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Abstract. We study theoretically the change of the curvature moduli of a surfactant mem-

brane due to the adsorption of a polymer solution. Using a mean field theory of polymer
adsorption, we study both cases of reversible and irreversible polymer adsorption in good and

9 solvents. The curvature moduli of the adsorbed polymer layers are dominated by the short

loops that the polymer forms on the membrane. The polymer contribution to the membrane

bending modulus is always negative and the polymer contribution to the Gaussian curvature

modulus is always positive.

1. Introduction

Surfactant molecules self-assemble in solution to form various kinds of aggregates and meso-

phases. One particular type of these aggregates is a fluid membrane which can be either

a surfactant monolayer (at
an interface between oil and water) II, 2] or a surfactant bilayer

(between oil and oil or water and water). Fluid membranes can either pile up in a lamellar

smectic phase or fold to form vesicles. These phases are observed over a broad range of

concentration in many synthetic surfactant systems. Fluid membranes also play a major role

in biological systems (cell membranes).
The pioneering work of Helfrich [3,4] has shown that in many instances, fluid membranes are

not under tension and that their physical properties are dominated by the curvature elasticity of

the membrane. The equilibrium shape of a vesicle is for example the shape that minimizes the

curvature elasticity free energy. The curvature elasticity also controls the thermal undulation

fluctuations of membranes; if the bending elasticity is weak, the undulation fluctuations are

important and lead to strong repulsive interactions between membranes that can stabilize

swollen lamellar phases with an interlamellar spacing that can be as large as several hundred

angstroms.
For weakly bent membranes, the curvature free energy can be expanded in powers of the

local curvature. This leads to the so-called Helfrich free energy

J~
=

Ids ~k~(ci
+ c2 2co)~ +

~cic2)
(1)

2
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The integral is carried out over the area of the membranes and cl and c2 are the principal

curvatures at each point. The curvature energy involves three intrinsic parameters of the

membrane, the bending modulus k~, the Gaussian curvature modulus kc and the spontaneous

curvature co The free energies per unit area of a spherical and of a cylindrical vesicle of radius

R are respectively Fs
"

-4k~co/R + (2k~ + k~) /R~ and FC
"

-2k~co/R + k~ /2R~.
An important issue in surfactant physics is the monitoring of the two moduli k~ and k~.

This can for example be done by changing the electrostatic charge of the membrane by mixing
neutral and charged surfactants. The electrostatic contribution to the membrane curvature

moduli has been studied theoretically quite extensively [5-7]. It depends on the membrane

charge, on the ionic strength and also on the intermembrane distance in a lamellar phase. The

electrostatic contribution to k~ is always positive, electrostatics makes the membrane stiffer.

The electrostatic contribution to k~ is negative and thus favors the formation of disconnected

objects. An alternative way to change the curvature moduli is to adsorb or to graft a polymer

on the surface of the membrane. Polymer grafting also leads to a stiffening of the membrane [8].
Polymer adsorption was first discussed by de Gennes [9] JR-ho constructed the scaling behavior

of the polymer contribution to the moduli. His approach however does not give the sign of the

polymer contribution. Brooks et al. [10] have used a mean field theory of polymer adsorption.
In the case of reversible adsorption, they have obtained the surprising result that the adsorbed

polymer decreases the modulus k~ and increases the Gaussian modulus k~.

In this paper, we extend the ~v~ork of Brooks et al. Using the same mean field theory,

we calculate analytically the polymer contribution to the curvature moduli in the case of

strong reversible adsorption. We also study the curvature elasticity of an irreversibly adsorbed

polymer layer both in good and 6 solvents. In all cases, we find that the polymer contribution

to the bending modulus is negative and thus that the adsorbed polymer layer makes the

membrane less stiff.

The paper is organized as follows. In the next section, we study the curvature elasticity of

a reversibly adsorbed polymer layer and in the following section the curvature elasticity of an

irreversibly adsorbed polymer layer. The last section presents some concluding remarks and

discusses some possible issues.

2. Curvature Elasticity of
a Reversibly Adsorbed Polymer Layer

We consider a membrane with a vanishing spontaneous curvature immersed in a polymer
solution which reversibly adsorbs on the membrane. The bulk polymer solution of concentration

cb imposes the chemical potential of the polymer adsorbed on the membrane. For simplicity

we consider here the adsorbed polymer layer only on one side of the membrane and determine

the two curvature moduli and the spontaneous curvature of the membrane with the adsorbed

polymer. If the polymer adsorbs on both sides of the membrane, the polymer contribution to

the moduli is clearly twice bigger and the spontaneous curvature exactly vanishes for symmetry

reasons. The polymer contribution to the curvature elasticity is obtained by studying first a

cylindrical membrane of radius R, then a spherical membrane and by calculating the free

energies per unit area in these two geometries.
An adsorbed polymer layer has a double layer structure and is composed of two sublayers,

an inner layer JR-here the polymer essentially forms loops on the adsorbing surface and an outer

layer formed by the tails of the adsorbed chains II Ii. We find below that the curvature elasticity

is dominated by the short distances in the vicinity of the membrane I-e- by the short loops.

It is thus sufficient to consider the loops on the surface and to ignore the tail sections of the

chains. This is done by using the classical
mean

field theory based on the so-called ground

state dominance approximation [12]. The free energy of the adsorbed polymer solution (at fixed
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chemical potential) in this approximation is written as a functional of the order parameter
~fi

which is related to the local concentration c by c = ~fi~

J~~/kT
"

~~4Cs/d +
/

dr ((v'fi)~ + G(~')) (2)

The first term is the direct attractive interaction between the polymer and the surface, A being
the total area of the membrane; the extrapolation length d measures the adsorption strength
and decreases when the adsorption gets stronger. In principle, the extrapolation length can

depend on the local curvature of the surface, we ignore this dependence by considering an

infinitely short range interaction between the monomers and the surface. The gradient term

is related to the connectivity of the polymer chain, we choose here as the unit length a/6~/~
where

a is the monomer size. The last term describes the interactions between monomers and

depends on the solvent quality; the precise form of the interaction free energy does not need

to be specified at this point; the relevant thermodynamic potential is the grand canonical free

energy at constant chemical potential, the interaction free energy is thus minimal and vanishes

when the concentration has the bulk value. The equilibrium monomer concentration profile is

obtained by minimization of this free energy

V~~fi
=

~~~
(3)

2 0~fi

with the boundary condition nV~fi
=

-1fi Id where
n is the unit vector normal to the membrane.

We first study the adsorption of the polymer on a cylindrical membrane of radius R and

expand the free energy in powers of the curvature I/R. The order parameter is expanded as

1fi =
ilo + ill /R. It only varies with the radial coordinate r =

R + z.
The order parameters ~fio

and il'i satisfy then the equations

Using these and the fact that for a flat membrane the free energy is inimal when

order
is

~fio, we can
xpress

the polymer free energy up to second order in curvature

as a function of ~o and ~fii only. The first order term gives the pontaneous curvature
by the

polymer
layer

k~co
=

-kT
/~ zdzG(trio), dk~

=
-2kT

/~
dzlfii

~~°
(6)

o o
fit

The spontaneous curvature can thus be calculated as a moment of the interaction free energy

in a flat geometry quite similarly to the mechanical model of membranes proposed by Helfrich

[2,3]. The calculation of the bending modulus requires the expansion of the order parameter

to first order in curvature. The Gaussian curvature modulus can be obtained by considering

a spherical membrane and comparing the free energy to that of a cylindrical membrane of the

same radius. It can also be expressed as a moment of the interaction free energy in the flat

geometry
~

dk~
=

2kT z~dzG(~fio). (7)
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The interaction free energy is always positive and whatever its precise expression the polymer
contribution to the Gaussian curvature modulus has a positive value.

In order to get a quantitative value of the moduli, we now specialize to the case of a polymer
solution in a good solvent. In the mean field approximation, the interaction free energy is

proportional to the square of the local concentration and the grand canonical free energy can

be written as G(~fi)
=

)u(c cb)~
= )u(~fi~ ~fi()~ where we have introduced the bulk order

parameter cb "
ill- In a good solvent, the excluded volume parameter u is positive. Although

the mean field approximation neglects the excluded volume correlations which are known to

play an important role, it is expected to give a good qualitative description of the adsorption
and to be accurate in the so-called marginal solvent limit [13]. The natural unit length for the

adsorption problem is then the bulk correlation length (b
"

(2/ucb)~/~. It is convenient to use

the dimensionless order parameters ~fio " #o~fib and ~fii "
Ii (b~fib and the dimensionless length

y =
(z + d) lib The order parameter in the flat geometry is

~fio "
coth y. (8)

This leads to the classical concentration profile for I polymer solution in the vicinity of a flat

adsorbing surface c(z)
= cb coth[(z + d) lib)

The adsorption is weak if the extrapolation length d is larger than the correlation length (b.
For a flat membrane, the polymer concentration or the order parameter ~fio

then essentially
decay exponentially from the surface. In this limit, the perturbation to the order parameter (i
is easily calculated from equation (5) and then the curvature moduli from (6, 7). The results

are identical to those found in reference [10] and in particular the polymer contribution to the

bending modulus is negative.
The strong adsorption limit where d < 16 seems more relevant experimentally. The change

in the order parameter due to the curvature can also be calculated explicitly from equation (5).
Only the short distance expansion y « I is needed to determine the bending modulus

1
j2

WI (Y) " j m + (9)
~

where I
=

d/(b is the dimensionless extrapolation length. The two curvature moduli are then

calculated as
~ ~

~~~ /7
~j~

'

~~~ ~l
~j~

~~~~

We have reestablished here the homogeneity of the formula. In agreement with the results

of [10] we find that in this limit of reversible adsorption, the polymer contribution to the

bending modulus is negative and the polymer contribution to the Gaussian curvature modulus

is positive. The dependence on the various parameters is the same as in [10] and the prefactors

are very close to those determined numerically in this work.

3. Curvature Elasticity of
an

Irreversibly Adsorbed Polymer Layer

In many experiments, the time required for an adsorbed polymer layer to reach equilibrium
with a

bulk solution is prohibitively large and the adsorption is irreversible. A reasonable ap-

proximation is then to assume that the total adsorbed polymer amount remains constant when

the membrane bends but that the chain conformations inside the adsorbed layer reequilibrate

freely. In the folloJN.ing, we suppose that the polymer has been adsorbed from a dilute solution

on a flat membrane with a surface excess
(quantity of polymer per unit area) r and that the
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solution has been replaced by pure solvent. The curvature moduli are calculated at constant

value of r.

The free energy of the adsorbed polymer layer still has the form of equation (2) but G(~fi) is

simply the interaction free energy of the polymer solution. In order to determine the polymer
concentration profile, one must minimize the free energy with the constraint that the adsorbed

polymer amount is constant. This can be done by introducing a Lagrange multiplier ~t that

plays the role of an effective chemical potential.
We consider now a cylindrical membrane. The equations for the order parameter at zeroth

and first order in curvature are

o2ifio _ 1

°~2
1fi0

~~~j

Where as for the order parameter, we have expanded the Lagrange multiplier in powers of the

curvature ~t = -e + ~ti/R. The chemical potential of the solution where the adsorbed layer

was formed is ~to " -e
and the value of

e
(> 0) fixes the adsorbed polymer amount. As in

the reversible adsorption case, the polymer free energy can be expressed up to second order

in curvature as a
function of

~fio
and (i only. The Lagrange multiplier ~ti is determined by

imposing the conservation of the adsorbed polymer mass. Up to first order in the curvature

this can be written as
~ ~

zdz~fi(
=

-2 dz~fio~fii (13)

The curvature moduli are obtained from the coefficients of the expansion of the free energy in

powers of the curvature for a cylindrical and then for a spherical membrane. The Gaussian

curvature modulus and the spontaneous curvature are given by the same laws (14, 7) as for

the reversible case where G(~fio) is replaced by an effective free energy G + e~fi( (G being
the appropriate interaction energy for the irreversible adsorption problem); they can thus be

calculated from the order parameter profile in the flat geometry. The bending modulus is

given by

dLc
=

-2kT /°° dz~fii ([° kT~ti
/"

zdz~fii i14)
o o

We first consider a polymer in a good solvent. The interaction free energy is G
=

)uc~

= )u~fi~. The natural length scale of the problem is the adsorbed layer thickness (
=

e~~/~,
the dimensionless length is defined as y =

(z + d) If; we also consider the strong adsorption
limit where d < (. We introduce an order parameter scale j

=
(2e/u)~/~ and define the

dimensionless order parameters as ~fio =

ii and ~fii "

fill The effective chemical potential
is written as ~ti "

e~/~jii The equations for the order parameters can be solved exactly. The

order parameter profile for the adsorption on a flat membrane is

#o
"

II sinhy. (15)

The first correction to the order parameter due to the curvature is

~~ ~~~~ ~ ~/
~~~~~~ i~hy~

~°~~(
~°~~ ~~ ~~~~ ~~

tanh y +
~~

(16)
3sinh y 4 2
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where a =

(
+

@
The conservation of the adsorbed polymer amount gives the effective

chemical potential as

iii
"

-( log(lli) (17)

where as above I
=

d/(. The bending modulus of an adsorbed polymer layer is then calcu-

lated as

~~~ II
~j~~ ~

~~~°~~~~~~~) ~~~~

Up to leading order in I, the bending modulus of an irreversibly adsorbed polymer layer is

thus equal to that of a reversibly adsorbed polymer layer. The correction is positive as can be

expected (the irreversibly adsorbed layer is obviously stifler) but this correction is subdominant

and the polymer contribution to the bending modulus is negative.
We have also studied the bending modulus of an irreversibly adsorbed polymer layer in a

6 solvent. In a
6 solvent, the second virial coefficient vanishes and one must expand the free

energy to third order in concentration G
=

)w~c~
= )w~~fi~. The procedure is the same as

in a good solvent. The natural unit length is (
=

e~~/~ and the natural order parameter unit

is
~fi =

(6e/w~)~@ Using the same notations as above in a good solvent the order parameter
profile for the adsorption on a flat surface is

#o
=

I/sinh~/~(2y). (19)

The first curvature correction can also be calculated explicitly, and in the vicinity of the surface,

ii
"

$
~i/)(~~

~

The polymer contribution to the bending modulus is still dominated

by the first term in ~quation (14)

dk~
=

~~~~
log(I Id). (20)

At leading order in d, the polymer contribution to the bending modulus is negative and as in

a good solvent, the first correction is positive and of order (kTa~ /w).

4. Concluding Remarks

The main result of this paper is that, in agreement with the previous work, in all the cases that

we were able to study, the contribution of an adsorbed polymer layer to the bending modulus

of a membrane is negative and the contribution to the Gaussian curvature modulus is positive.
The Gaussian curvature modulus is given by a moment of the pressure distribution in a

flat layer and thus its calculation does not require the determination of the adsorbed polymer
concentration profile in a curved geometry. In the mean field theory that we use, the sign of this

modulus is independent of the explicit form of the free energy and the polymer contribution to

the Gaussian curvature modulus is alJN.ays positive. Quite similarly to the mechanical model

proposed by Helfrich, the determination of the bending modulus requires the expansion of

the concentration profile to first order in curvature. The adsorbed polymer always makes the

membrane less stiff in both cases of reversible and irreversible adsorption.
We have considered here that in an irreversibly adsorbed layer, the total adsorbed polymer

amount is constant and that the chain conformation in the layer can reequilibrate freely. The

irreversibility can however be stronger, for example, the number of monomers in contact with

the surface or the loop distribution can be frozen. iATe, of course, expect that the membrane

is stifler (and that dk~ increases) if the constraint imposed by the irreversibility gets stronger.
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The polymer contribution to the modulus can eventually become positive as for a polymer
brush. Many authors have in particular modelled adsorbed polymer layers in terms of pseudo-
brushes which are polydisperse grafted polymer layers with a fixed distribution of chain or loop

sizes I.e. a
fixed number of grafting points. It is reasonable to assume that for

a polydisperse
polymer brush, the polymer contribution to the bending modulus is positive. The difference

with the adsorbed polymer layer where the surface concentration is free to reequilibrate upon

bending is thus due to the redistribution ofthe short loops that lead to the negative contribution

to the bending modulus.

In all the examples that we have studied, the moduli are dominated by the short distances

I.e. by the short loops that the polymer makes on the surface. We have thus considered

only loops and ignored the tail contributions to the polymer concentration profiles. The tail

contribution to the modulus could be included in equation (6) but this contribution remains

small. When the tails are taken into account, the large distance cutoff is not the size of the

layer ( but the crossover length between the loops and tail regions z*.

The major assumption made in this work is the use of the mean field theory. This is a

reasonable assumption for a polymer in a 6 solvent where our results are reliable but this is

not a good approximation in a good solvent where the concentration fluctuations are known

to be relevant. We do not know of any study of the curvature moduli of adsorbed polymer
layers that treat correctly the excluded volume correlations. Brooks et al. have used a so-called

Widom approximation which is a rescaled mean field theory that produces the correct scaling
exponents [14]. This approximation leads qualitatively to the same predictions as the mean

field theory but it is rather uncontrolled and although it produces clearly the right scaling
behavior of the moduli, it is not clear whether the amplitudes and thus the sign of the moduli

are reliable.

We also have treated the polymer layer using the continuous theory which is appropriate to

semi-dilute solutions. This theory may not be too accurate in the vicinity of the adsorbing
surface where the polymer concentration is high and JR-here the molecular details may become

important. This could strongly affect the values of the bending moduli.

Finally it would be interesting to compare directly our results to experiments. The numerical

prefactors given by the mean field theory are however very small and the polymer contribution

to the moduli al~v.ays seems smaller than kT.
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