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Abstract. Recent Neutron Scattering experiments by Richter et al. ill show that the pres-

ence of coil-crystalline block copolymer (PE-PEP) micelles in a mixed alkane bath suppresses
the crystallization out of solution of the long alkane component at low temperatures. Moti-

vated by these experiments, we study theoretically the thermodynamics and kinetics of lamellar

coil-crystalline block copolymer micelles in a bimodal solvent to better understand the factors

determining the anti-precipitation action of coil-crystalline block copolymers. We assume an

Alexander-de Gennes brush model for the strongly stretched corona chains and explicitly ac-

count for the polydispersity of the solvent chains. For the thermodynamic distribution of solvent

chains in the corona, we find a predominance of short solvent chains to long solvent chains in

the corona phase compared to the solvent bath, both with and without nematic interactions in

the corona phase. We also calculate the rate of crystallization of the long solvent chains onto the

micellar crystal core and find that the rate is sensitive to both brush and core parameters. In

particular, we predict that to maximize the rate, both Efoid/kTNA and Xn need to be made as

small as possible, where Efoid is the folding energy of the crystal core chains, NA the number of

statistical segments of the solvated corona chains and xn parameterises the strength of nematic

interactions in the micellar corona. This leads to the surprising result that for fixed Efoid, the

rate of crystallization is increased when we increase the molecular weight of the corona blocks.

1. Introduction

Block Copolymers (BCPS) form many interesting structures due to their amphiphilic nature,

I- e. the fact that two or more different chemistries are covalently bonded in the same molecule.

For exaInple when a diblock copolymer is added to a solvent for which only one component is

soluble (I.e- a selective solvent), the BCPS form micellar aggregates where the soluble parts

form an outer corona to shield the insoluble parts from energetically unfavourable contacts with

the solvent. In the case where the insoluble block is also crystallizable (I-e. a coil-crystalline
BCP) the core of the BCP Inicelle will be crystalline.

Recent experiments by Richter et al. iii
on the crystallization behaviour of a Inixed alkane

bath have yielded an interesting result. The specific system studied consisted of a sInall amount
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of a
higher molecular weight alkane (e-g. C35H74, or C36 for short) in a bath of decane

(I-e- CioH22). They found that the addition of the block copolymer PE-PEP significantly
lowered the temperature at which the high molecular weight alkane crystallizes out of solution.

It is known that PE-PEP is a coil-crystalline BCP (the PE block is crystallizable) and that

above its Critical Micellar Concentration (C.M-C.), it forms lamellar micelles in decane with a

crystalline PE core [2,3] (see Sect. 2)- Because of this, it was initially thought that the lowering
of the precipitation temperature of the long alkane was due to the co-crystallization of these

chains within the crystalline PE core. However Small Angle Neutron Scattering (SANS) has

shown that the PEP corona rather than PE crystal core of the micelle is swollen when the

temperature is lowered below the normal crystallization temperature of the long alkane in

decane [ij. By measuring the surface to volume ratio of the crystalline regions in solution

via SANS, Richter et al. were able to further conclude that the long alkane was crystallizing

onto the surface of the crystalline PE core. Since it is well known that the crystallization of

alkanes in solution proceeds via nucleation (e.g- Refs- [4]), Richter et al- have suggested that

the suppression of long alkane precipitation is due to the PE crystal surfaces of the PSPEP

micell§s acting as alternative nucleation sites for the crystallization of the long alkanes. This

implicitly sets up a competition between normal crystallizaton processes in the alkane bath

and crystallization onto the PE crystal core. Given that we are considering a kinetic process

(I.e. nucleation), the actual kinetic path that the system adopts is the fastest pathway. The aim

of this paper therefore is to calculate theoretically the rate of crystallization onto the crystal

core in order to better understand the factors determining the effectiveness of coil- crystalline
BCPS in suppressing long alkane precipitation.

Although there have been previous studies of the crystallization of PE or alkanes onto crystal
lamellae (e- g- Ref. [5]), there are at least two novel features in the experimental study of Richter

et al. The first is the presence of a solvated polymer layer (the corona)
on top of the crystal

substrate. We will show in Section 4 that this feature modifies the kinetics of crystallization
compared to the case of a "bare" crystal substrate. This means that the polymer corona plays

two distinct roles: the kinetically neutral role of keeping the crystal cores in solution and

separating the crystal cores from each other so that the crystal regions are finely dispersed
and do not precipitate out of solution; in addition it also plays the kinetically active role of

modifying the crystallization rate onto the PE core surface. The second novel feature is that

crystallization occurs from a mixed bath system rather than a single component system. Our

theoretical calculation will take into account both features in the experiments. In Section 2,

we
first calculate the thermodynamic distribution of short and long chains in the polymer

corona compared to that in the bath. Section 3 considers the effect on this thermodynamic

distribution when we include nematic interactions in the corona phase. The motivation for

this is the evidence that a pre-transitional nematic effect can be important in alkanes [6, 7],
and is therefore a candidate for favourable interactions between the alkanes and the corona.

Due to the presence of an energy barrier at the phase boundary between the crystal core

and alkane bath, the crystallization of long alkanes onto the PE core is an activated process.

Because of this, the results from Sections 2 and 3 contribute to Section 4, where we calculate

the crystallization rate of long chains onto the PE core surface. Section 5 is our conclusions

section.

2. Thermodynamic Distribution of Solvent Chains in the Corona

In this section, we
calculate the thermodynamic distribution of solvent (alkane) chains in the

corona phase. This distribution applies to the corona phase of Richter et al- system above

the crystallization temperature of the long alkane chains. In order to proceed, we need more
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Fig. 1. A-B coil-crystalline block copolymer micelle in a solvent bath containing short (Ni links)
and long (N2 links) solvent chains. The B core is crystalline, while the solvated A blocks from a highly

stretched polymer brush.

information on micellar structure. This has been elucidated by Richter and coworkers using

neutron scattering [2, 3]- They have shown that the PEP-PE block copolymers form lamellar

micelles with crystalline PE cores while the PEP blocks emanate from either side of the core to

form the corona. Note that the driving force for micellization in this case is the crystallization

energy of the PE chains rather than the incompatibility parameter x between PE and the

solvent. Also, for the molecular weights used (around 5k to 10k for each arm), the PEP blocks

were found to be highly stretched to many tiInes their radius of gyration (about 3 to 5 times),
I-e- they form a polymer brush.

Based on this information, in Figure i we
show an A-B micelle in a solvent bath. The

B blocks are crystalline with the chains folding back and forth as shown while the soluble

A blocks are highly stretched to height h. As in Richter's experimental system, we shall

consider a bimodal solvent bath containing a short chain component (length Li)> and a long
chain component (length L2). If a is the statistical segment length for the solvent chains,
then the number of statistical links of the short and long chains is given by Ni(% Lila) and

N2(~ L21a) respectively (N2 > Ni). The volume fraction of the short and long components is

~§1, §S2
respectively in the bath and ~§[, ~§[ respectively in the brush.

In order to find ~§[, ~§[, we require the free energy of the brush phase and the bath. We

will assume the simplest model for the brush, due to Alexander and de Gennes [8,9]. A more

sophisticated (and accurate) self-consistent field method for polymer brushes exists [10j and

may be employed if a more refined version of the present calculation is required. The Alexander-

de Gennes model assumes a step function of height h for the monomer concentration profile
(so that ~§[, ~§[ are independent of the distance z from core brush interface) and all the chain

ends are at z =
h. Working within the framework of a Flory Huggins type lattice model (lattice

cell length a),
we can define free energies per site for the system. For the brush phase this is
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~, Eioid a (I)

given by
~~~~~~ ji ~j[ ~§I) h~

+
~~

In Ii + ~~ ~~ ~
kT ~

site
= ~~ NAa~ Ni

where NA is the number of statistical segments of the A (brush) chains and Eioid is the folding

energy of the B (core) chains. The first term on the right hand side is the stretching energy
(per site) of the brush chains; this term penalises strong stretching of the brush. The second

and third terms are the translational entropy of short and long chains respectively in the brush

(the Flory interaction parameter between solvent and brush chains is assumed to be zero).
These terms contribute an

effective interaction which tends to swell the brush. The reason we

have adopted the Flory-Huggins free energy for solvent chains instead of the excluded volume

interaction between brush chains [10] is to explicitly account for the different lengths of solvent

chains. The last term is the interfacial energy of the crystal core/brush interface which tends

to reduce the interfacial area. Note that the main contributon to interfacial energy (or surface

tension)
comes from the folding energy of core chains rather than the incompatibility between

the core and solvent, as is the~case when the core is amorphous. Although the PE core is

crystalline, the chains within the crystal lattice are
fairly mobile ill]

so that the number of

folds per chain is not fixed, I-e- the cystal core is a "thermodynamic" crystal [12]. This means

that unlike in the case of end grafted polymer brushes, the surface area per chain E is not a

quenched variable in this system. Because of this, there are three independent variables in the

brush free energy, ~§[, ~§[ and E or alternatively ~§[, ~§[ and h, since the E and h are related

via the volume per chain by
jf~~3

~
~l(~ i~~ i~~)

~~~

In this paper we will use ~§[, ~§[ and h as our independent variables in the problem. Vilgis and

Halperin [12] have also considered the thermodynamic properties of lamellar coil-crystalline
BCP micelles (as shown in Fig. I) using a scaling theory. Our treatment is essentially the

same as theirs except for the fact that
we have explicitly accounted for polydispersity of the

solvent (alkane) molecules, since the main focus of this paper is the distribution of solvent

chains within the brush (corona) phase.
The free energy in the bath is just given by the translational entropy of the solvent

chains, I-e-
~bath

~j ~j(~ i ~~ ~~ ~
~ ~~~~' ~~~

The chemical potential (per monomer) of species I is given in terms of Fsite and volume fractions

of different species by [13]

~~ ~ ~~~~~ + °lll~ [
~iJ °)j~ ~~~

where the summation is over all different species. To find the equilibrium brush height h and

#[, ~§[, we minimize Fbrush with respect to h and balance the chemical potentials of species I

and 2 in both the brush and the bath. From equations (1), (3) and (4) we then obtain the

following set of simultaneous equations

~ /v2/3 Efold ~~~

j~ ~f ~f j-1/3 j5)
a

~ kT ~ ~

i IN i IN~i~ ~ ~i~ ~

j~)
~si ~S2



N°10 COIL-CRYSTALLINE BLOCK COPOLYMER MICELLES 1383

$
~

50.5
~
'w
,~ i

*

0.025 0.05 0,075 0.1

Efold/kT/NA

Fig. 2. (~ii/~i)/(§S2/§S1) us. Efoid/NAkT for Efoid/kT
=

7, Ni
=

2, N2
=

8, ~ii
=

0.98, ~i2 =
0.02;

solid line without nematic interaction (xn
=

0); dotted line for maximum nematic interaction (xn
=

1)-

By stituting

equations (5) and
(6)

obtain
~§[ nd h as well.

In Figure 2 we plot ~§[/~§[ normalized to the ratio in the bath) against
ioid/KTNA

line), since ~§[/~§[ epends
on Eioid and NA only through this he

other pa-

ameters
are

ixed at
typical

values for system studied: ~id/kT = 7, Ni " 2,

N2 # 8, ~§1 " 0.98, ~2 # 0.02.
Clearly, ~§[ /~§1 <

Eioid/kTNA
expresses the ompetition between the elastic term (NA) and the surface ension

term (Eioid/kT) in the free energy.
The elastic term reduces the stretching of the

thereby creasing the surface area per brush chain and diluting the brush chain
concentra-

tion in the brush phase.
Conversely, the surface tension term decreases

chain and increases the brush chain concentration. Decreasing Eioid/kTNA therefore auses

the
brush

phase to seInble
the iolvent bath more. This is clearly seen in Figure 2 by

that as Eioid/kTNA ~ 0, §[/~§[, approaches the
long to short chain ratio in the bath. This

fact is ore in Figure 3
(solid

line), where we see that
per

brush
E is a monotonically ecreasing function of Using de Gennes' scaling

language [9], when we
decrease Eioid/kTNA, the "blob"

size of the rush
chains

increases and

conversely the brush oncentration goes
down.

In
Figure 4,

we plot
~§[

/~§[ rmalized)

against

N2/Ni (solid line), with ~id/kT = 7, Ni = 2. NA " 100, ~§1 = .98, ~§1 "
0-98,

§2

Again,
we

see
hat ~§[ /~§[

for
N2/Ni

# I as
required.

Thus for all experimental paraIneters our systeIn,
our

calculation redicts that there is a

predominance of short hains within in the
brush

phase. In fact, we can coIne to

using
equation (6) alone ithout

having
to

is
as follows.

rranging

~"§$2

~~~~ §/il
2

~

~ ~ ~
~~ ~ j~

where a m 2/Ni > I- ow
ecause

of
the

esence of A blocks in the brush phase, we
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Now from equation (8), we have

~§j ~§~ ~§j
O-1

(
~§ ~§

~~~
l 1 l

Since a I > o and ~§[/~§i < I, we arrive at the same conclusion as before, I-e-

~§[/~§[ < ~§2/§SI This is what we would expect intuitively, since short chains should enter

the restricted enviroment of the brush more readily compared to long chains.

3. Effect of Nematic Interactions in the Corona on Thermodynamic Distribution

In this section, we calculate the therInodynamic distribution of solvent chains when nematic

interactions are included in the brush phase free energy. The motivation for doing this is that

there is both experimental (e- g- [6]) and theoretical (e- g. [7]) evidence pointing to the presence

of nematic interactions in flexible polymer chains even though one does not normally associate
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neInatic behavior to such chains. If we accept the possibility of neInatic interactions in our

systeIn, the strong uniaxial stretching of brush chains then provides a very natural driving
force for nematic ordering of solvent chains within the brush phase, and so is a candidate for

significant modification of the results of the last section.

To admit the possibilty of nematic interactions in the brush phase, we include the orienta-

tional free energy into the expression for the brush free energy in equation II). We shall use

expressions due to Khoklov and Semenov [14,15] (and further clarified in [16]) for persistent
semi-flexible chains in a nematic field. These are

~~~b~~~
=

Fnteraction(S) + F~~~~°PY~~~ ~
~~

~
~~ ~~~~~~ ~~~~

~y~ ~~ ~~

where S is the order parameter of chains in the brush phase. It is related to f(fl), the

orientational distribution function of chains in the brush phase by

S
= /P2(cos9) f(fl)dfl

where P2(cos9) is the second order Legendre Polynomial. Following Onsager [17], for f(n)
Khokhlov and Semenov use the trial function

~~~
4~ s~nh

a

~°~~~° ~°~ ~~

where 9 is the angle a given segment makes with the nematic director n and a is a parameter
that measures the degree of nematic order (a

=
o in the isotropic state, a » I for a highly

ordered state). The first term on the rhs of equation (lo) [16,17]

~ j~~
~

~
D 2I~12a) j

j~~~
~~~~~~~~~°~ 4 a

(sinh o) ~

is the free energy per site from the orientational excluded volume interaction where D is

diameter of
a

statistical segment (D
r~J

2 I and
a r~J

8 I
so we choose D la

=
o.25) and 12(20)

a Bessel function. (The -I in brackets ensures that f~teraction
#

o in the isotropic state

o =
o.) The second and third terms on the right hand side of equation (lo) come from the

free energy per site due to orientational entropy. The leading order terIn

is equivalent to the orientational entropy of
an infinite persistent semi-flexible chain, while the

third term is the leading order correction to the orientational entropy due to the presence of

ends. In equation (lo)

Fe~d(S)
=

-2 In
/ /jdfll+

in 4~ (13)

(the ln4~ ensures Fe~d
#

o in the isotropic state), while the prefactor in brackets converts

Fe~d from end correction per chain to the end correction per site as required. Note that Fe~d is

always positive [15], indicating that the presence of ends is always energetically unfavourable-

We have included the leading order correction to the orientational entropy because, as can be

seen in equation (lo), the correction is different for short and long solvent chains. The use of

equations (12), (13) for the orientational entropy is strictly speaking only accurate for chains
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(size h). Lateral fluctuations are of the order the radius of gyration Ro while is the angle between

the monomer segment and the director
n.

where Lla » 1. We have however performed our calculation using interpolation formulas

(e. g- Ref. [18]) which should be approximately correct over the whole range of L la and found

that equations (12), (13) give answers accurate to within 2 3%
even for chain lengths L la

mu
I-

To complete the specification of the problem, we need to relate the order parameter S in the

brush phase to the brush height h- Refering to Figure 5, we see that the order parameter of a

brush chain segment at monomer level is related to the overall stretching of the chain by (see
for example Ref, ii 9])

Sbrush ~ (P2(COS9))
12R( R] R(
~ jf2 ~2

A

1 h ~

~ j j l14)

where is the angle made by the monomer to the direction of stretching (z >direction), and

R~, Ry and Rz are dimensions of the chain in the x, y and z directions respectively. We have

also used the relation R]
=

R(
=

R]
+

NAa~ going from the second to the third line, since

the horizontal fluctuations should be of the order of the radius of gyration [9]. We now make

the assumption that the order parameter of the solvent chains Ss~ivent is linearly proportional
to Sbrush> 1.e.

Ssolvent
"

l~nsbrush (15)

where we define Xn as the "nematic susceptibility", analogous to magnetic susceptibility in

magnetic systems. This condition should be satisfied since we are dealing with small order

parameters here (using Eq.(14), Sbrush
'~J

o-15 for the experimental system studied) and should

therefore be far away from phase separation between solvent and brush chains [20]. The nematic

susceptibilty x~ parameterises the strength of nematic interaction between brush and solvent

chains. If x~ =
0 (no nematic interation),

we recover the results from Section 2. If x~ =
I,

we have perfect nematic interaction. Here, we shall assume Xn =
I to illustrate the effect of

nematic interations on the solvent distribution. We expect the true solvent distribution to be
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in between the results of the previous section (x~
=

o) and this section (x~
=

I). Of course,

Xn can also be left as a free parameter of our theory.
Adding the orientational free energy (Eq. (lo) to the original brush free energy (Eq- (I)),

we

obtain the following simultaneous equations by balancing chemical potentials and minimizing
the free energy with respect to h as before:

/~ ~~ i/3

j
~~~ ~@ (~ ~i~ §i~ + 9(§i~'§i~: ~))~~~ (~~)

~f 1/N2 ~f i/Ni
~ exp(Fe~d)

"

~ exp(Fe~d) II?)
~i2 ~il

(
In
)

+
j~~

#

()
+
)j ()

+
(j ~)

l~nteraction(S) Fentropy(S) (18)
1 1 1 1 2 1 2

Where
~ j~ ~ ~ fl fl ~ ~

~j ~/ ~) ~ interaction entropy 1 2 end j~~~~ 1, 2> ~ ~
+

~ ~
+ j + j ~~

1 2

Clearly, this set of equations is more complicated than the previous set (Eqs- (5)-(7))- How-

ever we can solve these equations self consistently, remembering that S is related to h via

equation (14).
In Figure 2 we plot #[ Iii (normalized) against Ei~id/kT

=
7 for x~ =

I (dotted line)
together with results from Section 2 (solid line)- We have used the same experimental param-

eters for both solid and dotted lines, i-e- Ei~id/kT
=

7, Ni
"

2, N2
"

8, N2
"

8, ii
"

o.98,

~§2 "
o.02. Clearly, including nematic interactions does not change the distribution quali-

tatively, I-e- ~§[/~§[ is a monotonically decreasing function of Ei~id/kTNA, 4[/§S( ~ #2/41
in the limit Eioid/kTNA ~ o while ii /#[ becomes very small in the opposite limit of large
Ei~id/kTNA. Also from Figure 3 (dotted line),

we see that when we include nematic interac-

tions in the brush, the area per brush decreases with increasing Ei~id/kTNA,-the
same as in the

absence of nematic interactions (solid line). However, quantitatively ~§[ /~§[ is lower when we

include nematic interactions. As we have already said, we expect the true solvent distribution

to be in between the solid line and the dotted line. This fact will be true in all our following
results where we compare the cases of x~ =

o and x~ =
I-

In Figure 4, ~§[/~§[ (normalized) is plotted against N2/Ni for Xn "
I (dots) together with

results from Section 2 (solid line)- The other system parameters are
Ei~id/kT

=
7, Ni

"
2,

NA
=

loo, ~§i "
o-98, ~§2 =

o.02- Again including nematic interactions gives us the same

qualitative conclusions as in the absence of namtic interactions except ~§[ /~§[ is lower.

From our calculations in Sections 2 and 3 we see that thermodynamics always predicts that

short chains predominate over long chains in the brush phase compared with the bath, I-e-

~§[ /~§[ < ~§2/~ii for all systeIn parameters. We therefore conclude from this that the swelling
of the brush by long alkane chains observed by Richter et al- is not a thermodynamic effect.

This further confirms the suggestion of Richter et al- that the observed phenomenon is kinetic

in origin (I,e- nucleation).

4. Crystallization Kinetics in the Presence of Coil-Crystalline Micelles

In the introduction, we mentioned that the action of coil-crystalline BCP micelles in sup-

pressing precipitation of long alkane chains relies on the competition between two different

kinetic processes: normal nucleation in the bath and nucleation onto the crystal core of the

micelles. In this section we shall consider these processes in more detail as well as calculate

the crystallization rate of long alkanes onto the crystal cores of micelles.
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In normal nucleation in the bath, the rate of nucleation is controlled by two different energy
barriers: the minimum work done Rmi~ in creating a nucleus of critical size, and the energy
barrier associated with diffusion across the bath/nucleus interface (the phase boundary) E~

[21,22], 1-e-

rate of crystallization c~
exp(-(Rmi~ + E~) /kBT).

Nucleating onto the pre-existing crystal core of a micelle on the other hand involves a lower

energy barrier (only E~) since the creation of a critical nucleus is no longer necessary. Intro-

ducing micelles with crystal cores into the mixed alkane bath therefore short circuits normal

nucleation by providing a lower energy kinetic path for nucleation.

From crystallization experiments on pure n-alkanes with similar molecular weights as C36,

a value of E~/kBT
r~J

5.5 is reported at the melting temperature, Tm 1 75 °C [22, 23]. If
we

assume that %Te have the saIne barrier height in the case of C36 crystallizing onto a
lamellar

crystal from a mixed alkane bath, at the crystallization temperature of dilute C36 in decane

(mu lo °C), we have Ec /kBT
mu

7-3- Since the energy barrier for adsorbtion is very high, we

will assume that the crystalization process is activation liInited. This Ineans that the hopping
rate of Inolecules across the energy barrier is slow so that we can consider the distribution of

solvent molecules adjacent to the phase boundary as being in thermodynamic equilibrium. In

this case the current density Ii,
e- the number of long alkanes diffusing across the barrier per

unit time per unit area) of crystallization onto the PE surface, J', is given by

J'
=

k~~§[ (20)

where k~ is the activation constant for crystallization and ~i[ is the concentration of long alkanes

adjacent to the barrier in the liquid phase. Now ~§[ is just the thermodynamic concentration

of long chains in the brush phase that
we

have calculated in the previous two sections, while

k~ is given in terms of molecular parameters by [24]

k~ m

)
exp

1-))
(21)

B

Here D is the diffusion constant of the C36 chains in a bath of decane chains and is

the width of the adsorbtion barrier. The self diffusion constant of decane at -lo °C is

Ds
=

6 m~ Is [25]. Assuming Rouse type scaling for dilute C36 chains diffusing in a
bath of

decane, D m
Ds/4

=
1.5 m~ Is. The width has molecular dimensions, so we set t

r~J a r~J
8 I-

Inserting these values and E~ /kBT
r~J

7-3 into equation (21), we arrive at the value k~ m
io~

m
Is

for our system.
Since the suppression of long chain precipitation by coil-crystalline BCPS involves a compe-

tition between different kinetic processes, to optimise the action of the coil-crystalline BCPS,

we need to maximize the rate of crystallization (i-e- no.
of long alkanes crystallizing per unit

time) onto the micellar cores; the BCP will be effective if this rate is greater than the rate of

crystallization via normal nucleation in solution. To get the rate of crystallization onto the

lamellar cores, we need to know the total area of micellar crystal cores in solution. We will

make the simplifying assumption that most of the coil-crystalline BCPS are in large lamellar

aggregates so that we can neglect the surface area of the ~'rims" of the lamellar crystals. In

this case, the micellar core area per unit volume of solution is just 2cE, where
c is the number

concentration of BCPS in solution and L is the interfacial area per brush given by equation (2)
(the factor of 2 accounts for the top and bottom surface of the lamellar core, see Fig- i). The

specific rate of crystallization Ii. e, rate per unit volume) onto the micellar cores r' is therefore

given by
r'

=

2cEJ'
=

2cEk~~§[- (22)
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Fig. 6- a) Relative specific rate of crystallization r'IT
us.

Efoid/NAkT for Efoid/kT
=

7, Ni
=

2,
N2

#
8, ~ii

=
0.98, ~§2 #

o.02 where r' and
r are respectively the rates of crystallization in the

presence and absence of the polymer brush layer. Solid line without nematic interaction (Xn
"

0);
dotted line for maximum nematic interaction (xn

=
1). b) Normalized rate of crystallization per chain

(r'/c)/(2a~ka~§2)
us.

Efoid/NAkT for Efoid/kT
=

7, Ni
=

2, N2
=

8, Ii
#

0.98, ~i2 #
0,02; solid line

without nematic interaction (xn
=

0); dotted line for maximum nematic interaction (Xn
#

1)-

The particularly simple scaling of r' with c in equation (22) means that if we know the specific

rate for normal nucleation in solution, we can easily work out the concentration of BCP required
to suppress crystallization via nucleation.

In Figure 6a, the relative rate of crystallization r'/r is plotted against Ei~id/kTNA, where
r

is the rate of crystallization onto the lamellar crystal core in the absence of the corona. From

equation (22),
r =

2cEk~~§2, so that r'/r + ~§[/~§2. The solid curve represents the flux in the

absence of nematic interaction (I.e. x~ =
o), while the dotted line is the flux for maximum

nematic interaction (I-e- x~ =
i)- We have chosen the same parameters for the dotted line

as for the solid line, I-e- Ei~id/kT
=

7, Ni
"

2, N2
"

8, ~ii
"

o.98, ~§2 "
o-02. From

Figure 6a, we see that r'/r is a monotonically decreasing function of Ei~id/kTNA. Also the

flux onto the micellar core is always smaller than that onto a bare crystal surface (r'IT < i)
for all micellar parameters, showing that the presence of the brush layer above the lamellal

crystal has a negative effect on the crystallization flux. In the limit Ei~id/kTNA ~ 0 our
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Fig- 7. Normalized rate of crystallization per chain (r'/c)/(2a~ka~i2)
us. N2 /Ni for Efoid /kT

=
7,

Ni
#

2, NA
#

loo,
~§1 =

0.98, ~§2 "
o.02; solid line without nematic interaction (xn

=
o); dotted line

for maximum nematic interaction (xn
=

1).

calculation predicts that r'/r ~ i. As explained in Section 2, this is due to the entropic

elasticity dominating over interfacial tension so that the solvent concentration in the corona

approaches that of the bath. In the opposite limit of large Eioid/kTNA, r'/r becomes very

small. This obviously breaks down for the case of fixed Eioid since we do not recover the bare

crystal limit (r'/r ~ i) for NA ~ 0. The reason for this is the strong stretching approximation

Ii- e- Alexander-de Gennes model) that we
have used for the corona chains breaks down in this

limit. Presumably, if we used a more accurate SCF treatment for the brush phase [10], we

would recover the bare crystal core limit for NA ~ 0.

In Figure 6b, we plot the rate of crystallization per BCP chain r'/c (normalized by 2a~k~#2,
I-e- r'/(2ca~ka#2)

=

Ill /4[)(Ela~)) against Eioid/kTNA for x~ =
0 (full line) and x~ =

i (dotted line). The parameters are the same as for Figure 6a. We see that the rate of

crystallization is a stong function of both core parameters Ii. e-
Eioid) and brush parameters

Ii. e.
NA, xn) of the coil-crystalline micelle. Also r'/c is maximum when Eioid /kTNA is made as

small as possible. This is due to a combination of two effects: firstly the solvent concentration

in the brush phase approaching that of the bath (Fig. 6a); secondly, the area of the crystal

core per brush chain available for crystallization is maximum for small Eioid/kTNA (Fig- 3).
For a specific BCP chemistry (e.g- PE-PEP), the only parameter in the system that can

be varied is NAT in this case, our calculation suggests that NA should be made as large as

possible to maximize r'- Although, strictly speaking, our theoretical calculation only applies
in the long chain Ii. e. strong stretch) brush limit Ii. e-

h/Rg » i), whereas for the system of

Richter et al-, the brush is in the intermediate stretch regime (h/Rg m 3 5), it is nonetheless

instructive to compare our theoretical calculation with their experimental system. For their

system, typically we have Eioid/kTNA
#

0.07- In this case, Figure 6b indicates that there is

a lot of room for improvement from increasing the molecular weight of corona chains. One

point worth mentioning here is that in the quest to improve the anti-precipitation performance
of the coil-crystalline micelles, one might be tempted to go to the opposite limit of NA ~ 0

(I-e. the bare crystal limit)- However by reducing the proportion of soluble blocks in the

micelle, we run the risk of precipitating the whole micelle out of solution.

In Figure 7, we plot r'/c (normalised by a~k~~§2) against N2/Ni As hefore, the solid curve

represents the flux in the absence of nematic interaction while the dotted line is the flux for

maxiInum neInatic inn>eraction- The other system parameters are
Eioid/kT

=
7, NA

#
100, and
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we set Ni
"

2,
~§1 "

0.98, #2
#

o-02- Clearly, the crystallization rate of the long alkane chain

falls with increasing length relative to the short alkanes. This shows that the anti-precipitation
action of the BCP is greatest in the case where the disparity in length between the long and

short chains in the bath is small.

5. Conclusions

Motivated by recent experiments by Richter et al-, we have in this paper looked at the ther-

modynamics and kinetics of lamellar coil-crystalline BCP micelles in a bimodal solvent bath.

Assuming an Alexander-de Gennes brush model for the strongly stretched corona chains and

explicitly accounting for the polydispersity of the solvent chains, we have calculated the ther-

modynamic distribution of long to short solvent chains in the micellar corona. Both for zero

and maximum nematic interactions in the corona phase (x~
=

o and x~ =
i respectively),

we find that #[ /#[ < #2/41 for all micellar parameters ii.
e.

short chains predominate in the

corona compared to in the bath). Our calculation therefore shows that the swelling of the

micellar corona by long alkane chains observed by Richter et al- is not a thermodynamic effect.

This supports the suggestion that the Inicellar cores act as nucleation sites for long alkane

chain crystallization.

By looking at the different crystallization mechanisms in detail, we propose that

coil-crystalline BCP micelles suppress long alkane crystallization/precipitation at low tem-

peratures by providing
a

lower kinetic route to crystallization compared to normal nucleation

in the bath. Specifically nucleating onto the micellar crystal core involves a lower energy bar-

rier compared to crystallizing normal nucleation (I.e. E~ instead of E~ + Rmi~)- By assuming
that the nucleation onto the lamellar micelle core is activation limited, we calculate the specific
rate of this process and find that it scales linearly with

c
(the number concentration of BCPS)

and is dependant on both core and corona parameters of the micelle. In particular, we predict
that to maximize the crystallizatiog rate per BCP, both Eioid/kTNA and Xn need to be made

as small as possible. This leads us to the surprising conclusion that for a given BCP chemistry,

increasing the molecular weight of the solvated block increases the rate of long solvent chain

crystallization onto the micellar crystal core. We also find that the anti precipitation action

of the coil-crystalline BCP is increases when the length of the long solvent chain is reduced

relative to that of the short solvent chain. '
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