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in the Belousov-Zhabotinsky Reaction
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PACS.82.40.Ck — Pattern formation in vortices-diffusion systems
PACS.05.70.Ln ~ Nonequilibrium thermodynamics, irreversible processes

Abstract. — We present a systematic study of spiral waves in the Belousov-Zhabotinsky re-
action in a spatial open reactor, where the concentrations of sulfuric acid, sodium bromate, and
malonic acid are varied. Within this parameter space, three kinds of instabilities arise: two
of them, which we identify as the retracting wavefront and convective instabilities. lead to the
destruction of the spiral pattern, and mark the boundaries of the spiral existence domain in
parameter space. Inside this domain, there exists a region where simply rotating spirals undergo
the meandering instability. Quantitative measurements of the asymptotic characteristics of sim-
ple spirals provide scaling relations between the observables: the pitch varies as the square root
of the period. They both diverge with simple exponents at the retracting wavefront instability.
This organization, reminiscent of a second order phase transition, allows us to consider the spi-
ral a critical pattern. Comparison with several models and numerical simulations indicates the
validity or discrepancies of applying these theoretical approaches to our experimental results.

Résumé. — Nous présentons une étude systématique des ondes spirales dans la réaction de
Belousov-Zhabotinsky en réacteur ouvert, en fonctions des concentrations d’acide sulfurique, de
bromate de sodium et d’acide malonique. Dans cet espace de parametres, trois types d’insta-
bilités surviennent : deux d’entre elles, que nous appelons instabilité de rétraction de front et
instabilité convective, finissent par détruire les structures spirales, et marquent les limites de leur
domaine d’existence. Il existe, dans ce domaine, une région ou les spirales en rotation simple
bifurquent vers l'instabilité de sinuage. Des mesures quantitatives des caractéristiques asymp-
totiques des spirales simples fournissent des lois d’échelles entre les observables : le pas varie
comme le carré de la période ; tous deux divergent avec des exposants simples a P'instabilité de
rétraction. Cette organisation, rappelant celle des transitions de phases du second ordre, nous
autorise A considérer la spirale comme une structure critique. La comparaison de nos résultats
expérimentaux avec différents modeles et simulations numériques montre accords et désaccords
des approches théoriques.
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1. Introduction

In his book On Growth and Form, D’Arcy Thompson speculated that a quantitative description
of natural patterns and forms, or what he called “a dynamical morphology’, would originate
from a consideration of geometrical constraints and the physical laws of nature [1]. The real-
ization of this goal is far from complete, but much information on the dynamics of patterns
has been gained in recent years [2-4]. These efforts intersect the formal theoretical study of
nonequilibrium systems, due largely to the work of the Brussels school [5,6]. A major achieve-
ment in these areas was made by Turing in 1952 [7]. He mathematically showed that a spatial
pattern can spontaneously arise from homogeneous initial conditions in a reaction-diffusion
system, and proposed this as a possible explanation for morphogenesis. His work initiated
numerous investigations of reaction-diffusion systems.

Such reaction-diffusion systems are ubiquitous in nature: in addition to morphogenesis, they
may be responsible for many other forms, structures and patterns that arise in the living
world [8]. They consist of a spatially extended system, where local concentration changes are
due to either local reactions or to diffusion due to local gradients. This definition excludes
mixing and other bulk motion. A great amount of work has been devoted to the analysis of
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Fig. 1. — An experimental zoology of spiral shapes from the ((H2SO4], [NaBrQs], [MA]) parameter
space: (a) simple: (0.20 M, 0.40 M, 0.40 M); (b) small meandering: (0.50 M, 0.15 M, 0.80 M); (c) large
meandering: (1.0 M, 0.10 M, 0.04 M); (d) Eckhaus instability: (0.65 M, 0.40 M, 0.40 M). See Section
2.2 and Table I for experimental details.

the wide variety of patterns which develop in reaction-diffusion systems, but there is not yet
a general theory giving the common characteristics of the stable, hence observable, solutions.
These questions are fundamentally related to a problem pointed out by Feynman in his Lectures
on Physics: we have no general gualitative understanding of the solutions of partial differential
equations [9]. This represents one of the most profound shortcomings of modern physics and
mathematics.

A rotating spiral wave provides a simple case of a reaction-diffusion pattern that is experi-
mentally tractable and nevertheless retains enough of the richness of the general problem. In
the experiments we report here, we observe a variety of different spirals, several of which are
shown in Figure 1. Spiral waves are mainly, though not exclusively, observed in a class of
reaction-diffusion systems called excitable media [10]; if properly stimulated, such media can
sustain propagating fronts. Archetypal excitable media are nerves and cardiac muscles [11-13],
but these require delicate experimental handling. Under appropriate conditions, the Belousov-
Zhabotinsky reaction provides an adequate excitable system, suitable for controlled laboratory
experiments.

Since the original publication by Zaikin and Zhabotinsky on the wave sustaining property of
what is now known as the Belousov-Zhabotinsky (BZ) reaction [14], and the seminal article on
spirals by Winfree [15], a large amount of work has been devoted to these remarkable patterns;
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the reader can find a recent overview in [16]. Many qualitative properties of either free of
forced spirals have been observed and analyzed, experimeutally or theoretically. Their most
basic and striking properties were already summarized in the abstract of Winfree’s article: “The
Zaikin-Zhabotinsky reagent propagates waves of chemical activity. Reaction kinetics remain
to be fully resolved. but certain features of wave behavior are determined by purely geometric
considerations. If a wave is broken, then spiral waves, resembling involutes of the circle, appear,
persist, and eventually exclude all concentric ring waves” [15]. Although these spiral waves are
intrinsically out-of-equilibrium patterns, most studies have been conducted in closed reactors,
where the system is (slowly) relaxing to equilibrium. Few experiments have been run in open
reactors where the “distance to equilibrium” can be imposed and controlled [17-19]. Hence
quantitative results are scarce. In particular, there is essentially no way to quantitatively
compare spirals made in reagents with different concentrations.

In this article, after a rapid presentation of the BZ reaction, and of our experimental method,
we report our results on the behavior and stability of a single spiral. They are threefold:
first, the phase diagram structure in the parameter space that we have explored; second. the
description of the observed instabilities, which either limit the existence domain of the spiral,
or modify its dynamical behavior; third, a set a quantitative laws, which link these results with
the actual concentrations of the chemical species, and show that the spiral can be considered a
“critical pattern”. At the end of the article, we analyze our results in view of existing theories,
and compare them to other available experimental studies.

2. Description of Experiment

2.1. BELOUSOV-ZHABOTINSKY REACTION OVERVIEW. — Because of the remarkable property
of exhibiting oscillations during a long transient approach to equilibrium, the BZ reaction has
served as a prototype of nonlinear dynamical systems in chemistry, and has been thoroughly
studied both experimentally and theoretically. When it was first discovered in the 1950’s by
Belousov [20], it was generally thought that such behavior was forbidden by thermodynamics;
the scientific community refused to accept it. Nevertheless, the recipe circulated in the Soviet
Union, and was proposed as a Ph. D. subject to Zhabotinsky in 1961 [21]. Few outside of
the USSR knew of the existence of such a reaction until its publication in 1970 [14]. It has
been widely studied since it is simple to perform, visually striking, and an abundant source
of phenomena. In a well-stirred beaker, the oscillations can be easily observed by the naked
eye. since the solution changes color between blue and red. When confined to a thin layer, the
system can produce different dynamical patterns, such as targets or spiral waves.

From a chemical point of view, the BZ reaction is the oxidation by bromate of an appropriate
organic species catalyzed by a metal-ion/organic-compound complex in an acidic solution [22)].
Possible organic acids include carbonic acid. the dicarboxylic acids, the ketons, the diketons,
citric acid. and malonic acid, and possible metal ions include Ce**, Mn**, Fe?*, Ru®". Cr?t
or Co** [23]. Though the initial discovery was made using citric acid with a cerium catalyst,
the most commonly used organic species are malonic and bromomalonic acid, and the most
common catalysts are Mn**, Fe(phen)§+ (ferroin) and Ru(bpy)2* (ruthenium). Soon after
its publication, chemical mechanisms were proposed that can be translated into kinetic equa-
tions [24, and references therein]. Nevertheless, a full elementary chemical description of the
underlying processes has not yet been agreed upon.

Many studies have been devoted to the diverse behavior exhibited by this reaction: iransient
oscillations in batch (closed) reactors [24], or sustained oscillation and chaos in continuously
fed stirred tank (open) reactors (CSTRs) [25]. Because they are well mixed, these systems are
homogeneous, and can be considered zero dimensional. Qualitative new phenomena appear
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when spatial degrees of freedom are introduced. This is achieved by constraining the solution
in the desired geometry with no stirring, to allow for spatial gradients. When appropriate
experimental precautions are taken, diffusion is the only other mechanism added to the reaction
[26,27].

Here we focus on the two-dimensional (2-D) case. The reagent can be prepared such that it is
no longer self-oscillatory, but remains in the reduced catalyst state, requiring a local stimulation
(local potential pulse or acid excess) in order to trigger an oxidation wave. This property, called
excitability, is a basic concept in biology. In particular, it has been used to describe nerve
impulse propagation [28] and cardiac waves on the surface of the heart [29]. The BZ reaction is
well known as a convenient laboratory medium for the study of excitable systems (12]. In our
study, we have not systematically analyzed nor distinguished the experimental conditions in
which the medium is excitable or oscillatory, since it does not seem to affect the characteristics
of the spirals.

For most concentrations of the BZ reaction, spirals do not appear spontaneously, but have
to be created. A simple way to do this is to break an oxidizing front, either mechanically with
a gentle local disturbance, or chemically by locally inhibiting the reaction. Once a front is
broken, the two free ends start to curl up and eventually form two stable spirals of opposile
chirality, spinning at the same rate.

2.2. EXPERIMENTAL SETUP. — Qur experiment was conducted in a spatial open reactor which
was first described in [30], and is similar to the one used for the study of Turing patterns [31].
The reactor allows for the study of true asymptotic states. since the chemical reagents are
continuously refreshed. It is the 4th generation of the spatial open reactors developed in
Bordeaux [32,33] and Texas [17,34]. Our reactor was built at the University of Texas at Austin.

The heart of our reactor is a thin porous glass disk (Vycor glass, Corning), 0.4 mm thick
and 25.4 mm in diameter, which serves as the matrix for the chemical reaction. The porous
glass disk is used to prevent hydrodynamic motion in the reaction medium; it has 25% void
space and 100 A average pore size. It is translucent, and inert to the BZ reaction. The
diffusive motion which occurs within it has a diffusion constant D < Dp,o. For the BZ
components in an aqueous medium, a value of D = 2.0 x 107° cm? /s has been measured [35].
For Vycor, an estimate of the effective diffusion constant relevant to waves in the BZ reaction
can be made by comparing the pitch of two spirals in the same chemical solution, one in
Vycor and the other in aqueous medium restricted to have the same thickness [36]. One finds
D =~ 4.2 x 107% cm?/s, in fair agreement with other measurements [37]. Another diffusion
constant, namely the transverse diffusion constant across the porous glass, has been measured
with a gradient of ions: D =~ 7 x 1077 c¢cm?/s [38]. However, the in-plane coefficient is more
relevant to our spiral patterns. This subject is in need of more precise measurement.

The porous glass provides a reaction medium homogeneous over at least a distance of two or
three spiral wavelengths (~1 mm). A slight inhomogeneity on larger length scales (~10 mm)
is observed in some porous glass. However, in our experiment, its presence did not influence
the dynamical behavior of the spiral tip, and had little effect on the chemical waves. Different
Vycor porous glass disks differ by a few percent in their thickness and density, so that changing
the disk may induce a shift in the parameter space. In order to avoid this, the same piece of
porous glass was used throughout the entire experiment.

The reactor itself is comprised of two Plexiglas halves, each a CSTR 7.5 ml in volume
(Fig. 2). Each CSTR is agitated by two magnetic stir bars at the bottom, and the chemicals
are delivered by a peristaltic pump (Ismatec IPC-8) at a rate of 67+ 1 ml/h (residence time of
about 15 min). The porous glass disk is attached to a Plexiglas holder with silicone glue, and
is held between the two CSTRs so that each side is in contact with a bulk medium where the
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Fig. 2. — A diagram of our experimental setup with the arrangement of the chemical species.

chemical concentrations are kept constant and homogeneous. The whole reactor is surrounded
by a copper thermal jacket, with which the temperature was regulated to within 0.1 °C.

We use malonic acid as the organic species, and ferroin (Fe(phen)?). a complex of iron and
(1,10) phenanthroline as the catalyst. The components of the reaction are distributed in such
a way (see Fig. 2) that multi-gradients in chemical concentrations exist normal to the plane of
porous glass disk: malonic acid (CHz(COOH),, abbreviated MA) is supplied only to CSTR A,
and ferroin only to CSTR B. This means that the actual values of these concentrations within
the porous glass are unknown, and that the location where the pattern forming reaction takes
place may vary. The other chemical species, sodium bromate (NaBrQj3), and sulfuric acid
(H2S0y4) are fed in equal amount to both CSTRs. A certain amount of sodium bromide and
Sodium Dodecy! Sulfate (SDS) ([SDS] = 0.1 mM) is also fed into CSTR A to keep the bulk
from oscillating and to prevent large bubbles from forming [39,40]. Without the catalyst,
the chemicals in CSTR A are not reactive. In CSTR B ferroin reacts immediately (within a
second) with bromate to produce ferriin (Fe(phen)3") in the presence of sulfuric acid. In order
to maintain the chemical gradients across the reaction medium, the flow rate of the CSTRs
must be much larger that the diffusive flux across the porous glass disk. The diffusive flux
was estimated to be 2 ml/h, much smaller than the pump flow rate. We have not studied the
influence of the flow rate in detail.

The arrangement shown in Figure 2 imposes practical limits on the maximum concentrations
which can be used for a given flow rate. For [MA] > 0.6 M, we observe that the bulk of CSTR B
begins to oscillate below a certain value of [HzSO4]. This means that enough malonic acid is
diffusing into CSTR B to induce the full BZ reaction in the bulk. However, the observations
on spiral dynamics made in the presence of these oscillations did not show any differences
with lower [MA], where the oscillations are suppressed. Thus the spiral is insensitive to these
oscillations.

The reactants from each CSTR diffuse into the porous glass disk where the pattern-forming
reaction takes place. For a typical set of concentrations, traveling waves spontaneously appear.
They are emitted either by sources at the boundary or by spirals. Early experiments showed
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Table 1. — Parameters for the BZ reaction wn our experiments. The superscripts on the con-
centrations indicate the CSTR into which each species 15 fed.

[H2S04]*F | [NaBrO3|*® | [CH2(COOH)2)* | [ferroin]® | [NaBr]* | temperature | flow rate
0.03-1.0 M | 0.05-0.6 M 0.04-1.0 M 1.0mM | 300 mM | 23£0.1°C | 67 ml/h

that the sources at the boundary have a higher frequency than the spirals, and thus gradually
destroy them [17]. To eliminate this problem, we make the area of reaction medium in contact
with CSTR A (the malonic acid side) slightly larger than that in contact with CSTR B (the
ferroin side), by using an asymmetric Plexiglas holder. This results in a boundary condition
along the perimeter of the porous glass disk for which the malonic acid concentration is higher,
and ferroin lower, than elsewhere. The result is that the sources at the boundary have a lower
frequency than the spirals in the reaction medium. Thus the spiral waves also act to suppress
these pace-makers, and dominate the system.

We have found that the spirals in our system are sensitive to red light, by using either a
diode (3 mW, A = 670 nm) or helium-neon laser (1 mW, A = 633 nm). It has been known
for some time that the ferroin-catalyzed BZ reaction can be affected by visible light [41,42].
though it has not been used in pattern-forming experiments until recently [30,43]. Studies
using light in the ruthenium-catalyzed system have been more common [44-46]. The reduction
of ferriin to ferroin is known to be accelerated by light in the range of 580-700 nm, but the
detailed chemical processes are still not understood [42]. This effect allows us to manipulate
the spirals in the system by focusing the light beam on the center of the spiral. Initially if
there are many spirals, we bring one spiral to the center and drive the rest to the boundary.
If there is no spiral in the beginning, we create a pair of counter-rotating spirals by using light
to break the wavefront. Then the same technique is employed to remove one of them.

For an experimental survey of the BZ reaction in an open reactor, a large number of external
parameters are available: temperature, the chemical flow rate through the reactor, and five
chemical concentrations. We restrict ourselves to three variables: the input concentrations
of sulfuric acid, sodium bromate, and malonic acid. which we vary within a range of about
0.03 to 1 M. The other parameters are held fixed at: [NaBr] = 30 mM, [ferroin] = 1.0 mM,
and temperature 23 £ 0.1 °C, with a flow rate of 67 ml/h. The experimental conditions are
summarized in Table I.

We choose [H2S04] and [NaBrOs] as control parameters since it is known that the speed of
waves in the medium depends primarily on these two species, and is by comparison independent
of ferroin and malonic acid {47,48]. Malonic acid plays a unique role since it is consumed during
the reaction cycle (see Sect. 2.1). This is a crucial point for closed systems, which eventually
run out of malonic acid. Thus, although there is no such limitation in an open system, the
concentration of MA is potentially interesting. Indeed, qualitative changes actually do occur
as [MA] is varied.

Once a single spiral has been prepared, it is studied by changing stepwise (increasing or
decreasing) one chemical concentration while fixing the others. Enough time is allowed between
changes so that the system can relax to its new asymptotic state. The typical waiting time is
1 to 2 hours (4 to 8 residence times).

2.3. MEASUREMENT TECHNIQUES. — Our raw data are images. They originate from a charge
coupled device camera (Sony XC-77CE) and are either grabbed directly onto a computer or are
stored onto a Hi8 video recorder (Sony EVO-9650P) for later processing. The frame grabber
(Image VGA+, Mu Technologies) digitizes the input signal into a 256 gray level, 512 x 726 pixel
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Fig. 3. — A typical single spiral wave in our experiment, with the best fit Archimedean spiral super-
imposed. Note the edges of the reactor (diameter 2.0 cm).

image. Special care was taken to have true square pixels, and thus to avoid spatial distortion.
The field of view was chosen to cover the largest useful part of the cell: a typical image
represents about 19 mm x 13.5 mm, with a resolution of 26.4 pum/pixel. Qur images are
usually well contrasted, with clear features: the spiral appears as a light front over a dark
background, as shown in Figure 3.

Miiller et al. have shown that the shape of a simply rotating spiral in the BZ reaction is ex-
perimentally indistinguishable from an Archimedean spiral or from the involute of a circle [49].
The algorithm they used to extract the geometric and kinematic characteristics of a spiral has
two parts. First, they find either the highest intensity pixels. which are close to the middle of
the wavefront, or the lowest intensity ones, which are between two fronts. In the second part,
the Cartesian coordinates of the selected pixels are transformed into polar coordinates, and a
nonlinear fitting routine is used to find the parameters of the spiral (Archimedean or involute)
that provide the best agreement with the experimental points.

Since our spirals often have up to 20 turns, whereas Miiller et al. were working with at
most 2 or 3 turns, their algorithm would have been too time consuming. In addition, the small
deviations from the Archimedean shape that are important in the neighborhood of the spiral
center become negligible a few turns away. Our algorithm relies on the assumption that the
shape of the spiral is Archimedean. i.e. a curve best described in polar coordinates, where the
radius r varies linearly with the polar angle 6:

ra(8) = %(0—90), with 8 > 6g, . 1)

where p is the pitch of the spiral, and 8y the angle of the spiral with respect to a reference
axis. The two possible chiralities (clockwise or counterclockwise) are described by choosing the
direction in which the angle is increased.

Our computer program extracts the location of the edge of the spiral front from its maximum
contrast side. and then finds the best-fit Archimedean spiral. The user indicates the chirality
and provides an estimated center and outer radius by clicking on the image. Starting from the
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outer radius and moving inwards, the program finds the radial position of the front at equal
angle steps from the estimated center, until it arrives at the center. The collection of points r(8)
gives a straight line if the estimated center is the true one; otherwise a sinusoidal component
is superimposed. The average straight line is subtracted and the projection of the modulation
onto the sine and cosine functions are calculated. They are proportional to the offset vector
or between the true center and the estimated one. The center of the coordinate system is
then corrected, and the entire procedure is iterated until the corrections to the center become
small enough (arbitrarily chosen to be a hundredth of a pixel). For usual cases, convergence is
obtained in 3 or 4 iterations. In Figure 3, the best fit Archimedean spiral is superimposed on
the experimental image.

The period can be obtained by following 6y as a function of time, but is usually measured
by stopwatch over many rotation periods (usually between 5 and 10).

3. Results

3.1. PHASE SPACE STRUCTURE. — We start with a simple observation. For a given set of the
external parameters, a spiral either ezists or it does not (). If it exists, it is either regular (this
corresponds to a nearly Archimedean spiral, undergoing simple, rigid-body rotation), distorted
(the pitch looks uneven, and the spiral is meandering), or unstable (to three different instabil-
ities described below). This defines different regions within the three dimensional parameter
space. Note that none of the boundaries are “fuzzy”: all of the transitions are direct.

Figure 4 contains the framework which encompasses our experimental study: four phase
diagrams corresponding to four different planes in the 3-D parameter space. About 200 different
points are included in this survey, each labeled according to the observed pattern: simply
rotating spiral “S”, meandering spiral “M”, or convectively unstable spiral “C”; the other
possibilities are a disordered, turbulent state “T”, or no pattern at all. There is a sort of
balloon in parameter space within which spirals can exist; its boundaries are defined by the
instabilities of the spiral. This divides parameter space into three domains: the balloon interior,
in which either simple or meandering spirals occur, and the two homogeneous states, either
chemically oxidized or reduced. In the lower left corner of Figures 4a-c, where either the
concentration of HoSO4 or NaBrOj is low, the medium is homogeneously red, corresponding to
a completely reduced catalyst. At the other limit, when these concentrations are high enough,
a homogeneously blue medium is observed, corresponding to a completely oxidized catalyst.
The low concentration boundary (square symbols) represents a simple transition from spirals
to a reduced (red) state. occurring, within our experimental precision, at a single line which
coincides with what we identify as the retracting wavefront instability (see Sect. 3.2.1). The
boundary between the spiral region and the oxidized state (circle symbols) is more complicated.
since there the spiral undergoes a convective instability leading to defect-mediated turbulence.

The first three diagrams, each taken at different fixed [MA], have a similar structure: the
spiral existence boundaries hardly vary with [MA]. But [MA] strongly affects the transition
between simple rotation and meandering. At [MA] = 0.04 M (Fig. 4a). only meandering spirals
are observed, whereas at [MA] = 0.4 M (Fig. 4b), only simply rotating spirals are observed: at
[MA] = 1.0 M (Fig. 4c), both simple and meandering spirals are observed. The fourth phase
plane (Fig. 4d) was taken perpendicular to the previous three at fixed [NaBrO;z] = 0.15 M,
chosen so as to intersect the meandering transition at [MA] = 1.0 M (Fig. 4c). One clearly

(*) By this we mean, is it possible to maintain a spiral pattern for the given conditions? The spiral
is usually created at other values of the parameters, which are then slowly changed to the ones under
study.
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Fig. 4. — The four phase diagrams studied in our experiments. Three planes of ([H2SO,4], [NaBrOs))
at: (a) [MA] = 0.04 M: (b) [MA] = 04 M; (c) [MA] = 1.0 M; (d) the plane ([H2SO4], [MA]), at
[NaBrOgs] = 0.15 M. The symbols represent: S, simple spiral: M, meandering spiral; C, convectively
unstable spiral: T, turbulent state. The black squares represent the retracting wavefront instability,
and the black circles correspond to the observation of a homogeneously blue medium. The lines are
meant to guide the eyes.
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Fig. 5. — Three dimensional representation of the explored phase diagram extrapolated from the

data in Figure 4. The three concentrations vary between about 0.04 and 1 M. The backmost (medium
dark gray) state is the homogeneous (red) reduced state. The frontmost (dark gray) state is the
homogeneous (blue) oxidized state. Next to it are the turbulent (black) and convective instability
(light, gray) state. The medium light gray regions correspond to the meandering spirals. The rest
(transparent white) are the simple spirals. For more details, see text and Figure 4.

sees a “re-entrance” of meandering in the ([HoSO4), [MA]) parameter plane: starting from
[MA] = 1.0 M, the meandering instability disappears as [MA] is decreased, then reappears
again at Jow [MA]. Thus with all other concentrations fixed, one sees two transitions from
simple to meandering by varying [MA].

The overall qualitative structure of this three-dimensional phase space is represented in
Figure 5. Note that it is an extrapolation and a qualitative summary of the actual data
represented in the four phase diagrams. One clearly sees the striking geometry of the two
meandering regions (medium light grey ih the figure); are they connected? Also, we have not
seen any instabilities along the [MA] axis which limit the existence balloon, though they surely
must exist, at least for low enough [MA] (below 0.04 M), which we have not investigated.

3.2. SPIRAL INSTABILITIES. — We have observed three different spiral instabilities in our
experimnent. These correspond to cases in which either the fronts break apart and the ends
do not curl up, the spiral structure itself loses its stability, or a second frequency appears
in the motion of the spiral tip. The first two cases account for the boundaries of the spiral
stability balloon in the (H3SO4, NaBrOj) plane. The third case corresponds to meandering, a
modulating instability which does not destroy the spiral. In a slightly different experimental
situation, we have observed another case, in which the center of the spiral is destroyed, but we
will not discuss it here [50].

3.2.1. Transition to the Chemically Reduced State: Retracting Wavefront Instability. — The
lower boundary in our four phase planes represents some minimum condition for the existence
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Fig. 6. — Four progressive images of the retracting wavefront instability, as the spiral reaches the
edge of the stability boundary: (a) t = 0 min; (b) t = 6 min; (¢) t = 10 min; (d) t = 18 min.

of spirals. In this region the medium is excitable. At the critical line, the spiral disappears, and
beyond it, the medium is in the reduced state. The experimental points defining this bound-
ary are the critical concentrations ([H2SO4c, [NaBrOs|c). The simplest fit of 1/[NaBrOs]c
vs. [HaSO4]c is a straight line going through zero, as shown in Figure 7 for the three phase
diagrams at fixed [MA]. This implies the relation:

(H2SO4]c x [NaBrOslo = x. = 0.022 4 0.003 M2. (2)

Thus the critical line is a hyperbola, which provides a quantitative minimum condition for the
existence of spirals: [H2SO4] x [NaBrOs] > x.. It also identifies what we will later show to be
the control parameter for the spiral.

The instability associated with this critical line is illustrated in Figure 6, for which we have
observed three qualitative characteristics. First. the spiral rotates more slowly as this line is
approached, and indeed its frequency vanishes at the line (see Sect. 3.3.1). Secondly, large
sections of the wavefronts simply disappear, resulting in a break. This break takes place in
preferred regions of the cell, probably related to inhomogeneities of the porous glass. Thirdly,
the free ends of these broken fronts usually do not curl up and form new spirals, but instead
retract, a clear indication of a condition for which spirals cannot exist.

As seen in Figure 7, there is no significant difference in the critical line at each [MA].
This is particularly interesting for [MA] = 0.04 M, implying that the critical line defined by
equation (2) applies equally to meandering and simply rotating spirals. However, at high [MA]
(> 0.6 M), the bulk is oscillatory at the critical line. This affects the wavefront which tends
to vanish through some kind of wave amplitude collapse. Also, the free ends still tend to curl
up, though slowly.

Though we have not observed a continuously retracting wavefront without front breaking,
we interpret this boundary as the location of the “retracting wavefront” transition that is ob-
served elsewhere [51-55]. We believe that the other phenomena either come from the setup
(global bulk oscillations) or from the narrowness of the stability region for wave propagation.
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Fig. 7. — A plot of the critical values 1/{NaBrOs|c vs. [H28Os]c. for various [MA]. The line shows
the best fit hyperbola, representing the condition [NaBrOsjc x [H2SO4]c = Xc, as defined in the text.

Our experimental procedure does not allow us to observe this stability region for retracting
wavefronts, nor to distinguish this spiral stability boundary from the boundary of wave stabil-
ity [56,57]. However we have not searched for these distinctions in detail.

3.2.2. Transition to the Chemically Oxydized State: Eckhaus Instability. — This instability
was first reported in [30], which the reader should consult for details. In the phase diagram,
it occurs close to the limit where the system becomes homogeneously blue (oxidized), see
Figures 4a-c; this is the opposite limit to the retracting wavefront instability. Starting from
experimental conditions within the existence balloon ([H2SO4] = 0.3 M, [NaBrOs] = 0.4 M,
[MA] = 0.4 M), we increase a control parameter (the sulfuric acid concentration) so that we
gradually approach the homogeneous state.

This instability occurs in the region where one would expect the medium to be oscillatory.
At low sulfuric acid concentration ([HeSO4] < 0.6 M), the spiral is stable, simply rotating.
When concentration is increased to [HaSO4] = 0.65 M, a modulation appears: the distance
between successive wavefronts (the local wavelength) varies spatially, instead of being constant.
It becomes an oscillating function of the distance to the spiral center, with an amplitude that
increases with distance [30]. Far enough from the center, the modulation reaches such a large
amplitude that the spiral cannot sustain the deformation and the wave breaks up, nucleating
pairs of spiral defects with opposite chirality. This process produces a large number of small
spirals around the edge of the stable spiral. Such a process is similar to the one observed in
coupled oscillator systems and known as defect-mediated turbulence [58,59]. It is illustrated
in Figure 8, which shows an enlargement of the turbulent region beyond the stable spiral.
The wavelength modulation is interpreted as an Eckhaus instability. the most common phase
instability of a periodic pattern [60]. The fact that its amplitude increases with distance,
without the center being destroyed, is the signature of its convective nature [61,62].

In general instabilities can be either convective. when small perturbations are carried away
faster than they grow, or absolute, when they grow faster than they are carried away. In the
latter case, the instability invades the whole space. As our control parameter is increased up
to [H2SO4) = 0.8 M, the stability radius of the spiral decreases. For [HaSO4] > 0.8 M, the
spiral disappears completely into a swarm of spinning spiral defects.
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Fig. 8. — An example of the turbulent state beyond the convective instability of the spiral, for
[H2S04] = 0.7 M, [NaBrO3] = 0.4 M, and [MA] = 0.4 M. The picture is 4.8 mm across.

The boundary of this instability is difficult to define precisely. Nevertheless it systematically
occurs when the period of the spiral T becomes of the order of 4 s. Hence this transition takes
place when T decreases down to Ty = T¢p;, where this critical period is in principle a function
of the chemical concentrations, though the range of our data is too small to see any variations
in Tere. In other words, there is an upper cutoff frequency in the BZ reaction beyond which
the medium cannot sustain stable wavetrains. This is in agreement with other investigations
of spiral instabilities {63, 64].

This experimentally observed scenario is remarkably well reproduced by the complex
Ginzburg Landau equation, which fipermits one to check the theoretical interpretation of the
instability mechanisms [65] (?). This equation describes the spatio-temporal evolution of the
slow varying amplitude of an oscillatory medium close to the onset of oscillation. It has been
widely studied, and a similar transition to a spatio-temporal turbulent state is also seen. More
details can be found in a recent extensive theoretical study [66).

3.2.3. Transition to Meandering Spirals: Hopf Bifurcation. — The transition to meandering
was the first spiral instability recognized and studied as an intrinsic property of the spiral
pattern [26]. The term was coined by Jahnke, Skaggs and Winfree to describe the nonpériodic
motion of the spiral tip observed in their experiment: instead of following a circular path, the
spiral tip () describes an epicycle-like path [26]. Further experimental [18,67] and theoretical
studies [68-73] have shown that the motion is quasiperiodic, and that the meandering instability
is a Hopf bifurcation. It should be noted that all previous studies have mainly focused both
on the tip motion and on the instability itself. Few studies have been made on the shape of a
meandering spiral, or on the locus of the bifurcation within the spiral phase diagram.

(?) Rigorously, this comparison is valid close to the onset of the oscillatory state where oscillations
are sinusoidal.

(3) Note that this notion of spiral tzp requires a precise definition. Experience shows that this is
delicate to formulate; it is often considered as the point of maximum curvature.
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Fig. 9. — Two examples of meandering spirals (see text): (a) retrograde meandering
([H2804} = 0.5 M, [NaBrOs] = 0.2 M, [MA] = 1.0 M): (b) prograde meandering ([HzS04] = 1.0 M,
[NaBrOs] = 0.1 M, [MA] = 1.0 M). Compare the chiralities of the spirals and the distortion patterns.

The main characteristics of a meandering spiral appear more clearly in the uneven wavefront
spacing, rather than in the detailed analysis of its tip motion. In other words, a single picture
of a spiral is enough to recognize whether it is simple or meandering, provided enough turns
are present. The history of the quasiperiodic tip motion is somehow inscribed in the shape of
the spiral wavefronts.

Although the tip motion not rigorously that of an epicycle, the difference is usually indistin-
guishable experimentally [18,67]. Thus the tip executes its primary rotation around a circle
(sometimes labeled “moon” [26]) with a frequency fp, and this circle is itself rotating around
a secondary circle (“earth”) with a frequency fi. The ratio fo/f1 determines the number of
“Hower petals” per turn in the spiral tip trajectory. We also define the amplitude of mean-
dering, as the ratio of “earth” circle and “moon” circle rp/r1. Two kinds of meandering are
possible depending on the relative directions of the two orbiting motions. Either they both or-
bit in the same direction (corotating or prograde meandering) or they spin in opposite directions
(contrarotating or retrograde meandering). Although the theory predicts a continuous change
from one to the other, experiments have until recently only observed retrograde meandering,
which was sometimes referred to as Agladze’s rule [74]. We actually observe both kinds, as
shown in Figure 9.

At low malonic acid concentration ([MA] = 0.04 M), all spirals undergo retrograde mean-
dering. For a fixed bromate concentration, the number of petals and the amplitude are larger
at high sulfuric acid concentration than at low. For [NaBrOs] = 0.1 M, the number of petals
is 30 for [HoSO4) = 1.0 M, and 5 for [HSO4] = 0.1 M. Plesser et al. also report an increase of
the number of petals with increasing [H2SO4), but observe a decrease in amplitude [67].

At high malonic acid concentration [MA] = 1.0 M, the picture is different (see Fig. 4¢). First
of all, there is a “meandering tongue” within the stable spiral region, where the meandering
is either prograde or retrograde, depending on the concentrations. The dynamic behavior of
the two types of meandering spirals are similar: their meandering amplitude is small near the
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Table II. — (ps (um). Tx (s)) vs. [H2SO4] for various [NaBrOs), at [MA] = 0.4 M.

[Hg SO4] [NaBrO3] (M)
(M) 0.1 0.15 0.2 0.4 0.6
Ps Ts Ds T Ds T Ds Ts Ds T
0.1 1429 | 92.4 595 | 25.71
0.2 1511} 96.0 || 1095 | 58.1 565 | 17.7 416 | 11.2

0.3 2200 | 168.6 || 925 | 37.3 7211263 423 99| 345| 7.5
0.4 1066 | 52.6 | 697 | 21.9 565 (174 | 383 73| 355| 5.8
0.5 888 | 37.6| 589 | 16.4 481 1 12.3 (| 331 6.2 323| 4.5
0.6 681 | 23.9| 4781 11.5 422 | 96| 350 5.4 314( 3.9
0.7 589 | 18.9| 422| 9.53 345 | 4.6
0.8 524 | 15.4 | 396 | 7.63| 339| 6.5
0.9 464 | 12.1 | 385 | 6.71
1.0 435 9.8 | 373| 6.06| 303| 4.5

onset and increases as the control parameter is changed beyond the onset. The phase diagram
obtained for a fixed [NaBrOs] (see Fig. 4d) is thus similar to the theoretical prediction made
in [71]. A more systematic study of the transition between these two types of meandering has
since been performed [75].

Note that within the concentration range presented here, we do not observe the “hyper-
meandering” seen in computer simulations, where more than two frequencies are needed to
describe the tip motion [51]. We have seen some preliminary evidence that, if such meandering
exists, it would be at very low malonic acid concentrations.

3.3. QUANTITATIVE RESULTS ON SIMPLE SPIRALS. — We now restrict our analysis to simple
spirals in the BZ reaction. In this case, pitch and period are well defined quantities, whereas
this is not true for meandering spirals.

3.3.1. General Scaling Relations. — For a given point in the appropriate region of parameter
space, an initially straight wavefront with a free end will curl up into a simple spiral with a
uniquely defined pitch ps and period T;. These quantities are determined by the dynamics of
the reaction, which depend on the chemical concentrations. What is the selection mechanism?
To answer this question, we have measured the pitch and the period of the spiral at each
indicated point in Figure 4, using the technique described in Section 2.3. Our measurements
allow us to identify the control parameter for the system, and the dependence of the pitch and
period on it. To first order, the quantitative laws for spiral selection are scaling relations; the
corrections to these relations provide a more detailed dependence on chemical concentrations.
Hopefully this framework will eventually be extended to incorporate the case of meandering.
Since in this section we focus uniquely on the data for simple spirals, which are represented
by an “S” in Figure 4, the simplest phase plane is Figure 4b, in which no meandering spirals are
observed. In this diagram, the pitch ranges from 0.3 mm to 2.5 mm, and the period from 4 s to
200 s; for each point we associate the numbers (ps, Ts). A compilation of our data can be found
in Table II. Though most of our analysis is done for the data in Figure 4b, we also include the
simple spirals from Figures 4c-d, which gives an indication of the dependence on [MA].
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Fig. 10. — The inverse of the spiral period T;! vs. [H2S04] for several different bromate concentra-

tions at [MA] = 0.4 M (Fig. 4b).

Starting with a simple spiral somewhere in the stable region, its period and pitch diverge as
the state of the system approaches the retracting wavefront instability boundary (represented
by the black squares in Fig. 4). For concentrations above this line, the inverse of the measured
spiral period T; ! is a linear function of [HzSO,), as shown in Figure 10 for each value of
[NaBrOg] in Figure 4b. Although the relation is remarkably linear in each case, the slopes and
intercepts are different for each bromate concentration. These different lines can be collapsed
by plotting 7! against the variable

X = [HQSO4] X [NaBrOg,], (3)

as shown in Figure 11. Close to zero, the spiral frequency varies linearly with y, and vanishes
at a finite value of x, equal within the experimental error to y. as defined in equation (2).
The spreading at larger values of y is due to a second order dependence on the chemical con-
centrations (see Sect. 3.3.2). As a first approximation, the variable y captures the dependence
of the spiral period on the chemical concentrations.

The dependence of Ts on [MA] is found by analyzing the data from Figure 4d. In Figure 12
we plot T, as a function of [H2S04) for all simple spirals in this phase plane. In this case
bromate concentration is fixed, so that the rescaling of the z axis to x would not change the
relative positions of the curves. We observe no large displacement of these curves, which would
indicate a dependence on [MA], except for a small separation at high [H2SO,}, which we will
discuss in Section 3.3.2. The general fit shows a linear dependence as before. Thus for simple
spirals T is independent of [MA] to first order, and the general scalings observed in Figures 11
and 12 are summed up by the following experimental law:

T~ (x~ Xc)_1 (4)

We therefore consider x as the control parameter for the three variable phase space we are
studying.
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Fig. 12. — The inverse of the spiral period 7. ' vs. [H2804) for several different [MA], at
(NaBrOs] = 0.15 M (Fig. 4d).

The selected pitch of the spiral ps is its most obvious length scale; it is also the wavelength of
the emitted waves. Without reference to any chemical concentrations, the dependence of the
selected pitch ps on the period T is shown in Figure 13 for the simple spirals we have observed
in Figure 4. Remarkably, without any adjustment or normalization, all points follow the same
general curve, given by:

P = (139 + 5) x TSO.51:|:0.02’ (5)

with ps in gm and T in seconds. From this measurement, we assume the following scaling
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Fig. 13. — The spiral pitch ps vs. the period Ty (log-log plot) for all simple spirals in Figures 4b-d
(103 data points). The straight line corresponds to the scaling relation p ~ T2 *®

relation, which we might call the constitutive relation:
Ps ~ /I‘s1 /2 (6)

We also conclude from Figure 13 that in the range 0.1 M < [MA] < 1.0 M, the observables of
a simple spiral are independent of [MA] to first order, although the concentration of MA does
play a role in the transition between simple and meandering spirals, as discussed above.

The scaling relation given by equation (6) is in fact a strong statement on the spiral selection
mechanism, since it implies that p?/Ty is a constant. This ratio has the units of a diffusion
coefficient, indicating that the spiral is governed essentially by diffusive processes. For all of
the simple spirals in the ([HySO4), [MA]) plane of Figure 4d, and for the simple spirals with
[NaBrQj;] < 0.6 M in Figure 4b, this constant is given by:

P2 ~5., 2
=5 =22+4x 10 °cm?/s, )
T
For [NaBrOj] > 0.6 M, the value is significantly different and will be discussed in the next
section. Since molecular diffusion thus plays a crucial role in the selection mechanism of the
spiral, it is natural to consider the dimensionless ratio defined in [51], which we call the speral
diffusion number: \
2
Ms = DTS (8)
If we use the value D =~ 4.2 x 1076 cm? /s (see Sect. 2.2), we find M ~ 52. Using the accepted
value for BZ in solution, D = 2.0 x 107® cm?/s [35], would give M ~ 10. The extreme value
of D; =7 x 1077 ¢cm?/s measured for a transverse gradient of ions in porous glass [38] gives
M, ~ 290. We will discuss this in Section 4.3. Thus though we cannot report with certainty
the value of this selected spiral number M; with much precision, we emphasize the general
result that ps ~ Tsl/ 2 for all of our spirals, as shown in Figure 13.

For all simple spirals in our experiment, the observables p, and T can be completely specified

by the distance in parameter space from the critical line defined by x.. There was a hint of
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this possibility in the numerical simulations of [51]. This strong resemblance to the physics of
second order phase transitions, with the retracting wavefront instability at the critical point,
leads us to define a dimensionless similarity variable p:

(X ~ Xxc) (9)

p= e,
Xe
which for our experiments ranges from about 0.2 to 15. In terms of this variable, we show for
example the inverse spiral period in Figure 14, for all of the simple spirals we have observed.
The linear fit in this figure, and the fit shown in Figure 13 (Eq. (5)) are summarized by the
general scaling relations:

T = Top™% (10)
ps = pop 3, (11)

where the time and length scales are given by Tp = 41.5 + 2.5 s and py = 920+ 33 pm. The
retracting wavefront instability thus occurs for 1 — 0 and the convective instability for u large
(about 12). We also note from Figure 14 that the scaling is quite accurate for 4 < 4, and that
for larger values of u there are systematic corrections, which are discussed in the next section.

3.3.2. Towards a Microscopic Chemical Description of BZ Spirals. — Although the scaling laws
in equations (10. 11) provide a concise and simple summary of the characteristics of the selected
spiral, they are not exact relations. This is not surprising, since the control parameter  is
symmetric with regard to sulfuric acid and bromate concentrations, whereas it is known that
these two species do not play the same chemical role. The asymmetry appears as corrections to
the scaling relations: for large enough p systematic variations are seen, which depend mainly
on the bromate concentration. These deviations from a universal scaling law for spirals in
the BZ reaction reveal the detailed connection between the macroscopic pattern observables
and the underlying chemical mechanisms of the reaction. Although we propose no theoretical
framework in which to understand them, these experimental observations provide hints and
constraints for a theory of spirals based on the microscopic chemistry of the BZ reaction.
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Table III. — Corrections to scaling. Values of the as and by coefficients, as a function of
[NaBrOs]. for |MA] = 0.4 M.

[NaBrOs)(M) | 0.1  0.15 02 04 0.6
as 0.066 0.057 0.023 —0.012 —0.017
b 0.078 0.028 0.022 —0.027 —0.027

Bromate Corrections to Scaling.— We first consider the variations of period as a function of
the control parameter y, at a fixed value of malonic acid concentration. As seen in Figure 11,
To/Ts ~ p for small enough p, but these curves fan out for large p, with a systematic depen-
dence on bromate concentration: the lower [NaBrOs], the more concave this curve is. In the
absence of any theoretical functional form, and within the precision of our data, the only term
we can give is the beginning of a development in powers of p:

To/Ts = p+ azp® + o(u?). (12)

where ay contains the bromate dependence. In order to obtain the a2, we make a least mean
square fit of Tp/T; to the functional form given by equation (12), with ag being the only free
parameter. We check this procedure by making a linear fit to Tp/Ts — ¢ as a function of p:
the slope in each case is close to the obtained value of as, and the intercept with the y-axis is
always close to zero.

Results are shown in Figure 15, and listed in Table II1. Error bars are difficult to evaluate for
numbers that result from so many fits; they are on the order of 20%. Nevertheless, as is clearly
a decreasing function of bromate concentration. Though the graph hints at some curvature,
we cannot distinguish between a linear or a parabolic dependence, given the imprecision and
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the relatively small number of available data points. They are:

a2([NaBrOs]) = —0.17 x ([NaBrOs] — 0.43), (13)
a2([NaBrQOgz]) 0.52 x ([NaBrOs] ~ 0.71)([NaBrOs] — 0.32). (14)

where all concentrations are expressed in moles per liter, and the a2 are dimensionless. The for-
mer relation is the simplest, but the latter takes into account the curvature, giving a minimum
value for az. which might have some chemical meaning. Beyond this, our study is inconclusive,
and further measurements are required.

Since the scaling law for the pitch is written pg/ps ~ p'/2, corrections might be written
either as powers of /2 or y. We have found that by considering

(po/ps)® = pi + bap® + o(ps?), (15)

we obtain values of by which are close to the az at each [NaBrOsg] (see Fig. 15). Fitting the
data in this way gives:

ba([NaBrOs]) = -0.19 x ([NaBrOs] — 0.36). (16)
bz([NaBI'O3]) = 0.72x ([NaBI‘O;g} — 0.70)([NaBr03] — 0.26). (17)

Note that the near equality a2([NaBrOs]) ~ b2([NaBrOs]), and the definitions in equations (12)
and (15), mean that these bromate corrections cancel in Mj, so that M ~ p%/DT, + o(u?).
Thus M; is constant even to second order in u.

Malomc Corrections to Scaling. — As presented in Section 3.1, the spiral parameters for various
malonic acid concentrations, at a fixed bromate concentration, show no [MA] dependence to
first order. We have not examined the systematic corrections due to malonic acid which occur
within the spread of points in Figure 12.

Corrections to the Constitutive Relation. — Although the scaling relation ps ~ T2/? (Eq. 6)
implies a fixed value of the spiral diffusion constant

D, =p2/T,, (18)

there are also systematic corrections. They appear as the thick spread of points around the fit
in Figure 13, which translate into an 18% variation in the value of p2/T, (Eq. (7)).

In order to characterize these corrections, we first analyze D as a function of x for fixed
[MA]. Since only simple spirals are considered. we focus on the phase diagram for [MA] = 0.4 M
(Fig. 4b). For each experimental point. the corresponding value of D, is plotted as a function
of x in Figure 16. The different curves correspond to different values of [NaBrOs]. To first
order, all curves collapse and have the same V-shape, with a minimum at
Xmin([MA] = 0.4 M) =~ 0.10 M?. We observe qualitatively that the width of these V-shaped
curves increases with [NaBrOjs]. Note that we have excluded data for [NaBrO3] = 0.6 M (the
highest bromate concentration we have studied) since the behavior is markedly different, as
discussed below.

The dependence of xnin with [MA] is obtained by considering the simple spirals in the phase
diagram at fixed [NaBrOjs] (Fig. 4d). We find that the curves Ds(x) for different values of
[MA] have the same V-shape, but the minimum is shifted along the [MA] axis. Subtracting off
the value of x where these minima occur, xmin([MA]), allows the different curves to collapse
onto each other, as shown in Figure 17. The variation of xmin appears to be fairly linear with
[MA], as shown in Figure 18,
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Fig. 17. — The spiral diffusion constant Ds = p*/Ts vs. X — Xmm([MA)) for [NaBrOs] = 0.15 M. Same
symbols as Figure 12.

Thus for the simple spirals in our experiment, the minimum value of D is given by

Dy(Xmin([MA])) = 18.5 £ 0.5 x 107° cm?/s, (19)
with
Xmin([MA]) == 0.082 x [MA] + 0.065, (20)

where all concentrations are expressed in moles per liter. In terms of the dimensionless control
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Fig. 18. — The value of the control parameter for which D; is a minimum, xmn([MA]) vs. [MA]. The
straight line corresponds to a linear fit (Eq. (20)).

parameter p, this minimum Djs occurs at (using x. = 0.022 M2):

Hmin ([MA]) ~ %\4—2‘? + 2.0, (21)

Is there a global cause for this minimum in D? Although we have no definite answer to this
question, we have made preliminary measurements of the medium itself, which show whether
it is excitable or oscillatory. By using the laser to displace the spiral center without allowing
it to rotate, we can open a hole where the medium is unperturbed by wave fronts. We then
observe whether the medium spontaneously oscillates or not. For [MA] = 0.2 M, we find that
the transition occurs around x ~ 0.08M?2, in accordance with equation (20). This suggests
that Xmin([MA]) might correspond to the boundary between an excitable and an oscillatory
medium, though no other changes are seen in the spiral characteristics.

A complete description of Ds would require a more thorough study as a function of [NaBrOj].
We have seen quantitatively that [MA] displaces the V curve, whereas [NaBrO3)] widens it. But
for [NaBrOs) = 0.6 M, the values of p?/T; are significantly lower than at other concentrations.
We have not systematically investigated this effect, but we have two examples from the phase
diagrams at [MA] = 0.4 and 1.0 M, shown in Figure 19. Although the minimum value of Dj
is significantly lower, the value of ., where it occurs is still in agreement with the line in
Figure 18. For [NaBrO3] = 0.6 M, we find that

Dy(Xmin([MA])) = 14.0 £ 0.5 x 107° cm?/s, (22)

using Xmin given by equation (20). This difference at higher [NaBrOgs| may be the beginnings
of another instability, possibly the signature of a boundary of the existence balloon.

3.3.3. Extension to Meandering Spirals. — Both the general scaling relations and the correc-
tions to these relations presented above come from an analysis of simple spirals. How can this
framework be extended to the meandering spirals? Here we will only give the beginnings of
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Fig. 19. — The spiral diffusion constant Ds; = p*/T% vs. X — Xmm([MA]) for [NaBrOs] = 0.6 M.

what might be such an extension. The final result of this endeavor would be a quantitetive un-
derstanding of the different aspects of meandering, including the dependence of the meandering
amplitude and frequencies on the chemical concentrations, or control parameters.

The meandering instability is an instability of the spiral core [71,72], but experimentally
this is not straightforward to define. Can we measure some aspect of the spiral core? In
order to evaluate its size, we have time averaged images of simple spirals from Figure 4d, for
[MA] larger than 0.5 M. For simple spirals between the meandering tongue and the critical
line, the averaged image clearly exhibits an unexcited dark region at the center, with a radius
of about 10% of the pitch. They are represented by an “O” in Figure 20. We identify this
radius with the core radius. For spirals on the other side of the meandering tongue, no dark
region was observed (“o” in Fig. 20). This implies that the radius is smaller than one pixel;
given the measured values of the pitch, 10% would correspond to a few pixels. We tentatively
conclude that the ratio of the core radius to the pitch on this side is smaller than a few percent.
This implies a qualitative transition from large-core type near the critical line (u near 0) to
small-core type at larger p. This agrees with the qualitative picture given by Barkley in his
spiral phase diagram [71}], and also with the recent definition of “dense” and “sparse” spirals
in numerical simulations of spirals in a model for excitable medium [76].

The problem of measurements for meandering spirals is related to the fact that pitch and
period now vary with position. As a first attempt, we have measured the minimum and
maximum oscillation period (Tmin and Tmax) at a single point a few turns from the center of
the meandering spiral (so that curvature corrections to the velocity are negligible, see Sect. 4.1).
We then include the inverse of these periods in a plot of T, * vs. [H2SO4), as shown in Figure 21.
The line is a linear fit to the simple spirals only corresponding to equation (4). From this
we find that the mazimum frequency Tn_ﬁlrl (represented by squares) continues to follow the
selected spiral period given by equation (10), with the minimum frequency T,51 (asterisks)
below. Further quantitative measurements are needed, in particular to characterize the width
of this frequency band as x is varied. However, we do not yet understand why a spiral meanders

at a given set of concentrations, which is to say we do not understand the role of [MA].
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and maximum periods 7)., (B) and T}, (+) for meandering spirals (see the text), vs. [HzSO4), at

[NaBrOs] = 0.2 M, [MA] = 1.0 M.

4. Discussion

4.1. EXPERIMENTAL COMPARISONS: THE VELOCITY RELATION. — To our knowledge, there
exist no systematic quantitative studies of spiral waves in an open BZ reactor as a function
of the chemical concentrations; the study of meandering by Skinner and Swinney is an excep-
tion [18]. However, the dependence of the velocity of a single front on these concentrations
has been well measured in a number of studies [47,48,77-80], allowing for comparison with
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Fig. 22. — The square of the spiral wave velocity ¢ = p? /T2 vs. the dimensionless control parameter
i, for [MA] = 0.4 M. The line corresponds to the scaling relation ¢ = ¢, see equation (23).

our results. From our measurements, we can deduce the velocity of the spiral wavefront using
¢s = ps/Ts [50]. In general, the velocity of a curved wavefront is written as ¢ = ¢, — Dk, where
¢p is the velocity of a single plane wave, « is the curvature of the wavefront. and D is the
diffusion constant [54.81,82]. Since D =~ 10~% c¢m?/s, and typically x >~ 20 cm ™! for distances
beyond one turn from the center, the measured velocity for a spiral (~ 40 pm s~!) is very
close to c,. Hence we can neglect curvature effects and compare our spiral measurements with
the literature values for single plane waves. We should however keep in mind that wavefronts
within a spiral are actually interacting, which is represented by the dispersion relation [50].
From equations (10, 11), the spiral wave velocity varies like the square root of the distance
to the critical line:
¢s = cop'’?, (23)

where ¢g = pg/To = 22.2 pm/s. A plot of c2 vs. p does indeed show a linear relationship as
illustrated in Figure 22 for [MA] = 0.4 M; the solid line is equation (23). Note that the points
taken at [NaBrOgs] = 0.6 M fall systematically below this line, another sign of the possible high
bromate transition discussed above. For the other concentrations there is excellent agreement
for ¢ < 4, and small deviations for larger p.

The experimentally determined scaling relation in equation (23) is similar to the square root
law first postulated by Luther in 1906 for the speed of a diffusion limited wave [83], which can be
derived from dimensional arguments in the following way. For a reaction Substrate+A+B — C
with a reaction constant &, one expects the characteristic time scale g to be set by the rate
of the reaction: 7' = k[A][B]. Any length in the problem can only come from the diffusion
constant of the medium D: the distance diffused in a reaction time is given by +/Dmr. Thus
the speed should be ¢ ~ v/D7r/mr ~ 1/ Dk[A][B].

Such a square root dependence has been found in a number of experiments on single fronts
in the BZ reaction, where the wave speed c is usually fit to the function:

1/2

c=Ax"* - co, (24)

with x = [H2SO4] x [NaBrOs)], ¢y ranging from 30 to 70 um s™!, and A from 300 to
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500 pm s~* M~ [77,79,80,85]. Analysis of chemical models of front propagation in the
BZ reaction [47,48,79,85] as well as more general models [86] justify this functional form, but
without the constant cp. It is merely used as an additional fit parameter, and as far as we
know is unjustified, with the exception of a suggestion by Showalter that it is related to the
concentration of Br~ [48]. Note that the product x varies over a small range in most of these
studies (the largest being from 0.07 to 0.14 M2 [77]), and that in addition to equation (23), a
linear relation ¢ ~ x is often also a good fit of the data.

In our experiments, the velocity ¢s is consistent with a square root dependence on x — X,
with x varying from 0.02 to 0.36 M2. The value of x on the “critical line”. x., plays the role of
the constant ¢g in equation (24), defining the concentrations for which ¢ = 0. Thus the speed
of waves within the spiral have the same scaling as the single wavefront speed, indicating an
internal self-similarity of spirals over a wide concentration range; this was also suggested by a
recent measusrement of the dispersion relation ¢(T") in a BZ open reactor [50].

4.2. MODELS FOR SPIRAL BEHAVIOR. — There are several different theoretical approaches
to the dynamics of spirals in reaction-diffusion systems, and in particular to the problem of
spiral selection. To compare with our experimental measurements, we focus on the models
which may be suited to spirals in the BZ reaction. In the first two sections we consider two
different approaches: chemical modeling and singular perturbation methods. In both cases we
evaluate the predictions in light of our experimental results, though it is not our intention to
give a comprehensive review. In the third section, we discuss possible reasons for the differences
between these models and our observations.

Note that we do not describe two other approaches which have proven successful in different
areas of spiral dynamics, but which cannot be quantitatively compared to our results. The
first one is a kinematic theory developed by the Russian school [54,87,88]. The other one is
the normal form approach of Barkley [71,72], which successfully provided a framework for the
understanding of the meandering instability; it included a spiral phase diagram qualitatively
similar to those in Figures 4c-d. In particular, the large-core spirals are next to the existence
boundary, and close to the prograde meandering spirals (as in Fig. 20), which is also the
organization observed in the Oregonator model [51].

4.2.1. Chemical: The FKN Model and the Oregonator. — A coherent, simplified model of the
chemical mechanisms underlying the BZ reaction was proposed by Field, Kéros, and Noyes in
1972, and is known as the FKN model [89-91]. Kinetic equations can then be derived from
this model, and a simplified version is given by three coupled differential equations known
as the Oregonator [47,92]. It was derived for well-stirred batch reactions where there are no
concentration gradients; in these cases it is in excellent quantitative agreement with experiment
[90]. It has also been applied to spatially extended systems by the inclusion of diffusion terms;
this is generally believed to be sufficient, though no theoretical reflection seems to have been
made on this point. Nevertheless, this chemical reaction-diffusion model indicates the possible
relevant concentrations to spiral dynamics. In this section we compare our experimental results
with numerical simulations of spirals using the Oregonator. This indicates some fundamental
disagreements between the measurements and these chemically-based models.

Originally the FKN model was derived for the oxidation of malonic acid catalyzed by cerium.
It can also be adapted to other variants of the reaction, but the rate constants of the elemen-
tary reactions have to be reconsidered. The approximations which lead to the Oregonator
may then need to be modified, resulting in different models [79,93-95]; unfortunately, these
distinctions are often not specified in the literature. The Oregonator also explicitly assumes
that a number of species concentrations, including malonic acid, are constant. Although this
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allows in principle for the steady state regimes that are obtained in an open reactor, some care
should be taken with any quantitative comparison between the Oregonator and experimental
results from an open system. There is notably no flow rate or other mechanism in the Oregona-
tor which maintains the nonequilibrium conditions, whereas such things are obviously present
experimentally. This difference may in fact be crucial [96]. However, in what follows we con-
sider only our experimental conditions, namely the oxidation of malonic acid in the presence
of ferroin. A rigorous justification of the spiral simulations with which we compare our results
would require a careful re-examination of the models, which we will not attempt here.

Amidst the many elementary reactions that take place in the BZ reaction, the FKN model
distinguishes three processes: bromide consumption (A), the autocatalytic stage (B), and re-
generation (C). Each process is controlled by the concentration level of a particular species,
with a particular role in the oscillation cycle. Process A involves the transformation of the
bromide ion (Br~) into different oxidized forms. Since this ion is an inhibstor for the autocat-
alytic process B, the role of process A is essentially Br~ removal. When [Br~] reaches a lower
critical value, process B starts, leading to a rapid increase in the amount of HBrQO,, which is
called the activator. An additional result of this reaction is the oxidization of the catalyst,
which transforms (*) Fe?t into Fe?t Process C transforms the catalyst back into its reduced
state (Fe?T), at the expense of oxidizing the malonic acid. But this latter reaction produces
Br~ ions, which block process B and restart process A; the cycle is complete. In the overall
reaction, the malonic acid is degraded, which is related to the decrease of the free energy as
required by thermodynamics.

The heart of this mechanism is the autocatalytic process B, which controls the leading front
of a single wave moving into a fully recovered medium [47,48]. Its overall stoichiometry is:

BrOj + HBrO; + 2Fe?* + 3H' — 2HBrO; + 2Fe** + Hy0. (25)
An analysis of the intermediate steps show that its effective time constant is given by [91]:
" = k[H*][BrO3], (26)

where k varies between 102 M~?s~! [86] and 10* M 25! [47,48]. This effective rate sets the
time scale for the wave, and one expects the speed of a front to be given by ¢ ~ +/D/mx
(Luther’s law, see Sect. 4.1), which is nearly equation (24). This indicates the fundamental
role played by the product [H1][BrO3 ], which is essentially our x (Eq. (3)).

Based on the FKN model, a set of coupled differential equations can be written for the three
intermediate products that characterize each process [47,94]. These equations are known as
the Oregonator:

dzx

g = z—z% - y(z — g), (27)
dy

e = —qy-zy+fz (28)
dz
3 = % (29)

where x ~ [HBrOj], y ~ [Br~], and z ~ [Fe**]. The concentration variables, the time
7 and the parameters €;, €2, and ¢ are all normalized by average chemical concentrations
and rate constants [24]. The f which appears in equation (28) is not directly related to the

(*)For simplicity, we represent the state of the entire catalyst (ferroin or ferriin) by that of the
metal ion.
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Table IV. — Tyson’s “Lo” constant rates for the Oregonator (from [94]).

kJ k2 k3 ka k5
1M-1g=1 108 M—25~1 2M—3s"1 2x103M-3s1 10M2g1

concentrations, and represents a partial knowledge of the actual chemistry involved in process
C. It is thus taken as a free parameter, which from chemical arguments is between 0 and 4 [51].
The three dimensionless parameters are given by [26,94]:

ky [organics]

= A A 30
© = s [HB0; ] (30)
2ksks [organics]
- , 31
2 k2ks [H']2[BrO;] (1)
 2ksks
= T (32)

where [organics] = [BrtMA] + [MA], and the &, are the various rate constants defined in [94].
Following [51}, we consider the version with Tyson’s “Lo” parameters, see Table IV.

These parameters are typically: € ~ 4 x 1072, €3 ~ 2 x 1074, and g ~ 8 x 1074 [94]. Since
€2 < €1, time scales are well separated and the y variable can be considered at its equilibrium
value y = fz/(q+ z). Thus equations (27-29) become the two-variable Oregonator:

dz 2 T—q
Qg = -2 fzx et (33)
%z_ = z-z (34)

with the parameters ¢; and g still as defined in equation (30) and (32). Since ¢ depends only
on the nature of the chemical reaction, it is fixed. But €; and f can vary, and are usually
considered as two independent parameters [26,51], with e; <« 1 and f ~ 1. They are both
determined by the chemical concentrations of the reagents, though the exact dependence is
not known.

The qualitatively important features of the two variable Oregonator are best seen in its
nullclines, represented in Figure 23. The nullcline dz/d7 = 0 has an h-shape, whereas that for
dz/dr = 0 is linear. We only consider the case where they have a single intersection, which
is the fixed point. The relative position of the nullclines, which depends on the parameter f,
determines whether the point is unstable (the medium is oscillatory) or stable (the medium is
excitable). The relative speed of evolution on the branches of the cycle is set by €;; it is the
ratio of the typical time scales of the “slow” reaction to the “fast” one. Many studies have
been devoted to this model (see [22]).

In order to allow for the study of spatial patterns in extended systems, the diffusive terms
D,V?2z and D,V?z are added to equations (33) and (34). With this modification, the Oreg-
onator has been successful in qualitatively reproducing the same spiral behavior observed in
experiments. The most complete survey to date of simple and meandering spirals in this model
was carried out by Jahnke and Winfree [51]. For fixed values of ¢ = 0.002, D, = 1.0, D, = 0.6
(based on the molecular weights of HBrO, and ferroin), they surveyed spiral dynamics, includ-
ing ps and 7%, in the two dimensional parameter space (€1, f). Since their simulation did not
include enough spiral turns to measure ps directly, it was obtained by combining the measured
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Fig. 23. — The shape of the nullclines for the two variable Oregonator (Eqgs. (33-34)). The solid
straight line correspond to the excitable case (f =~ 4); the dashed one to the oscillatory case (f ~ 1).
The dotted line visualizes the relaxation oscillations. The arrows represent the relative speed. This is
also the shape of the nullclines for equations (37-38).

T, with the dispersion relation from a 1-D circular simulation. Also, the measurements for
both simple and meandering spirals were treated together.

From a general qualitative point of view, there are common features between their phase
diagram and quantitative relations and ours. Indeed, they observe a boundary for the existence
of spirals, where both pitch and period (A¢ and 7y in their notation) diverge as power laws.
They also observe well defined regions of different dynamical behavior, notably, simple and
meandering spirals. In addition, the relevant parameter, though not explicitly written, is said
to be the distance from the divergence boundary.

This boundary constitutes a well defined feature for matching to our results. In the parameter
region studied by Jahnke and Winfree. it occurs at high values of f, corresponding to an
excitable fixed point in a chemically reduced state. Our critical line is close precisely to the
homogeneous reduced state (see Figs. 4a-c). Moreover, our preliminary measurements of the
spiral core (see Fig. 20) show that close to the retracting wavefront instability, the spirals
are of the large-core type, which seems to be what Jahnke and Winfree observe based on our
estimates from [51]. A finer comparison between theories and experiments would require the
knowledge of the ratio of the core radius to the spiral pitch in the Oregonator, but this has
apparently not been measured.

A closer look at their results, however, reveals a number of qualitative inconsistencies that
rule out a full agreement. First, the phase diagram of such a model (Fig. 9 of [51]) is essentially
two-dimensional, whereas ours has a conspicuous three-dimensional structure; at the best, the
Oregonator’s phase diagram is a projection of ours. In their phase diagram, most conditions
lead to meandering spirals, whereas experimentally we see the opposite. This suggests that ¢;
and f are not likely to give the right scaling. In addition, they have not tried to scale their
results with the distance to the boundary (a function of €¢; and f), instead focusing on the
limit as €; goes to zero; this limit corresponds to that of a sharp wavefront.

Finally we note that the scalings with €; reported by Jahnke and Winfree,

T, ~ &3 (35)
ps ~ &° (36)

also lead to the constitutive relation, equation (6). However, the spiral diffusion number
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M, = p?/DT, (Q in their notation), which they also measured directly, varies from 72 to 900.
We discuss this further in Section 4.3.

The spatially extended Oregonator thus shows both similarities and disagreements with our
experimental results, and also with previous theories; Jahnke and Winfree write in their con-
clusion: “we have not been able to interpret our results quantitatively in terms of theory” [51].
Nevertheless, the Oregonator is well known to give satisfactory quantitative agreement with
well-mixed experiments (no spatial dimensions). This may mean that simply adding diffusion
terms to the original Oregonator misses some aspects of spatially extended patterns. Inter-
pretation of our experiment may also require a more detailed analysis of the experimental
conditions: though our spiral patterns are embedded in the thin porous glass, there are also
strong perpendicular concentration gradients since the chemicals are not fed symmetrically
into the two chambers of the cell. We discuss this in Section 4.2.3

4.2.2. Asymptotics: Singular Perturbations Methods. — Although spirals are experimentally
easy to produce in the BZ reaction, mathematically they pose a difficult problem. T'wo main
questions have attracted attention: given a set of reaction-diffusion equations, is it possible
to prove that a simply rotating spiral solution exists? If it does exists, what is the selection
mechanism? Much theoretical work has been devoted to these questions [82,97].

A particularly fruitful approach comes from what is known as the singular perturbation
limit. This approach reformulates the spiral selection problem for two coupled equations into
a free-boundary problem. in the limit of a small parameter which is the ratio of reaction time
scales e.

Although once again it is difficult to connect experimental results to these analyses, com-
parison can still be made with some of their consequences. We begin by briefly describing
the basis of the approach. Consider a generic representation of two coupled reaction-diffusion
equations:

Bu _ f('LL, U) 2
% = o T (37)
g g(u,v) 2
5 = o DV, (38)

where u and v are the time and space dependent chemical concentrations, 7, and 7, are
characteristic reaction times for the u and v variables, respectively, and the functions f(u,v)
and g(u,v) describe the reactions. Usually f(u,v) and g(u,v) have nullclines similar to those
illustrated in Figure 23: note that the Oregonator model given by equations (33-34) is a
particular case of these equations. For the diffusion constants we use the notation 6 = D,/ D,.
and D = D,. The small parameter is defined as the ratio of the time scales: € = 7,/7,.

The equations are then nondimensionalized by the time and length scales 7, and 7,4/ D/7,
respectively, leading to:

7] 1
a—;‘ = —f(wv) + eV, (39)
—g—z = g(u,v)+ 6eV3, (40)

where now ¢ and V are non dimensional coordinates. These equations are the starting point for
most theoretical studies, and for Fife’s conjecture on the selected spiral solution. The singular
perturbation theory considers the case where € goes to zero; this implies a vanishingly small
reaction zone, which follows the dynamics of the slow variable.
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Geometrical. — Starting from the general two equation system 39-40, where one variable reacts
much faster than the other, Keener and Tyson have formulated a geometric model for spirals
in reaction-diffusion systems {82,98]. They provide a selection mechanism by requiring that
the spiral solution should satisfy both the dispersion relation and another “critical” relation,
arising from the constraint imposed by curvature on the velocity.

They assume that both variables are diffusing with the same diffusion coefficient, thus § = 1.
Since most of their results do not give an explicit analytic form, and since numerical integration
is necessary to obtain final results, they use the two variable Oregonator model (Egs. (33-34))
to compare with the experimental results of Winfree [99] and Miller et al. [100].

The dispersion relation is first calculated in a one-dimensional model. Because of the struc-
ture of the nullclines, at the lowest order in ¢, the fast variable 4 jumps between two possible
values, whereas v has a slower dynamics. A traveling wave, or pulse, is made of three broad
parts separated by narrow regions where the u gradients are large. In the broad regions, u
is close either to its quiescent or to its excited value. The dispersion relation links the pulse
velocity to its duration (or period), which is approximated by the time spent in the slow dy-
namics part. The velocity is obtained by constraining the leading wavefront to remain at a
fixed distance from the wave back. It is expressed in terms of integrals of implicit functions,
and has to be calculated for specific models. The detailed case of the Oregonator is treated
in {101].

The critical relation relates the normal velocity ey to the local curvature x, through diffusion.
It is written as:

en = c(vg) — €k, (41)

where c(vp) is a velocity that only depends on the value of the v variable along the spiral,
vg. Otherwise this equation is similar to the “eikonal” equation, whereby the velocity of a
curved front is equal to that of a plane front plus a term proportional to the curvature. If the
simple assumption of negligible curvature is made, then equation (41) becomes ¢y =constant.
The solution is then the involute of a circle, which is known to agree well with experimentally
observed spirals far enough from their center [15,39,49,102]. To account for curvature effects
close to the center, a differential equation relating the variations of the local wavenumber with
the polar angle to the normal velocity and the local curvature has to be written. A similar,
though somewhat simpler, approach was used in 1951 to describe the spiral around a screw
dislocation in crystal growth [103].

To solve the resulting equation, boundary conditions must be given. What happens at the
center near the spiral tip is a difficult problem, whereas the solution around a hole is simpler.
Keener and Tyson employ a convenient way to approximate the full problem. They assume a
fictitious inner boundary at a radius ro from the center, which plays the role of a hole boundary
for the outer part, and solve the tip problem inside this disk. They find a critical relation that
is written in physical units (see Eq. 5.8 of [98]):

2
rg 1 _ 271
DT =~ oL ™ T )

(42)

where M, = p2 /DTy, with ps the pitch and Ty the period of the selected spiral, D the diffusion
coefficient, and the two numerically determined constants m, ~ 0.330958 and .. ~ 0.097.

For the case when rg is very small, this equation becomes to lowest order
Ms = 2n/m. = M. ~ 18.99. Keener and Tyson wrote that this result “is intriguing be-
cause it is independent of the chemical composition of the excitable reagent” [98]. This agrees
well with our observation that M, is approximately constant for all simple spirals, although
the value we find is larger: M, =~ 52. In their 1988 paper, Tyson and Keener warn that, if
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the radius is large enough, equation (42) might not be valid any more [82]. Implications are
discussed in Section 4.3, along with the interpretation of the observed variations in M, in terms
of a finite-sized core radius ryp.

Fife Scaling. — These singular perturbation methods received a strong impetus when Fife
showed that there might be a unique scaling solution to the system (Eqgs. (39-40)) if the space
and time variables (z,#) are further rescaled as

==, t'=-—. (43)

Then € scales out from the resulting equation; this is known as the Fife scaling [97,104, 105].
1t has now been checked in a number of particular cases of various J [52,106-112], that from
here a simply rotating spiral solution may be obtained, whose overall scale is set by e.

Note that the Fife scaling predicts the same constitutive relation as we have found experi-
mentally (Eq. (6)). Thus the spiral diffusion number M is a constant:

M. = P 2_1_(TUVD/TU)2p_2
" DI, D To T

pzz
=T = constant. (44)

In other words, the € dependence cancels for the particular scaling choice given by equation (43),
a property of the Fife scaling which to our knowledge has not been previously noted. We will
discuss this further in Section 4.3.

However, most theoretical studies are concerned with the scaling of the solution in the Fife
scaling limit (¢ — 0). This corresponds to spirals with small pitch (short wavelength), fast
rotation period (high frequency), and slow wavefront speed [82]. In particular, it implies that
the dependence of the spiral rotation period T; is given by

Ty ~ Tpet/? (45)

Our results give a different picture: the spiral parameters depend on the distance in parameter
space to the retracting wavefront instability, given by p = (x — x¢)/Xc. The limit g — 0, where
we observe scaling, is the limit of large pitch, slow rotation period (low frequency), and slow
speed. We conclude that. as far as the BZ reaction is concerned, the Fife scaling limit seems
to be the inappropriate. In fact, experimentally the fast spiral limit is in a sense interrupted
by the convective instability to defect-mediated turbulence. Thus the parameter dependence
of the spiral dynamics are organized in a very different way than the Fife scaling approach. It
may be that such solutions do occur in some system, or in the BZ reaction in another limit,
but at least in our experiments we see no crossover to a new scaling before the convective
instability. We are led to conclude, unfortunately, that the mathematically convenient limit is
not the physically meaningful one.

Though most of these studies focus on the scaling with ¢, while the other guantities in
the model remain fixed, there is another relevant parameter: the so-called dimensionless ex-
citability A [52,112]. This quantity characterizes the phase space structure of the system;
it is proportional to the range of variation of the slow variable v within one pulse. At low
excitability it is also proportional to the velocity of the planar wave front. Karma [52] has
shown that there exists a single control parameter B = (g/a?)e/A3 for spiral solutions, where
¢ and « are model dependent constants of order unity. If one assumes that the wavefronts
do not interact within a spiral, a number of analytical results can be derived for the single
diffusive case (§ = 0) [52,112]. In particular, spirals should exist at low B, with a transition
to retracting fingers occurring for B > B, where the rotation period diverges.
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This description bears some resemblance to our results. Since the fronts we observe are
well defined, it is likely that a proper description of our experimental spirals requires ¢ « 1.
Using Karma’s approach, our results could then be qualitatively interpreted as corresponding
to spirals in the model with a constant € and a varying A. However, there remain a number of
quantitative differences between his predictions and our observations; in particular his approach
does not produce the observed scaling laws for T and p.

4.2.3. Possible Origins of Disagreement with 2-D Models. — We have seen in the previous
sections that theories and models provide to some extent a qualitative account of the spirals
we have observed, but that quantitative comparison fails. We suggest two sources of this
failure: inadequacies internal to the theories themselves, and differences between the models
and the actual experimental system.

Theoretical Difficulties. — We first discuss the general two variable systems describing generic
excitable media. As we have seen. whether the slow field is diffusing or not, the Fife scaling
leads to a unique spiral solution, and provides a positive answer to the problem of selection.
However a number of difficulties remain with this solution [107.109,111]. When compared to
direct numerical simulations of the model, it appears that some variables, like the frequency,
behave essentially as expected, whereas others, like the core size, show a significant departure
from predictions.

The stability of the Fife solution is also an unsolved problem, since it is known that the core is
unstable to a single real mode [111]. It has been suggested that this instability could be related
to the meandering instability that has been observed in simulations at small € [57,69,73]. But
the meandering instability arises through a Hopf bifurcation [70], ¢.e. with a complex conjugate
pair of unstable modes. These two results are in contradiction.

Finally, as experimentalists we also wonder whether one of the most basic assumptions of
the Fife solution is relevant: that successive wavefronts do not interact.

Modeling the Experimental System. — Our results also lead us to speculate on the source of
differences with the microscopic chemical models. As briefly mentioned earlier, the FKN model
and the Oregonator have not been derived for open reactors: terms describing the input and
output flows are missing in the equations, which could play a role in the stability properties of
the system. In addition, it might well be that our concentrations have exceeded the ranges for
which these models have been developed.

However, a more important difference may lie in the description of the reactor itself. Model-
ing of real open reactors used in reaction-diffusion experiments (specifically for Turing patterns)
is only recent [96,113]; experimental observations had first been qualitatively explained in terms
of the ideal two-dimensional theories. But the growing accuracy of the experiments has lead to
the conclusion that guantitative agreement can only be obtained with a more accurate mod-
eling of the apparatus. This means taking into account the geometry of the experimental cell,
with the finite thickness and the chemical gradients of the reaction medium.

This approach might also be appropriate for our spirals. The observed pattern is actually an
integration over the porous glass thickness; the transverse information on the wave structure
is lost. Nonetheless there are strong concentration gradients in that direction. It may be that
there are different concentration layers within the disk thickness, which if separated would
be in different dynamical regimes; in the experiment, they are diffusively coupled. A similar
situation gives rise to the crescent-shaped waves in the chemical pinwheel experiments [34,114],
and other experimental effects of transverse gradients have also been observed [115,116]. The
resulting global behavior, and its bifurcation structure, would then require more advanced
models than the standard two-dimensional models. Taking into account the third dimension
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opens the way for a large number of possible new phenomena —transverse size of the reacting
zone, wave structure and dynamics, with possible instabilities through a “third dimensional”
escape [117]— that need further experimental and theoretical studies.

4.3. QUANTITATIVE ANALYSIS OF THE SPIRAL DIFFUSION NUMBER M;. — Given that quan-
titative studies of spirals are rare, and that most experiments have been conducted with dif-
ferent chemical concentrations, it is no surprise that mainly qualitative comparisons have been
made. In order to compare spirals with different characteristics, one needs dimensionless sim-
ilarity variables which describe the spiral in terms of the relevant physical properties of the
medium. Of course, the difficulty lies in finding what is relevant. Given that pitch and period
are the two most characteristic quantities of the spiral, and that diffusive processes play a
major role in the spatial aspects of the system, the variable M, = p2/ DTy, our spiral diffusion
number (Eq. (8)), is a reasonable first choice. This was realized by Winfree. who has tabulated
values of M (which he calls Q) for both experimental work and simulations [26,51,57]. The
quantity was in fact first introduced in models of spiral formation in crystal growth [103]. It
might also be used to compare spirals in any system where diffusion plays a role, for instance
in liquid crystals [118,119], or the phase patterns in Rayleigh-Bénard convection [97,120].

Previous experimental measurements, performed only in closed systems, have found Mg
ranging from 20 to 180 [19.55,57]. This may in fact be related to the aging of the system: in
one experiment it was shown that M increases with time as the solution ages and the spiral
slows down [55]. Simulations of the Oregonator also show that Mg can have values ranging
from 70 to 900 [51]. The inconclusiveness of previous measurements of My may be the reason
why more studies have not been undertaken.

As remarked previously, the constitutive relation py ~ Tsl/ 2 (Eq. (6)) translates into a con-
stant value of M. The corrections to the scaling (see Sect. 3.3.2) imply variations in Mj, which
can be plotted as a contour map in the phase diagrams of Figure 4. An example is shown in
Figure 24 for the ([H2SO4], [MA]) plane (at fixed [NaBrOs] = 0.15 M). The dashed line corre-
sponds to the minima of M, described by equation (20). There is also a change in the core size,
and possibly also a change in the medium from oscillatory to excitable {Sect. 3.3.2). but further
experimental study is needed to clearly connect these diverse observations. It also remains for
a theoretical analysis of the spatially extended BZ reaction to provide the explanation for these
topographical features of parameter space.

A possible interpretation for the variations in M, is found in the critical relation from the
Keener-Tyson model (Eq. (42)). We first rewrite it for the normalized core radius R = 1o /ps:

Ry M.
R(MS)—_M_SVl——]lZ’ (46)

where M, = 2wx/m, ~ 18.99 is the predicted minimum M; corresponding to 7o = 0, and
Ry = (27/(0M.))Y/? =~ 1.847. If the radius is large enough, equation (46) is not valid and
should be replaced by another relation [82]. In the limit of diffusionless medium. this new
relation (see Eq. (25) of [82]) can be transformed to give M; as a function of the normalized
core radius:
17R(5 — 87R) + /nR(4 — T7R)
2 R(1 - 27R)? ’
which must then be inverted to get R(M;). The two resulting functions R(Ms) given by
equations (46) and (47) are plotted in Figure 25. In both cases, there is a minimum value for
My of about 20.

Equation (46) (curve (a) in Fig. 25) gives a maximum value for the core radius of about 3%
of the selected pitch ps at M, ~ 25, which then decreases down to about 1% for larger M; this
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Fig. 24. — The spiral diffusion number M; = p?/DT. in the ([H2S04], [MA]) plane, for fixed
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Fig. 25. — Reduced core radius R vs. spiral diffusion number M. Note the logarithmic scale in y;
(a), plot of equation (46); (b), plot calculated from equation (47).
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gives an overall variation in r¢ of a factor 3. On the other hand. the curve R(Af;), as obtained
from equation (47) implies large variations in R. For a given M, two values are possible:
either R is of the order of 10% or a few percent. Without any reason to choose one of these
curves over the other, curve (b) seems in better agreement with the observations of the core
size change and the V-shaped variation of Ms.

In Figure 24, we see that M, does not have a monotonic variation, but that its minimum
roughly follows the edge of the meandering tongue. This is compatible with equation (47) if one
allows for a shift in M;. Suppose that the “knee” is at My ~ 50; then the observed variation of
M, could correspond to a monotonic variation in R. The large core radii would occur on the
upper branch, and the small ones on the lower one. In addition, since the observed constitutive
relation does not show large variations in M;, whereas the core radius varies over at least one
order of magnitude, such a dependence is consistent with the vertical tangent in R(M;) at the
minimum value of M.

As noted above. the Fife scaling implies a constant value of Mg, but it does not specify what
this value is. A value was obtained by Karma in a study of the FitzHugh-Nagumo equations,
a commonly used model of excitable medium, for the specific case § = 0 in equations (39-
40) [107]. It is identical to the one found by Keener and Tyson [98]: M, = 18.99. This should
be compared to our measured value M; ~ 52. A comparison should also be possible with the
numerical results of Winfree for the FitzHugh-Nagumo model [57]. He finds variations in M;
between 21 and 144, without any clear minimum, although the size of the core changes in a
way qualitatively similar to what we observe. Though some caution should be taken since his
values also incorporate meandering spirals, there are many possible reasons for the difference
between these values. The bottom line is probably that the Ehenox/nenon is not understood.

4.4. COMPARISON WITH CLOSED REACTORS. — As we have noted throughout this article,
most previous experiments on the BZ reaction have been conducted in closed reactors, making
it difficult to directly compare our data with previously published ones. These experiments
often seem to give meandering spirals, whereas large portions of our explored phase diagram
contain simple spirals. This might be due to the consumption of malonic acid. We have indeed
observed that at low malonic acid, all spirals are meandering (see Figs. 4a and 4d). This agrees
qualitatively with the observed evolution: in a closed reactor, an aging spiral always evolves
from simple to larger and larger meandering [55,121]. Further investigation of the role of [MA]
in open reactors should lead to a better understanding of spirals in closed reactors.

4.5. SPECULATIONS ON SPIRALS IN REACTION-DIFFUSION SYSTEMS. — Given that the agree-
ment between our data and any one of the current proposed models for spirals in reaction-
diffusion systems is at best partial, one might well wonder what sort of a model would agree
with our data. In fact the scaling relations we have observed amounts to a connection between
the microscopic level (chemical concentrations, represented by x or u) and the macroscopic
level (spiral observables, ps and 7). By following a line of reasoning based on our scaling
relations, we are led towards the general form of the reaction-diffusion model which would
describe our data, though not to the model itself. The speculations presented here clarify the
implications of our observations, and in particular highlight the analogy to second order phase
transitions.

We begin with the general reaction-diffusion equations given in equations (37-38). For
simplicity we will demonstrate our arguments using only one equation:

du_ 1Y) | oz, (48)
ot T
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where 7 is a typical chemical timescale, and D the diffusion constant as before. As we are
interested in the selected spiral solution to this equation, we non-dimensionalize the variables
by the time and space scales ps and T, respectively. This leads to:

10u _ flu,v)

1 12
Tov = 7 + gDV u, {49)

which can be rewritten, dropping the primes,

ou T, DT, _,
Tl flu,v) + P Vu (50)

- T 1 o
- = = flu,v) + MSV . (51)

The spiral diffusion number M appears explicitly as the multiplier of the diffusion term, in
much the same way as the Reynolds number in the Navier-Stokes equations for fluid flow
(see e.g. [122]). Thus the constitutive relation p; ~ T2/? which implies a constant Mg, also
implies that the diffusive term is the same relative size for all concentrations. In other words,
M, = const implies a self-similarity which here appears as the independence of equation (51)
of any chemical concentration.

Note that the non-dimensionalization leading to equation (51) can be written explicitly in
terms of p using equations (10-11):

7 £ ~ 1/2 - i ~
x o pix, ot T k. (52)
A comparison of this with equation (43) shows clearly that the Fife scaling is in the opposite
limit as the natural one implied by the observations, which leads to the parameter y.

It is interesting to consider this argument further. given our measured scaling Tg ~ p~
Since M is independent of y (to first order), as is the left hand side of equation (51), the
prefactor of f(u,v) must be as well. Thus 7 ~ p~' Our original equation in lab frame
coordinates becomes:

1

%_;f = uf(u,v) + DV:u. (53)
We recover a simple Landau equation, which clarifies the link to second-order phase transitions.

The consideration of the second variable v of course adds a complication to this derivation,
since one would then have to choose which time scale is related to T;. In addition, the argument
which results in equation (53) does not treat the wave propagation boundary as distinct from
the spiral boundary (see [56.57]). However this is only the beginnings of a model which might
describe our experimental results, and should only be taken as giving the flavor of a future
critical scaling theory for spiral patterns.

5. Conclusion

As a result of our study, is it now possible to prepare a spiral with an arbitrary set of charac-
teristics? In other words. can we specify beforehand what chemical concentrations should be
mixed in order to obtain a spiral with a given pitch and period? Well, our answer is a partial
(lyes” .

As far as spatial open reactors are concerned, an unexpected simple picture of spirals in the
Belousov-Zhabotinsky reaction has emerged. The selected spiral is a sort of critical pattern,
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which can to first approximation be described by two scaling relations: one linking the period
with the chemical species, and the other linking the pitch with the period. In this sense, the
pitch and period cannot be independently chosen. The spiral existence domain is delimited on
one side by a critical line, which also defines the onset of the retracting wavefront instability,
and at the other end by a lower bound on the rotation period, below which the spiral becomes
unstable to defect mediated turbulence. This means that we have experimentally found the
relevant parameters. Our measurement of the corrections to these scaling relations open the
way both for a finer link with models for the chemical reactions and for a possible physical
interpretation in terms of the core size.

Although meandering spirals must somehow fit into this picture, subtler considerations ap-
parently need to be taken into account to predict where in the chemical phase diagram the
meandering instability takes place. This remains an open question.

We have seen that a large part of our framework comes from observation only. Neither
chemical models nor geometrical theories provide a full quantitative understanding of our
measurements. Current analytical approaches, which seem satisfactory when restricted to a
qualitative comparison with experiments, fail to give a full coherent description. The discrep-
ancy might be rather deep since our data show that most analytical work actually considers the
opposite limit to the one where we observe our scaling laws! In other words, our observations
have lead us to define a parameter u which ranges from 0 to 16. Qur attempts to connect this
i to the “small parameter” of various models indicate that the two are not compatible.

Partial failure of the chemical modeling is probably due to the lack of quantitative data on
spirals. Although our experiments supply material to confront further studies, we are still far
from an exhaustive knowledge. First, we have only explored a part of parameter space, since
we only varied three concentrations. Of the parameters which remain, the influence of the
catalyst concentration, the flow rate, and the diffusion constant of the medium (which would
include the temperature), should definitely be studied. But even within the survey presented
here, several open questions remain. It is certainly necessary to explore the phase diagram
at low malonic acid concentration; this could clarify the relation between open and closed
systems. Also, we have not systematically tracked the transition from an oscillatory to an
excitable medium, since no difference is seen in the spiral; this might give informative insight
to the underlying chemistry.

Nonetheless, our data indicate that general principles of spiral dynamics should be sought.
We have found that the spiral is a kind of critical, self-similar structure within the chemical
parameter space, so it is likely that it obeys some simple extremization rule, such as the
maximization of malonic acid consumption. In the end, a realistic model of the experimental
setup may be needed to clarify the arrangement of chemical concentrations within the reactor.

Given the efficiency of the normal form analysis, which successfully predicts a full phase
diagram from a localized study, it would be interesting to couple the known five ODEs which
describe the motion of the tip [71] with a continuous two dimensional phase field describing
the rest of the spiral. This approach would only add one PDE, which would be simpler than
the original starting point of two coupled PDEs.

Although these results seem to raise more new questions than answer old ones, our hope is
that they will stimulate further study, theoretical as well as experimental.
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