ~ and v are
the

time
and

space dependent
chemical

ncentrations, Tu and Tv

haracteristic
reaction

imes for the ~ and v
riables, espectively, and

the functions f(~, v)

and g(~, v)
describe

the reactions. Usually
f(~, v) and g(u, v) have

illustrated in igure 23: note that the 0regonator model given by quations (33-34) is a

particular case of these
equations.

For the ffusion constants
we use the otation 6 a Dv

Du,

and D a Du. The
small

arameter is defined as the
ratio

of the
The equations are

II
=

fi~ U) + Ei7~~ 139)

(
=

91~, U) + ~E~7~U, 14°)

where now t and i7 are non
dimensional coordinates. These equations are the starting point for

most theoretical studies, and for Fife's conjecture on the selected spiral solution. The singular
perturbation theory considers the case where E goes to zero; this implies a vanishingly small

reaction zone, which follows the dynamics of the slow variable.
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Geometrical. Starting from the general two equation system 39-40, where one variable reacts

much faster than the other, Keener and Tyson have formulated a geometric model for spirals
in reaction-diffusion systems [82, 98j. They provide a selection mechanism by requiring that

the spiral solution should satisfy both the dispersion relation and another "critical" relation,
arising from the constraint imposed by curvature on the velocity.

They assume that both variables are diffusing with the same diffusion coefficient, thus 6
=

1.

Since most of their results do not give an explicit analytic form, and since numerical integration
is necessary to obtain final results, they use the two variable Oregonator model (Eqs. (33-34)
to compare with the experimental results of Winfree [99] and Mfiller et al. [100j.

The dispersion relation is first calculated in a one-dimensional model. Because of the struc-

ture of the nullclines, at the lowest order in E, the fast variable ~ jumps between two possible
values, whereas u has a slower dynamics. A traveling wave, or pulse, is made of three broad

parts separated by narrow regions where the
~ gradients are large. In the broad regions, ~

is close either to its quiescent or to its excited value. The dispersion relation links the pulse
velocity to its duration (or period), which is approximated by the time spent in the slow dy-
namics part. The velocity is obtained by constraining the leading wavefront to remain at a

fixed distance from the wave back. It is expressed in terms of integrals of implicit functions,
and has to be calculated for specific models. The detailed case of the 0regonator is treated

in [101j.
The critical relation relates the normal velocity cN to the local curvature tc, through diffusion.

It is written as:

cN ~
c(uo) E~, (41)

where c(uo) is a velocity that only depends on the value of the
u

variable along the spiral,

uo. Otherwise this equation is similar to the "eikonal" equation, whereby the velocity of
a

curved front is equal to that of a plane front plus a term proportional to the curvature. If the

simple assumption of negligible curvature is made, then equation (41) becomes cN "constant.

The solution is then the involute of a circle, which is known to agree well with experimentally
observed spirals far enough from their center [IS, 39,49,102]. To account for curvature effects

close to the center, a differential equation relating the variations of the local wavenumber with

the polar angle to the normal velocity and the local curvature has to be written. A similar,
though somewhat simpler, approach was used in 1951 to describe the spiral around a screw

dislocation in crystal growth [103j.
To solve the resulting equation, boundary conditions must be given. What happens at the

center near the spiral tip is a difficult problem, whereas the solution around a hole is simpler.
Keener and Tyson employ a convenient way to approximate the full problem. They assume a

fictitious inner boundary at a radius ro from the center, which plays the role of a hole boundary
for the outer part, and solve the tip problem inside this disk. They find a critical relation that

is written in physical units (see Eq. 5.8 of [98j):

@ a~ms~'~~* Ms~' ~~~~

where M~
=

p) /DT~, with p~ the pitch and T~ the period of the selected spiral, D the diffusion

coefficient, and the two numerically determined constants m~ ci 0.330958 and a~ m 0.097.

For the case when ro is very small, this equation becomes to lowest order

Ms
=

27r/m~ a M~ ci 18.99. Keener and Tyson wrote that this result "is intriguing be-

cause it is independent of the chemical composition of the excitable reagent" [98j. This agrees

well with our observation that M~ is approximately constant for all simple spirals, although
the value we find is larger: Ms c~ 52. In their 1988 paper, Tyson and Keener warn that, if
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the radius is large enough, equation (42) might not be valid any more [82]. Implications are

discussed in Section 4.3, along with the interpretation of the observed variations in ~Is in terms

of a finite-sized core radius ro.

Fife Scaling. These singular perturbation methods received a strong impetus when Fife

showed that there might be a unique scaling solution to the system (Eqs. (39-40) if the space

and time variables (~, t)
are further rescaled as

x'= ), t'=
j.

143)

Then E scales out from the resulting equation; this is known as the Fife scaling [97,104,105].
It has now been checked in a number of particular cases of various b [52,106-l12], that from

here a simply rotating spiral solution may be obtained, whose overall scale is set by E.

Note that the Fife scaling predicts the same constitutive relation as we have found experi-
mentally (Eq. (6)). Thus the spiral diffusion number Ms is a constant:

In other words, the
e

dependence cancels for the particular scaling choice given by equation (43),

a property of the Fife scaling which to our knowledge has not been previously noted. We will

discuss this further in Section 4.3.

However, most theoretical studies are concerned with the scaling of the solution in the Fife

scaling limit If ~ 0). This corresponds to spirals with small pitch (short wavelength), fast

rotation period (high frequency), and slow wavefront speed [82]. In particular, it implies that

the dependence of the spiral rotation period Ts is given by

Ts
+~

TVE~/~ (45)

Our results give a different picture: the spiral parameters depend on the distance in parameter

space to the retracting wavefront instability, given by /J =

lx xc) / xc. The limit /J ~ 0, where

we observe scaling, is the limit of large pitch, slow rotation period (low frequency)
;

and slow

speed. We conclude that, as far as the BZ reaction is concerned, the Fife scaling limit seems

to be the inappropriate. In fact, experimentally the fast spiral limit is in a sense interrupted
by the convective instability to defect-mediated turbulence. Thus the parameter dependence
of the spiral dynamics are organized in a very different way than the Fife scaling approach. It

may be that such solutions do occur in some system, or in the BZ reaction in another limit,

but at least in our experiments we see no crossover to a new scaling before the convective

instability. We are led to conclude, unfortunately, that the mathematically convenient limit is

not the physically meaningful one.

Though most of these studies focus on the scaling ~vith E, while the other quantities in

the model remain fixed, there is another relevant parameter: the so-called dimensionless
ex-

citability A [52, l12]. This quantity characterizes the phase space structure of the system;

it is proportional to the range of variation of the slow variable u within one pulse. At low

excitability it is also proportional to the velocity of the planar wave front. Karma [52] has

shown that there exists a single control parameter B
=

(gla~)E/A~ for spiral solutions, where

g and a are model dependent constants of order unity. If one assumes that the wavefronts

do not interact within a spiral, a number of analytical results can be derived for the single
diffusive case 16 =

0) [52, l12]. In particular, spirals should exist at low B, with a transition

to retracting fingers occurring for B > Bc, where the rotation period diverges.
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This description bears some resemblance to our results. Since the fronts we observe are

well defined, it is likely that a proper description of our experimental spirals requires E « I.

Using Karma's approach, our results could then be qualitatively interpreted as corresponding
to spirals in the model with a constant E

and
a varying A. However, there remain a number of

quantitative differences between his predictions and our observations; in particular his approach
does not produce the observed scaling laws for T and p.

4.2.3. Possible Origins of Disagreement with 2-D Models. We have seen in the previous

sections that theories and models provide to some extent a qualitative account of the spirals

we have observed, but that quantitative comparison fails. We suggest two sources of this

failure: inadequacies internal to the theories themselves, and differences between the models

and the actual experimental system.

Theoretical Dijfic~lties. We first discuss the general two variable systems describing generic
excitable media. As we have seen, whether the slow field is diffusing or not, the Fife scaling

leads to a unique spiral solution, and provides a positive answer to the problem of selection.

However a number of difficulties remain with this solution [107,109, III]. When compared to

direct numerical simulations of the model, it appears that some variables, like the frequency,
behave essentially as expected, whereas others, like the core size, show a significant departure
from predictions.

The stability of the Fife solution is also an unsolved problem, since it is known that the core is

unstable to a single real mode Ill Ii. It has been suggested that this instability could be related

to the meandering instability that has been observed in simulations at small E [57, 69, 73]. But

the meandering instability arises through a Hopf bifurcation [70], I. e. ~&"ith a
complex conjugate

pair of unstable modes. These two results are in contradiction.

Finally, as experimentalists we also wonder whether one of the most basic assumptions of

the Fife solution is relevant: that successive wavefronts do not interact.

Modeling the Experimental System. Our results also lead us to speculate on the source of

differences with the microscopic chemical models. As briefly mentioned earlier, the FKN model

and the 0regonator have not been derived for open reactors: terms describing the input and

output flows are missing in the equations, which could play
a

role in the stability properties of

the system. In addition, it might well be that our concentrations have exceeded the ranges for

which these models have been developed.

However, a more important difference may lie in the description of the reactor itself. Model-

ing ofreal open reactors used in reaction-diffusion experiments (specifically for Turing patterns)
is only recent [96,l13]; experimental observations had first been qualitatively explained in terms

of the ideal two-dimensional theories. But the growing accuracy of the experiments has lead to

the conclusion that quantitative agreement can only be obtained with a more accurate mod-

eling of the apparatus. This means taking into account the geometry of the experimental cell,

with the finite thickness and the chemical gradients of the reaction medium.

This approach might also be appropriate for our spirals. The observed pattern is actually an

integration over the porous glass thickness; the transverse information on the wave structure

is lost. Nonetheless there are strong concentration gradients in that direction. It may be that

there are different concentration layers within the disk thickness, which if separated would

be in different dynamical regimes; in the experiment, they are diffusively coupled. A similar

situation gives rise to the crescent-shaped waves in the chemical pinwheel experiments [34,l14],
and other experimental effects of transverse gradients have also been observed [lls,l16j. The

resulting global behavior, and its bifurcation structure, would then require more advanced

models than the standard two-dimensional models. Taking into account the third dimension
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opens the way for a large number of possible new phenomena -transverse size of the reacting

zone, wave structure and dynamics, with possible instabilities through a "third dimensional"

escape [II?]- that need further experimental and theoretical studies.

4.3. QUANTITATIVE ANALYSIS OF THE SPIRAL DIFFUSION NUMBER Ms. Given that quan-

titative studies of spirals are rare, and that most experiments have been conducted with dif-

ferent chemical concentrations, it is no surprise that mainly qualitative comparisons have been

made. In order to compare spirals with different characteristics, one needs dimensionless sim-

ilarity variables which describe the spiral in terms of the relevant physical properties of the

medium. Of course, the difficulty lies in finding what is relevant. Given that pitch and period

are the two most characteristic quantities of the spiral, and that diffusive processes play a

major role in the spatial aspects of the system, the variable Ms m
p] /DTS,

our spiral dijfwion
n~mber (Eq. (8)), is a reasonable first choice. This was real12ed by Winfree, who has tabulated

values of Ms (which he calls Q) for both experimental work and simulations [26, 51, 57]. The

quantity was in fact first introduced in models of spiral formation in crystal growth [103]. It

might also be used to compare spirals in any system where diffusion plays a role, for instance

in liquid crystals [l18, l19],
or the phase patterns in Rayleigh-BAnard convection [97,120j.

Previous experimental measurements, performed only in closed systems, have found Ms
ranging from 20 to 180 [19. 55, 57]. This may in fact be related to the aging of the system: in

one experiment it was shown that Ms increases with time as the solution ages and the spiral
slows down [55]. Simulations of the 0regonator also show that Ms can have values ranging
from 70 to 900 [51]. The inconclusiveness of previous measurements of Ms may be the reason

why more studies have not been undertaken.

As remarked previously, the constitutive relation ps mu

Tf/~ (Eq. (6)) translates into a con-

stant value of Ms. The corrections to the scaling (see Sect. 3.3.2) imply variations in Ms, which

can be plotted as a contour map in the phase diagrams of Figure 4. An example is shown in

Figure 24 for the ([H2504), [MAj) plane (at fixed [NaBr03)
#

0. IS M). The dashed line corre-

sponds to the minima of Ms described by equation (20). There is also a change in the core size,
and possibly also a change in the medium from oscillatory to excitable (Sect. 3.3.2). but further

experimental study is needed to clearly connect these diverse observations. It also remains for

a theoretical analysis of the spatially extended BZ reaction to provide the explanation for these

topographical features of parameter space.
A possible interpretation for the variations in Ms is found in the critical relation from the

Keener-Tyson model (Eq. (42)). We first rewrite it for the normalized core radius R m ro/psi

R(M~)
=

~° fi,
(46)

Ms Ms

where M~
=

27r/m~ ci 18.99 is the predicted minimum Ms corresponding to ro #
0, and

Ro % (27r/(a~M~))1/~
m 1.847. If the radius is large enough, equation (46) is not valid and

should be replaced by another relation [82]. In the limit of diffusionless medium, this new

relation (see Eq. (25) of [82] can be transformed to give Ms as a fiJnction of the normal12ed

core radius:

~~~~
~~~~

~~~
~ 2$~~ ~~~~

'
~~~~

which must then be inverted to get R(Ms). The two resulting functions R(Ms) given by
equations (46) and (47) are plotted in Figure 25. In both cases, there is a minimum value for

Ms of about 20.

Equation (46) (curve (a) in Fig. 25) gives a maximum value for the core radius of about 3%

of the selected pitch ps at Ms m 25, which then decreases down to about I% for larger Ms; this
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Fig. 25. Reduced core radius R vs. spiral diffusion number Ms. Note the logarithmic scale in y;
(a), plot of equation (46); (b), plot calculated from equation (47).
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gives an overall variation in ro of a factor 3. On the other hand, the curve
R(Ms),

as obtained

from equation (47) implies large variations in R. For a given M~, two values are possible:
either R is of the order of10%

or a few percent. Without any reason to choose one of these

curves over the other, curve (b) seems in better agreement with the observations of the core

size change and the V-shaped variation of M~.

In Figure 24, we see that Ms does not have a monotonic variation, but that its minimum

roughly follows the edge of the meandering tongue. This is compatible with equation (47) if one

allows for a shift in Ms. Suppose that the "knee" is at Ms m 50; then the observed variation of

Ms could correspond to a monotonic variation in R. The large core radii would occur on the

upper branch, and the small ones on the lower one. In addition, since the observed constitutive

relation does not show large variations in Ms, whereas the core radius varies over at least one

order of magnitude, such a dependence is consistent ~&.ith the vertical tangent in R(Ms) at the

minimum value of Ms.

As noted above, the Fife scaling implies a constant value of his, but it does not specify what

this value is. A value was obtained by Karma in a study of the FitzHugh-Nagumo equations,

a commonly used model of excitable medium, for the specific case b
=

0 in equations (39-
40) [107]. It is identical to the one found by Keener and Tyson [98] Ms

=
18.99. This should

be compared to our measured value Ms ci 52. A comparison should also be possible with the

numerical results of Winfree for the FitzHugh-Nagumo model [57]. He finds variations in fits
between 21 and 144, without any clear minimum, although the size of the core changes in a

way qualitatively similar to what we observe. Though some caution should be taken since his

values also incorporate meandering spirals, there are many possible reasons for the difference

between these values. The bottom line is probably that the plJenfiienon is not understood.

4.4. COMPARISON WITH CLOSED REACTORS. As we have noted throughout this article,

most previous experiments on the BZ reaction have been conducted in closed reactors, making
it difficult to directly compare our data with previously published ones. These experiments
often seem to give meandering spirals, whereas large portions of our explored phase diagram
contain simple spirals. This might be due to the consumption of malonic acid. We have indeed

observed that at low malonic acid, all spirals are meandering (see Figs. 4a and 4d). This agrees
qualitatively with the observed evolution: in a closed reactor, an aging spiral always evolves

from simple to larger and larger meandering [55,12 Ii. Further investigation of the role of [MA]
in open reactors should lead to a better understanding of spirals in closed reactors.

4.5. SPE[ULATIONS
oN SPIRALS IN REACTION-DIFFUSION SYSTEMS. Given that the agree-

ment between our data and any one of the current proposed models for spirals in reaction-

diffusion systems is at best partial, one might well wonder what sort of a model wo~ld agree
with'our data. In fact the scaling relations we have observed amounts to a connection between

the microscopic level (chemical concentrations, represented by x or /J) and the macroscopic
level (spiral observables, ps and Ts). By following a line of reasoning based on our scaling
relations, we are led towards the general form of the reaction-diffusion model which would

describe our data, though not to the model itself. The speculations presented here clarify the

implications of our observations, and in particular highlight the analogy to second order phase
transitions.

We begin with the general reaction-diffusion equations given in equations (37-38). For

simplicity we will demonstrate our arguments using only one equation:



N°10 SURVEY OF SPIRALS IN BELOUSOV-ZHABOTINSKY REACTION 1463

where
T is a typical chemical timescale, and D the diffusion constant as before. As

we are

interested in the selected spiral solution to this equation, we non-dimensionalize the variables

by the time and space scales ps and Ts, respectively. This leads to:

,~ ~~~
~~~'~~ ~

~
~~~ ~~~~

,~"
=

)
IN, U) + (V~~. lsi)

s

The spiral diffusion number &Is appears explicitly as the multiplier of the diffusion term, in

much the same way as the Reynolds number in the Navier-Stokes equations for fluid flow

(see e.g. [122]). Thus the constitutive relation ps -J

Tj/~ which implies
a constant M~, also

implies that the diffusive term is the same relative size for all concentrations. In other words,
Ms

=
const implies a self-similarity which here appears as the independence of equation (51)

of any chemical concentration.

Note that the non-dimensionalization leading to equation (51) can be written explicitly in

terms of /J using equations (10-11):

x'
=

~
rw

/J"~x, t'
= rw

/Jt. (52)
ps T~

A comparison of this with equation (43) shows clearly that the Fife scaling is in the opposite
limit as the natural one implied by the observations, which leads to the parameter /J.

It is interesting to consider this argument further, given our measured scaling Ts
mu

/J-~
Since fils is independent of /J (to first order),

as is the left hand side of equation (51), the

prefactor of flu, u) must be as well. Thus
T mu

/J-~ Our original equation in lab frame

coordinates becomes:
~~

= /J f Iv, u) + Di7~v. (53)
fit

We recover a simple Landau equation, which clarifies the link to second-order phase transitions.

The consideration of the second variable
u

of course adds
a

complication to this derivation,
since one would then have to choose which time scale is related to Ts. In addition, the argument
which results in equation (53) does not treat the wave propagation boundary as distinct from

the spiral boundary (see [56. 57]). However this is only the beginnings of a model which might
describe our experimental results, and should only be taken as giving the flavor of a future

critical scaling theory for spiral patterns.

5. Conclusion

As a result of our study, is it now possible to prepare a spiral with an arbitrary set of charac-

teristics? In other words, can we specify beforehand what chemical concentrations should be

mixed in order to obtain a spiral with a given pitch and period? Well, our answer is a partial
"yes".

As far as spatial open reactors are concerned, an unexpected simple picture of spirals in the

Belousov-Zhabotinsky reaction has emerged. The selected spiral is a sort of critical pattern,
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which can to first approximation be described by two scaling relations: one linking the period
with the chemical species, and the other linking the pitch with the period. In this sense, the

pitch and period cannot be independently chosen. The spiral existence domain is delimited on

one side by a critical line, which also defines the onset of the retracting wavefront instability,
and at the other end by a lower bound on the rotation period, below which the spiral becomes

unstable to defect mediated turbulence. This means that we have experimentally found the

relevant parameters. Our measurement of the corrections to these scaling relations open the

way both for a finer link with models for the chemical reactions and for a possible physical
interpretation in terms of the core size.

Although meandering spirals must somehow fit into this picture, subtler considerations ap-

parently need to be taken into account to predict where in the chemical phase diagram the

meandering instability takes place. This remains an open question.
We have seen that a large part of our framework comes from observation only. Neither

chemical models nor geometrical theories provide a full quantitative understanding of our

measurements. Current analytical approaches, which seem satisfactory when restricted to a

qualitative comparison with experiments, fail to give a full coherent description. The discrep-

ancy might be rather deep since our data show that most analytical work actually considers the

opposite limit to the one where we observe our scaling laws! In other words, our observations

have lead us to define a parameter /J which ranges from 0 to 16. Our attempts to connect this

p to the "small parameter" of various models indicate that the two are not compatible.
Partial failure of the chemical modeling is probably due to the lack of quantitative data on

spirals. Although our experiments supply material to confront further studies, we are still far

from an exhaustive knowledge. First, we have only explored a part of parameter space, since

we only varied three concentrations. Of the parameters which remain, the influence of the

catalyst concentration, the flow rate, and the diffusion constant of the medium (which would

include the temperature), should definitely be studied. But even within the survey presented
here, several open questions remain. It is certainly necessary to explore the phase diagram
at low malonic acid concentration; this could clarify the relation between open and closed

systems. Also, we have not systematically tracked the transition from an oscillatory to an

excitable medium, since no difference is seen in the spiral; this might give informative insight
to the underlying chemistry.

Nonetheless, our data indicate that general principles of spiral dynamics should be sought.
We have found that the spiral is a kind of critical, self-similar structure within the chemical

parameter space, so it is likely that it obeys some simple extremization rule, such as the

maximization of malonic acid consumption. In the end, a realistic model of the experimental

setup may be needed to clarify the arrangement of chemical concentrations within the reactor.

Given the efficiency of the normal form analysis, which successfully predicts a full phase
diagram from a localized study, it would be interesting to couple the known five ODES which

describe the motion of the tip [71] with a continuous two dimensional phase field describing
the rest of the spiral. This approach would only add one PDE, which would be simpler than

the original starting point of two coupled PDES.

Although these results seem to raise more new questions than answer old ones, our hope is

that they will stimulate further study, theoretical as well as experimental.
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