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PACS.42.25.Lc Birefringence

PACS.61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects

on order

Abstract. We study multiple light scattering in ordered nematic liquid crystals from long-

range dielectric fluctuations. The mass operator is calculated in the first Born approximation
of Dyson's equation for the average amplitude. Ne~v results are found concerning the spectral

function. In addition, the average intensity is obtained numerically using a Monte-Carlo simula-

tion. We simulated the anisotropic shape of the coherent backscattering cone~ the time-of-flight
distribution functions and the polarization in the diffusive regime.

1. Introduction

Multiple scattering of light and related phenomena like coherent backscattering have been

studied for all kinds of disordered materials such as isotropic 11, 2]~ Faraday active [3-5], am-

plifying [6] and nonlinear media [7].
In two recent papers [8,9] we studied light propagation in an anisotropic medium, I.e. an

ordered nematic liquid crystal~ taking into account long-range dielectric fluctuations. Since

nematic liquid crystals possess an anisotropic polarizability~ any distortion of the molecular

orientation, for example due to thermal fluctuations, will cause scattering or even multiple
scattering of light. Those long-range fluctuations are of particular interest. Few experimen-

tal [10,11] and theoretical [12] studies have been done. Recently, we employed a scalar ap-

proximation, thereby neglecting all polarization effects, in order to investigate the influence of

long-range dielectric fluctuations on light propagation [9]. Interesting results concerning the

spectral distribution of the transport modes were obtained. Results of the analytic vector the-

ory have already been published in reference [8] and independently by Stark and Lubensky [13].
They seem to agree with the recent first experiments [14].

In this article we present a vector treatment of the radiative transfer in these materials,
which takes polarization correctly into account. The average field amplitude is obtained ana-

lytically solving Dyson's equation while a numerical simulation has been employed to determine

the average intensity. The latter approach corresponds to the solution of the Bethe-Salpeter

equation using Boltzmann~s approximation, without relying upon the diffusion approximation.

(*) Author for correspondence (e-mail: tiggelen©mgstsrv.polycnrs-gre.fr)

© Les #ditions de Physique 1997
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This paper is structured in the following way: first, we briefly recall the characteristics of light
propagation in anisotropic media such as birefringence. The correlation function describing the

thermal fluctuations of the molecular orientation is reviewed. We solve Dyson's equation, I.e.

we determine the change of refractive index and the scattering mean free path. The spectral
function will be discussed and a comparison made with the anomalous line shape predicted
within the scalar approximation. An expression for the average amplitude Green's function is

given explicitly.
In the second part, we present a Monte-Carlo algorithm used in order to obtain the average

intensity numerically. This Monte-Carlo method generalizes previous algorithms in that it

treats fo~r random variables. The results are presented in the last section. We analyze the line

shape of the coherent backscattering cone~ investigate the time-of-flight distribution functions

and the polarization of multiply scattered light. The transport mean free path is obtained for

several values of the anisotropy of the material.

2. Light Propagation in Ordered Nematics

One of the most important effects observed in media with an anisotropic dielectric tensor is

birefringence. At an interface, the incident plane wave is decomposed into two propagating
eigenstates of orthogonal polarization, corresponding to two propagation eigenmodes of the

anisotropic medium. They are known as the ordinary ray lo) and extraordinary ray )e). A

third eigenstate, the longitudinal wave )p)
=

fi, does not propagate and is therefore generally
neglected. However, the longitudinal wave plays an important role for the correction of the

refractive index of the medium [15].
The polarization vector of the,ordinary ray is located perpendicular to the direction of propa-

gation p and the optical axis of the medium no. It is a transverse mode as normally encountered

in an isotropic medium. Moreover, its dispersion law is isotropic, this being the reason why
it is called '~ordinary". On the contrary~ the extraordinary ray is not a transverse mode. Its

polarization lies in the plane formed by the wave vector and the optical axis. In addition, its

dispersion law is anisotropic, I.e. the index of refraction of the extraordinary ray depends on

the angle formed between the direction of propagation and the optical axis. Explicitly, the

dispersion laws and unit vectors of the two polarization are given by

ordinary ray extraordinary ray

~° ~
c

'~°
c

'

~~
E cos~ 6 + Et

sin~ 6 c
~

c
'

'~)
~ lb X rlj~

j~~
~ii(Pl~)fi (Pl~01P) ~

~ ~ ~

lb x

nlfi$
It is important to note that, except parallel to the optical axis, no elliptical polarization can

exist in an anisotropic medium because different wave vectors correspond to the two different
eigenmodes. Therefore, a constant phase difference between the two linear polarizations cannot

be maintained over a distance longer than the wavelength [16].

2,I. UNPERTURBED GREEN's FUNCTION. If thermal fluctuations of the director are ig-
nored, the transport of light is described by the Helmholtz equation

~2
m eo

P~(i fifi~) Go(P, w)
=

1. (1)
c
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Its solution, the unperturbed Green's function Go(P,w) is a second rank tensor. It is diag-
onal with respect to the non-orthogonal basis of the transport eigenmodes lo), )e) and the

longitudinal mode )p) and reads

GolP,W)
=

~j gjlj)il 12)

geio>e,pi

~

i°)(°1
~

l ie)iei
~

iP)(Pi
j~~

(PO + I°+)~ P~ C°S~ de (Pe + I°+)~ P~ ("~/C~) (PieoiPl'

The extrordinary polarization is not orthogonal to the direction of propagation, the displace-

ment field rather than the electrical field being perpendicular to p. The difference between

those two directions depends on the angle formed by the optical axis and the direction of

propagation and its cosine is given by

~~~~
(PieoiP)

~ WW (4)

This angle equals the angle between the group velocity and the phase velocity of the extraor-

dinary ray.

2.2. CORRELATION FUNCTION. When thermal fluctuations of the molecular orientations

are present, the local director n differs from the average value no by a deviation dn. The

dielectric tensor of the medium is given by

e =
et1 + eann~

= eo + ea[dnn) + nodn~] + tJ(dn~) (5)

where ea = ejj et describes the anisotropy of the medium. The induced fluctuations of the

dielectric constant e = eo + de are given by [17]:

2

de
= ea

~ dna [eon) + noej] + O(dn~). (6)

a=1

The unit vectors ea,

ei " e2 x n
and e2 =

~ ~ ~ (7)
(q x n(

are the orthogonal eigenmodes of the deviation dn. The scattering vector q =
k p represents

the difference between the wave vector of the scattered wave k and the incident direction of

propagation p.

A striking effect is observed concerning the ordinary polarization [17,18]. An incident wave

with ordinary polarization has to change its state of polarization during a collision. Mathe-

matically, this means (o)de)o)
=

0. The reason for this surprising selection rule is, that to first

order in dn, the dielectric function in the plane perpendicular to the optical axis is not affected.

By choosing the ordinary polarization state for the incident as well as for the scattered wave,

we restrict ourselves to this 2D subspace. Therefore, no scattering is observed in the o ~ o

channel. For the same reason, an extraordinary ray propagating parallel to the optical axis

will never be scattered in the forward direction.

An explicit expression for the two-point correlation function F(q), which is a fourth rank

tensor describing the tensor aspect of the interaction, has been derived by de Gennes [17]:

rlq)
=

(delq)de10))

~2 ~ 2

=

~ ~ [Doe) + eon)] @ [Doe) + eon)]. (8)
q~ + I/f~

~~~
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The coupling parameter A is rather small, w/cA
+~

10~~-10~~, depending on the particular
choice of the material, I.e. its dielectric anisotropy ea and its elastic constant K3. Moreover,

A varies linearly with temperature. It is about one order of magnitude larger than the typical
molecular size ao.

In real space the elastic deformations are of long range [17,18]. In fact, they vary typically
like 1/r eventually attenuated by an exponential exp(-r If). The correlation length f of the

fluctuations is given by ~'
~~~

where K3 is the elastic constant. For a vanishing magnetic field, the correlation length is only
limited by the sample size in the case of oriented nematics, or by the size of the domains which

exist in an non-oriented liquid crystal.

3. Mass Operator

In this section we calculate the average field in a nematic liquid crystal when thermal fluc-

tuations of the molecular orientations are present. We have to solve Dyson's equation. The

average field propagator can formally be written as:

iGlP,W))
= ~

(lo)
fi

eo P~ (I fifi~) E(P, W)

The real difficulty consists in calculating the mass operator E(p, w). We will do this in the first

Born approximation. This approximation consists in neglecting all corrections to the mass

operator which are of higher order in the density. It is justified because of the smallness of

the coupling parameter A. The mass operator is given by the convolution of the twc-point
correlation function F with the unperturbed Green's function Go [12]

127r)~EIP, W)dip P')
=

--

+ (II)

where we have used the notation z =
M/co, co being the velocity of light in the vacuum while

c denotes the velocity of the ordinary ray. More explicitly, we have to solve the following
integrals:

~l~'"~
" ~~~i ~

/
dk

f i~
~~j

~~ ~2

j+
jo+

i13)

~

lln)("lj) +
I")(ij~j

j (~xjj)(1i
+ (njj)(cvjj

lqJ In)2 +,4jqj jq~jn)2j + 1/t2

+I /
dk

f l'~)I"'k) + '")Talk)I @ 11«lk)Inl + Inlk)j«jj
"~

a=i

l~'~°'~) lqJ In)~ + Alqj (qJ lnj2j +1/t2

where q~ =
kj p is the scattering vector, In) indicates the optical axis and In)

= en
(a

=
1, 2)

are the unit vectors given by equation (7) of the fluctuation eigenmodes. The detailed angular
dependence of the numerator is shown in Table I. Some interesting effects can be deduced

qualitatively from equation (13).
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Table I. The ang~lar dependence of the n~merator in the integral (13).

2
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Fig. 1. The mass operator as a function of the wave vector absolute value for the ordinary and

extraordinary component. The curves are parametrized by the angle between the direction of propa-
gation and the optical axis. In the represented graph

=
n/2. The triangles correspond to the real

part of E, while the squares represent -ImE.

3. I. INFLUENCE OF SELECTION RULES. The influence of long range fluctuations in nematic

liquid crystals has already been discussed in a separate paper, using a scalar approximation [9].
We investigated the dependence of the mass operator on the absolute value of the wave vector

p in the first Born approximation. For the imaginary part of E we observe a logarithmic diver-

gence at p =
w/c, if the correlation length is infinite. This divergence leads to an anomalous

behavior of the spectral function. Its maximum splits into two peaks. This effect disappears
in a self-consistent treatment of the mass operator.

The p-dependence of the mass operator is shown in Figure 1. The fact that the ordinary

ray cannot keep its state of polarization after being scattered has an important consequence
for the component Zoo

=
(o)E)o) of the mass operator. Inside the diagram (11) no ordinary

polarization can exist. Zoo depends only on the extraordinary and longitudinal components
of the unperturbed Green's function. Since the latter is a real valued quantity, the major

contribution to the imaginary part of E comes from the shell of constant frequency of the

extraordinary ray. As in the scalar approximation, we obtain a logarithmic divergence of ImE

if the correlation length is infinite. However, for the component Zoo this divergence occurs at
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Fig. 2. The spectral function (in arbitrary units). The bottom figure shows the ordinary (right)
and extraordinary (left) excitation. The top figure shows that the extraordinary excitation is in fact

split up into two in the first Born approxiInation Trade here. The ordinary excitation does not split

up due to a selection rule.

p = pe and not at p = pa. The spectral function is defined by the following relation:

AJ (P> L°) "

~~
IU~ G (14)

-~uJ nj COS~ dj Imzj j
(p, uJ)

ir [cos2 dj (pj p2) ReEjj (p, uJ)]2 + [ImEjj (p, uJ)]2'

The logarithmic divergence of the mass operator leads to a local minimum of the spectral

function at p = pe, but not to a splitting of the maximum which is located at p = pa. Since

we are mostly concerned with the value at p = pa (on shel(, for instance if we apply the

Boltzmann approximation in order to calculate the average intensity [8], a modification of the

spectral function at p = pe has no consequences. The problem continues to exist only in the

direction parallel to the optical axis because both polarizations obey the same dispersion law

in this direction. The spectral function is shown in Figure 2 for an angle 6
=

ir/4 between the

direction of propagation and the optical axis.
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The extraordinary component Lee is not restricted by a selection rule. All modes of the

Green's function Go contribute to the diagram ill) and we observe a divergence of the imag-
inary part of the mass operator at p = pe, the shell of constant frequency of the extraordinary

ray. A splitting of the spectral function into two peaks can be observed. A similar effect

obtained using a scalar approximation turned out to be absent, because a self-consistent treat-

ment of the mass operator using the scalar approximation destroys the splitting [9]. A self-

consistent calculation taking into account the vector character of the field is far from being
evident, because of the complexity of the analysis. It is not clear to us, whether the patholog-
ical double-peaked form of the spectral function is a physical effect or just an artifact of the

calculation.

3.2. PROPAGATING Versus LONGITUDINAL FIELD. Let us consider in detail the integral

over the absolute value of the wave vector k in relation (13). The imaginary part can easily be

solved by Cauchy integration. In the real part of E we encounter a problem of convergence.
The contribution proportional to the longitudinal component of Go diverges for large values

of k, I.e. for small distances
r in real space.

First, let us study the propagating part of the field. We have to solve an integral of the

following type:

~
~
/~

ak2
~~~

+ c k)

~

+ 10+
~~~~

which does not confront us with any problems of convergence. Details of the rather tedious

calculation can be found in Appendix A. The imaginary part of the mass operator is given by
the sum of two integrals similar to (IS), corresponding to the two propagation modes. Being

a real valued function, the longitudinal component does not contribute to ImE. We note that

the result varies essentially as uJ~, I.e. the ratio ImE/uJ~ vanishes in the limit uJ ~ 0.

On the contrary, the longitudinal part of the Green's function contributes to the real part
of E. It leads to an integral of the following type:

l~ ~

~
/~

ak2 ~~~
+ c

~~~~

which diverges in the ultra-violet regime e,~en if after having done the angular integration.
A physical interpretation of this divergence remains to be done.

In our case, the correlation function (de(q)de(0)) in equation (8) has been obtained using the

continuous medium theory of-liquid crystals. The validity ofthis theory breaks down on length
scales smaller than the size of the molecules ao. Therefore,

we cut off our interval of integration

over k at the value liar. Typically, ao is of the order often angstroms. Once renormalized,
the real part of the mass operator can be calculated. In contrast to the imaginary part, the

real part of E varies like uJ~Alao and the ratio ReE/uJ~ remains finite in the limit
uJ ~ 0. In

t,he static limit only the correction of the refractive index due to the longitudinal field survives,
while all extinction due to scattering processes vanishes.

3.3. RENORMALIzED DISPERSION LAws. Thermal fluctuations of the molecular orientation

lead to a renormalization of the dispersion laws. In order to calculate the correction, we have to

determine the zeros of the determinant of the denominator of the average Green's function (10),

det jGp~jp, uJi Ejp, uJ)j =
0. iii)
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Expressed in the complete, but non-orthogonal basis (jo), je) and lpi), the mass operator
takes the following form,

zoo o o

Eif(P,L°)
"

o Lee Eep l18)

° Eep Epp

This implies that the ordinary component does not couple with the extraordinary and longi-
tudinal components. As a result, Fresnels law iii) decouples into two equations:

0
=

PI P~ Eoo(fi,uJ); (19)

°
" iC°S~ dJ (PI P~) ~ee(» L~)iiiL~/C)~iPi~0iPi ~PPI>

L~)1
~]p(» L~i (2°)

In principle, Zip, uJ) is not only a function of the direction of p but also of the absolute

value p. However, to first order in the perturbation series, it suffices to calculate E for the

non-perturbed values of uJ and p.

The angular dependence of the four matrix elements iii in (18) is shown in Figure 3. The

absolute value of p is chosen on shell (p
= pe for the extraordinary ray, p = pa for the rest).

Solid curves represent the real part of the mass operator, while dashed curves correspond to

the imaginary part. The presence of thermal fluctuations influences the dispersion law of the

ordinary ray in a crucial way, since the renormalized refractive index for the ordinary ray
depends on the direction of propagation.

To first order in the coupling constant A, the renormalized dispersion laws are given by

p = pj~~ where

~~~j,
= ~~

~~ ~~~~~~~ ~~ ~

~~~~~' =

i
~iJlit~ iiji)l~~~~ [jj

The eigenvectors change slightly for the extraordinary and longitudinal waves, whereas the

ordinary ray is not affected. First order perturbation theory reveals that

i°1 ~ i°i>

iei ~ iei + CIA, bJ)iPi; 123)

lpi ~ lpi CIA,bJ)iei,

with

Cjp uJ) =

I ~ePiP,~d)

~ ll~°/~)~iPi£0 [Pi cos~ de jpj p2)j
(24)

These vectors form a non-orthogonal basis.

3.4. SCATTERING MEAN FREE PATH. Multiple scattering of light leads to an attenuation

of the wave. The extinction length, also called the scattering mean free path I, is related to

the imaginary part of E, represented by the dashed curves in Figure 3. It is defined by

iii p ~

_Imz~~ ~,~

lPj

oj2
J

J

j~~~
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Fig. 3. The mass operator as a function of the angle of propagation. Solid lines represent the real

part, dashed lines the iInaginary part of ~. Since the function is calculated on shell, p varies with the

angle for the extraordinary ray.

Note that the scattering mean free path depends on the direction of propagation as a result

of the anisotropy of the medium. We are mostly interested in the components Zoo and Lee

since these determine the extinctions of the propagating matrix. The symmetry of the angular
dependence of these two matrix elements is different, but we note that, independently of the

sign of the anisotropy ea = sjj El, the scattering lengths are maximal parallel to the optical

axis. In that direction, the two polarization states je) and jo) are degenerate (neglecting the

correction C in (23)) and we obtain the same numerical values for tale. The longitudinal mode

jp) stays non propagative.
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With the notation Go
=

£~ gjjj)@j for the unperturbed Green's function, we find for the

propagator (G) of the average field:

~
0 0

9i Eoo(p, uJ)

(G(p, uJ))
=

0
~

gegpEep(p, uJ) + o(y2j
9e Lee (P, ld)

0 gegpEep(p, uJ)
~gp Epp(p, uJ)

~_

f ijilji
~

iPiiPi
j~~~

'~

~~~

COS~ dj lpi P~) Ejj lP, bJ) (bJ/C)~iPi£o lpi EppiP, bJl'

The approximation consists of neglecting the non-diagonal terms which are directly propor-

tional to the perturbation and which are therefore much smaller than the diagonal terms

of (G).
We have presented an analytical solution of Dyson's equation for the average electric field

in ordered nematic liquid crystals when thermal fluctuations of the molecular orientation are

present. As a result, we obtained the renormalized dispersion laws which can in principle be

measured experimentally. lloreover, we determined the spectral function and the propagator
of the average electric field.

4. Monte-Carlo Simulation

All calculations presented so far ha;e been done for the average amplitude. Although the solu-

tion of Dyson's equation reveals various aspects concerning the long range of the fluctuations

and the anisotropy of the medium, exp,erimentalists are mainly interested in the average inten-

sity. An analytical calculatiun in the rliffusive regime using the Boltzmann approximation has

been done and is published else,vhere [8]. In this paper. we present a different approach to the

average intensity. We sturlied tie radiative transfer in ordered nematic liquid crystals with a

Monte-Carlo type simulat,ion methorl. This simulation program provides us with information

about different quantities such as the shape anti anisotropy of the coherent backscattering cone,

the incoherent transmission coefficient, the tirrie-uf-fli~ht distribution functions, the anisotropy
of the diffusion coefficient and the depolariz~tt,ioii uf light. Expcriinentally, coherent backscat-

tering has already been obser,~ed in urieiited neurotic liqiii~l crystals by Vithana et al. ill]. The

advantage of a numerical simulation over an analytical calculation i~, that it permits to inves-

tigate the intermediate regime bet,vec,n single scattering and rliffusion. However, this method

does not allow to investigate effects relatE,il to tlif, i>hasi~. since only the average intensity can

be described correctly.

4.I. ALGORITHM. Monte-Carlo simulations can I)e ili,~iilerl into t,vo types: ab initio simu-

lations where no further assumptions are made oth~r than the HRmiltonian. and non ab imtio

simulations where theory is incorporated in the simulation. Our Monte-Carlo simulation is

of the second type. For example, we neglect the change in the refractive index due to the

multiple scattering calculated above. This is possible since it was found to be of the order of

10~~ compared to I. Moreover, ~v.e do not take into account any cross-polarized terms, ~v.here

two waves of different polarization interfere. These contributions disappear on the average
because of the different dispersion laws that lead to a random phase difference between the

two waves: (EoE])
=

0. Finally, we simulate the solution of the Bethe-Salpeter equation using
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Boltzmann's approximation and neglect any vertex corrections to the phase function and the

mass operator.
In the Monte-Carlo simulation of multiple scattering processes, the diffusion of particles

is described using a random walk model. The computer code contains a probabilistic kernel

where in an iterative procedure four Markovian variables are determined at random, following
known probability distributions. First, the distance between two scatterers is determined

using an exponential distribution function (the Lambert-Beer law) with an attenuation length
I, that results from the solution of Dyson's equation presented beforehand. The direction of

propagation of the scattered wave is obtained using the conditional probability distributions

described in detail in Appendix B. The scattering is highly anisotropic and takes place mostly
in the forward direction. In contrast to existing Monte-Carlo simulations of multiple light
scattering [3], an additional random variable exists for the transport problem in anisotropic
media: the polarization. As mentioned before, no elliptical polarization can exist. Since the

attenuation length depends on the polarization state of the wave, we cannot take the two rays

into account at the same time, as is usually done for isotropic media. The existence of an

additional random variable is an important difference between the vectorial approach and the

scalar approximation [9] in anisotropic media, where no elliptical polarization can exist.

One fundamental problem of a Monte-Carlo simulation of multiple light scattering from

long-range dielectric fluctuations is the concept of a "scatterer". A thermal fluctuation is not

a scatterer in the sense a particle is. We deal with a collective excitation of an ensemble of

molecules that induces a fluctuation in the refractive index. The range of this movement is

described by the correlation length (. While the analytical calculation presented in the first part
of this paper is valid for all correlation lengths, a numerical simulation can only be done if the

scattering mean free path is much larger than the correlation length. Only in this case we may

assume, that the far-field region of the precedent scattering process is reached before a new

collision takes place. Fortunately, the condition I If » I is fulfilled for typical parameters used

during experiments. A magnetic field of I Tesla applied to MBBA corresponds to (
=

3 /Jm,
whereas the scattering mean free path is of the order of 100 /Jm.

The problem of multiple scattering in anisotropic media is a rather complicated one. There-

fore, our computer code has to be more elaborate than in the isotropic case. We already
mentioned one crucial complication: the polarization which implies, that the dispersion law of

the extraordinary ray is anisotropic. We must also take into account that the group velocity of

the extraordinary ray is not directed parallel to the phase velocity. The transport of energy af-

ter one scattering, though, will take place in the direction of the group velocity [16]. Moreover,
the tensor character of the interaction leads to a dependence of all probability distributions on

the polarization state and the direction of propagation. Finally, due to the anisotropy of the

medium, all calculations have to be done in the laboratory frame, and not in a local frame.

We considered both an infinite medium and a slab of thickness L. In the case of a finite

medium, two extreme orientations of the molecules are possible (see Fig. 4):

. geometry (A) the optical axis is parallel to the surface of the slab;

. geometry (B) the optical axis is oriented perpendicular to the surface.

Since we consider an oriented nematic liquid crystal, the optical axis defines one direction I

of the laboratory frame. In the case
(A), a second direction k is defined by the unit vector

normal to the surface. We always considered normal incidence of a plane wave.

In order to avoid additional complications, we neglected refraction and internal reflections

at the surface. Refraction could in principle be important for the backscattering cone, but its

angular aperture turns out to be so small that all corrections are neglectable. The parameters

used are summarized in Table II. The anisotropy parameter is defined as s = El /sjj.
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Fig. 4. The two boundary conditions considered in this article. Geolnetry (A): The optical axis is

oriented parallel to the surface of the slab. Geolnetry (B): The optical axis is oriented perpendicular

to the surface. We consider normal incidence of a plane wave.

Table II. The parameters used for the numerical simulations.

EL =
4.7 xa =

1.23 x
10~~

emu B
=

I Tesla

Ki
=

K2
=

6.7 x
10~~~ N K3

=
8.4 x

10~~~ N T
=

300 K

5. Numerical Results

5.I. COHERENT BACKSCATTERING. In the middle of the eighties, weak localization of

light was demonstrated both experimentally Iii and theoretically [2]. Since then, various

experiments of the coherent backscattering cone have been done [4, 6,19-2 ii. This constructive

interference in the backscattering direction was also observed in nematic liquid crystals both

in the oriented [I ii and non-oriented phase [22j. In isotropic media, the shape of the cone very

near the backscattering direction is triangular. From the slope of the triangle, the transport

mean free path can be deduced. Experiments in ordered nematic liquid crystals ii ii indicate a

transport mean free path I* of the order of several millimeters. However, the angular resolution

is not good enough to extract more quantitative results.

We simulated the coherent backscattering cone for different boundary conditions of the

molecular orientation as well as for different planes of detection. Doing so, we were able

to determine the anisotropy of the transport mean free path and the anisotropy of the cone

shape. Once again, our simulation is not of an ab initio type. We neglected
a priori the cross-

polarized cones, where the incident polarization differs from the emergent polarization, lo ~ e)
and (e ~ o). The absence of this contributions was already explained by Vithana et al. ill]
for geometry (A). It is due to the different dispersion laws of the two rays. In the case of

geometry (B), the distinction between ordinary and extraordinary rays is artificial, since the

two dispersion laws coincide.

As a technical detail we mention that we
used a method called "fractional photon method".

This means that at each step the probability of the "photon" (here ment as a classical wave

packet) to leave the slab either in transmission or reflection is determined. This probability is

given by the product of the probability to travel over the distance between the actual scatterer

and the border without being scattered and the probability to be scattered normal to the

surface averaged over the possible angles of incidence (see Appendix B). The contribution of

the "photon" to the transmitted or reflected intensity is weighted by this probability. Every
"photon" is assumed to probe a possible realization of the medium and the superposition of

the results leads to the ensemble averaged value.
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Fig. 5. The coherent backscattering cone siInulated for the ordinary polarization (solid line) and ex-

traordinary polarization (daihed line) detected with respect to the optical axis. The relative anisotropy
of the1nediu1n is e =

1.3. The figure a) was obtained for an orientation of the molecules parallel to

the surface (A), while b) corresponds to a perpendicular orientation (B). The slab thickness is 2 cm

and the angle is given in radians.

5.I.I. Line Shape of the Cone. In Figure 5 we show the cone obtained for a thick slab.

The total transmission, i.e. the transmission coefficient integrated over the half space, ~v.as

found to be Ttotai
=

6A + 0.2% for the upper figure and Ttotai
=

8.9 + 0.2% for the lower one.

The small rounding effect on top of the cone is due to these losses in transmission. Let us

first consider the Figure 5b. In this case
(B), the light is incident parallel to the optical axis,

the only direction where the two rays are degenerated because their dispersion la~i~s coincide.

Therefore, no difference is observed between the cone detected with ordinary polarization and

the cone with extraordinary polarization. Parallel to the optical axis, the two modes of linear

polarization may combine to give an elliptical polarization, an effect which was neglected in

the simulation, since it is a skin effect.

The situation is different for the geometry (A), ~v.here the light is incident normal to the

optical axis. In this case the difference between the refractive indices is maximal. We will

show that the difference of the slopes near the backscattering direction is due to this difference

in the absolute value of the wave vectors. In an isotropic medium, the triangular shape of the
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Table III. The transport mean free path as obtained by analyzing the line shape of the

coherent backscattering
cone. I]~~j is the value obtained by a scalar approximation.

e =
0.7 e =

1.3

Ii

-
1[

=
0.44 (+0.02)1]~~j 1[

=
0.50 (+0.04)1]~~j

""i

ij
#

o.69 (+o.oij ij~~j ij
#

o.15 j+o.oij ij~~j

cone is given theoretically by [2]:

~~~j~
~"~

=
2 2

~~ ~ ~~
kl*6. (27)

;nc + 2(

In order to interpret our results, we shall replace the wave vector k in equation (27) by kj,
where we take into account the two different dispersion laws (j

= o, e). Moreover, we-have to

replace I* by a quantity which depends on the geometry: I [ for case IA) and I( for case
(B).

Doing so, we indeed find that the triangular shape can be described by equation (27) with a

transport mean free path that depends on the boundary conditions but not on the polarization.
The results obtained for [

/jj are shown in Table III.

The length I]~~j corresponds to the transport mean free path as obtained using a scalar

approximation, thus neglecting all polarization effects:

~~~~' k]A k]ejBT' ~~~~

For the parameters used in this paper, we obtain

1]~~j =
iii /Jm. (29)

We note that the transport mean free path deduced from our simulation is of the order of several

hundreds of micrometers. It is smaller than the value obtained using a scalar approximation.
This may reflect the fact that the polarization introduces an additional random variable in

the problem of multiple scattering, which is not present in isotropic disordered media. An

additional average is done. Therefore, the effect of the anisotropic scattering (mostly forward

scattering) is diminished and the numerical value of I* is reduced.

Qualitatively, we can understand why the transport mean free path is larger in the direction

parallel to the optical axis than perpendicular to it. The polarization of a wave propagating
parallel to this direction is restricted to the plane perpendicular to n.

However, the refractive

index in this plane is not affected by thermal fluctuations. Therefore, the wave will suffer only
few scattering events and the transmission coefficient is larger than in the opposite case.

It is interesting to note that for the two boundary conditions studied in this paper, I.e. an

orientation of the optical axis parallel or perpendicular to the surface normal, the enhancement

factor will be strictly 2. This is due to the fact that no single scattering can occur in either

geometry, the phase function being zero in both cases. For an oblique orientation of the

molecules with respect to the boundaries, single scattering processes exist and the enhancement

factor will be less than 2.
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5.1.2. Anisotropy of the Cone. Even in isotropic media the coherent backscattering cone is

not isotropic, I.e. the lines of equal intensity are not spherical. The shape of the cone depends
slightly on the plane in which it is detected. The anisotropy of the cone was investigated by
Van der Mark et al. [23]. The authors find that only the wings of the backscattering cone in

the linear polarized channel are modified when the detection plane is changed. In this case the

anisotropy is due to low order scattering processes.

We studied the anisotropy of the cone in nematic liquid crystals for the two different bound-

ary conditions (A) and (B) shown in Figure 4. In case (A), the optical axis is perpendicular

to the surface normal, which coincides with the direction of the incident wave vector, n I fi.
The cone can be detected either in the plane formed by those two vectors or in the plane
perpendicular to the optical axis. As in the isotropic case, we expect an anisotropy of the

cone. Situation (B) is different. In that case, the plane wave is incident parallel to the optical
axis and the surface normal. No direction in the plane perpendicular to the optical axis can

be distinguished. Therefore, we do not expect any anisotropy of the cone.

The Monte-Carlo simulation confirms these considerations. Indeed, for geometry (B) no

anisotropy is observed. In Figure 6 the normalized reflected intensity is shown for the geometry
(A). The upper figure was obtained for ordinary polarization lo ~ o

channel) while the lower

one corresponds to extraordinary polarization (e ~ e channel), adopting a relative anisotropy
of s =

0.7 and a slab thickness of about 3 cm. We observe three principal results:

I. a change of the detection plane leaves the triangular top of the cone unchanged. Only
the wings are modified;

2. the cone detected in the o ~ o channel is more affected than the one in the e ~ e channel;

3. the cone detected in the plane given by the surface normal and the optical axis is larger
than the one obtained in the plane perpendicular to the optical axis.

The first point has also been observed by Van der Mark for Rayleigh and Mie scatterers in an

isotropic medium. We conclude that only short paths with few scattering events are responsible
for the anisotropy of the cone. We can also understand quantitatively why the cone detected

in the plane given by the surface normal and the optical axis is larger than the cone obtained

in the plane perpendicular to n. The phase functions depend strongly on the angle of the

incident and scattered waves vectors with respect to the optical axis. However, the choice of

a principal axis of the system as direction of propagation is a very particular one. Several

lower order scattering sequences are suppressed for this particular choice. Once the direction

of propagation deviates from the principle axis, as is the case when the cone is detected in

the plane parallel to the optical axis, the phase functions suffer less restrictions and lower

order scattering events become more probable. This fact explains why the cone obtained in

the plane parallel to n is found to be larger than the "perpendicular" one, since for the latter

every direction perpendicular to the optical axis can be chosen as principle axis.

5.2. TRANSMISSION COEFFICIENT. In the precedent section we determined the transport

mean free path by analyzing the line shape of the backscattering cone. An alternative approach

to this quantity is given through the transmission coefficient T. The transmission coefficient

used in this article is defined as the specific intensity transmitted through a slab, integrated

over all possible orientations of the direction of detection with respect to the optical axis.

Numerically, we counted the number of photons transmitted without regard to their direction

of propagation. We studied the dependence of T on the slab thickness for different boundary
conditions (Al and (B) as well as for two different values of the anisotropy e =

0.7 and e =
1.3.

The results are
represented in Figure 7. The slab thickness is given in units of the scattering
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Fig. 6. The coherent backscattering cone simulated for the two different a) ordinary and b) ex-

traordinary polarizations. The optical axis is oriented parallel to the slab surface. Curves marked I
are

detected in the plane forIned by the optical axis and the surface norInal, curves1narked 1 are detected

in the plane perpendicular to the optical axis. The relative anisotropy of the medium is e =
0.7 and

the slab thickness values 3 cIn.

mean free path parallel to the optical axis, 1(6
=

0), which is the same for both polarization

states (1(6
=

0)
= 1.021]~~~ for e =

1.3 and 0.8 for e =
0.7). The contribution of the ballistic

photons was suppressed.
We note that the transmission coefficient is larger parallel to the optical axis (full symbols)

than perpendicular to it (hollow symbols). For a given geometry it is smaller for a positive
anisotropy (e

=
1.3, circles) than for the negative one (e

=
0.7, diamonds). In the multiple

scattering regime (L » 1(0)) a linear relation between the slab thickness and the transport

mean free path is established. This is analogous to the transmission through a disordered, but

isotropic medium. For the isotropic case, the component of the specific intensity perpendicular

to the slab normal is known [23] to be: /

~~~" ~~~ ~~'~~
~'il~~~~2~ ~'

~~~~

where /J; =
cosfl; describes the direction of incidence with respect to the slab normal,
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Fig. 7. The transInission coefficient siInulated for a positive anisotropy (e
=

1.3: circles) and a

negative anisotropy is
=

0.7: diaInonds). Hollow symbols correspond to the geoInetry IA) while full

syInbols correspond to geoInetry (B). A Inagnetic field of I Tesla was used to orient the Inolecules.

(The error bars are of the size of the syInbols.)

/Js = cos fls refers to the direction of scattering, I* is the transport mean free path and ( re 0.71

is the parameter of the MiIne problem. In our numerical simulation, /J; =
I is fixed and we

integrate over the angle of detection, which leads to:

This result is valid in the diffusion approximation for an isotropic medium. (Note that the

integration of (30) over all directions of incidence and detection leads to the rigorous result

obtained from the radiative transfer equation [24].) In an isotropic medium, equation (31)
allows us to determine the transport mean free path, I*. We assume that relation (31) remains

valid in anisotropic media for the two geometries if I* is replaced by a geometry-dependent
value I [ IA) or I( (B). This hypothesis allows us to determine the transport mean free pathes I [
and I). However, this approach will give wrong results in the general case of an angle 6~0, ir/2
between the optical axis and the slab normal. The results, given in units of the transport mean

free path obtained in a scalar approximation (1]~~~ re iii /Jm), are summarised in Table IV.

Comparing Table III with Table Iii, we conclude that the mean
free path obtained via

the transmission coefficient equals the one obtained by analyzing the line shape of the cone.

Theoretically, this result is by no means trivial. It can be interpreted as an indication that

the transport in the multiple scattering regime is in fact diffusive. We would like to emphasize

that the onset of diffusion and the existence of
a

diffusion tensor is no longer obvious as soon

as polarization and phase of the waves are explicitly taken into account. The diffusion pole is

a subtle consequence of energy conservation in transport theory, in which case the losses of the

coherent beam are exactly compensated by the scattering processes, including all polarization

transitions and associated selection rules.
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Table IV. The transport mean free path as obtained by analyzing the transmission coejJi-
cient. I]~~j is the value obtained by a

scalar approximation.

e=0.7 e=1.3

jj
-

( 1[
=

0.44 (+0.02)1]~~j 1[
=

0.56 (+0.01)1]~~j

,,,,'
lj

=
0.57 j+0.01) lj~~j lj

=
0.79 j+0.01) lj~~j

5.3. TIME-oF-FLIGHT DISTRIBUTION FUNCTIONS. Another quantity of interest that is

closely related to the coherent backscattering cone is the path length distribution. In an

isotropic medium, this distribution is equivalent to the time-of-flight distribution, which can

be measured experimentally. However, in an anisotropic medium, the direct proportionality
between P(s) and Pit) no longer holds because of the angular dependence of the velocity of

the extraordinary ray. Since the analytical relation is unknown, we simulated both distribution

function8 in tran8m18sion as well as in reflection. No crucial difference between P(8) and Pill

was found within the error bars of our simulation.

We calculated the time-of-flight distribution function in reflection and transmission for

different geometrie8 and slab thickne8ses. In order to analyze the curves, we 8uppo8ed that the

formulas obtained for an isotropic medium are still valid if we replace the transport mean free

path and the diffusion coefficient by anisotropic quantities. This will only work for geometry
IA) and (B), while in general a different formula has to be applied.

5.3.I. Reflection. We are not interested in the exact formulas for the time-of-flight distri-

bution function PR it), but only in the asymptotic expression for long paths. In reflection from

a
disordered isotropic medium, th18 d18tribution correspond8 to the probability of return in a

random walk [25]. In the asymptotic diffusive regime of detection times much longer than the

characteristic scattering time, PR(t) varies algebraically:

PR(t)
oc

t~~/~ (32)

Our purpo8e wa8 to confirm or invalidate th18 relation and to check explicitly the pre8ence of

normal long-range diffusion. In order to present the result8 of the Monte-Carlo 8imulation

in Figure 8, a logarithmic representation is instructive. We studied different values for the

slab thickness and the anisotropy. In all cases, the algebraic relation (32) was observed. We

conclude that the transport is indeed diffusive like in isotropic media.

5.3.2. ~ansmission. The asymptotic time-of-flight d18tribution function detected in tran8-

mission through a thick slab PT it) can be obtained analytically using different methods [25-27].
In an disordered isotropic medium, it follows an exponential law, governed by the diffu8ion con-

stant:

PT(t)
oc

e~~/~~
=

e~~~~~/~~ (33)

This relation makes a
semi-logarithmic representation useful (Fig. 9). Again supposing the

validity of equation (33) in an anisotropic medium, we are able to deduce a value for the

anisotropy of the diffu8ion coefficient, Di ID A detailed analysis of the diffusion coefficient
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Fig. 8. The tiIne-of-flight distribution function in reflection from a slab of thickness 3 cm and an

an180tropy e =
0.7 in a logarithInic representation. Where a) correponds to the geoInetry (A) and

b) to the geoInetry (B).

can be found in reference [9]. At th18 8tage of the analy818, we note that the relation

D
=

cl* (34)

between the diffu8ion coefficient, the tran8port mean free path and the tran8port velocity
known for isotropic media no longer holds in the an180tropic ca8e. The values obtained for

the ratio Di/cl [ and Djj /cl( are shown in Table V. This result indicates that the velocity

in the expression for the diffusion coefficient (34) is no longer a scalar, but depends on the

angle between the direction of detection and the optical axis. This observation is confirmed by
analytical calculations [9].

5.4. POLARIzATION. One well-known property of multiple scattering in isotropic disor-

dered media is that initially polarized light will be completely depolarized [3, 29]. We shall

see that this is not true for anisotropic media. In order to study the polarization of light, we

simulated two different quantities.
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Fig. 9. Tilne-of-flight distribution function in transInission through a slab of thickness 6 1n1n
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an anisotropy e =
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and b) to the geoInetry (B).

Table V. The linear relationship between the diffusion coejJicient and the transport mean

free path, known for isotropic media, no longer holds in the anisotropic case. (The velocity c

is only used in order to obtain a dimensionless quantity.)

e =
0.7 e =1.3

Di / cl [ 0.57 (+0.01) 0.54 (+0.01)

D /cl* 0.37(+0.01) 0.43(+0.02)

The "total" polarization:

in an infinite medium, photons are scattered several times. After a given time, we deter-

mine their polarization state without regard to the direction of propagation. The "total"

polarization is defined as the ratio of the number of photons with ordinary polarization,
normalized on the total number of photons. It corresponds to an angle average of the

second quantity.
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Fig. 10. The "total" polarization as a function of dielectric anisotropy. (The error bars are of the

size of the syInbols.) The circles have been obtained by the Monte-Carlo siInulation of1nultiple light
scattering in an infinite Inedium. The triangles correspond to the result of an analytical calculation of

the density of states, given by formula (36). Qualitatively, the two curves are in good agreement.

The degree of polarization:

this is given by the difference between the intensity detected in transmission as ordinary
polarization and the one transmitted as extraordinary polarization, normalized on the

total tran8mitted inten8ity:

~~
+ ~l' ~~~~

Being only defined for the 81ab geometry, the value of ~p 18 sen8ible to boundary conditions

and depends on the direction of detection.

The incident light is assumed as being depolarized, I.e. containing 50% ordinary and 50%

extraordinary polarization.
In Figure 10, the total polarization is shown as a function of anisotropy. We note that the

initially depolarized light is polarized in the multiple scattering regime. This rather astonishing
result can be understood theoretically. We calculated the density of states available for ordinary
and extraordinary polarization, given by the integral of the spectral function over all wave

vectors. By the equipartition principle, the total polarization is expected to obey the following
relation:

p~ j~~
/

Ao [P, L°)dP

~~~~~
~

'~~~ /
-to lP, L°)dP +

/
Ae lP, L°ldp

~~~~

where Aj(p,uJ) is given by equation (15). To be consistent with our simulation, we have to

neglect the real part of the
mass operator, which corresponds to the change of the refractive

index due to multiple scattering. We also neglected the existence of elliptical polarization, that

can occur when the indices of refraction coincide. Analytically, this was taken into account by
calculating Ao and Ae independently.
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In Figure 10 we see that the total polarization can at least qualitatively be explained by

a difference in the available density of states for the two polarizations. We note that this

difference15 almost entirely due to the anisotropy of the host medium. Multiple scattering is

only needed in order to reach equipartition.
Moreover, we determined the degree of polarization (35), which is defined for a finite sample

size. As such, it is sensitive to the presence of the boundaries. In fact we observed, that the

degree of polarization is highly influenced by the last scattering process which takes place in

a given direction, in our case perpendicular to the surface and the optical axis. Because of

the particular form of the phase functions, the degree of polarization was always found to be

negative, indicating an excess of extraordinary polarization. Superposed to this skin effect, we

find a decrease of the degree of polarization when the anisotropy is increased, as observed for

the total polarization.
Finally, we mention a correlation effect found for the polarizations in transmission through

a thick slab. In an infinite medium, no correlation between the first and last polarization state

can exist. For us, this constituted a test of our program. However, we detected a residual

correlation of about five percent even for a thick slab. This is also a skin effect, this time due

to the first few collisions. As
was

said before,
an

initially depolarized light beam will be slightly
polarized in a disordered anisotropic medium. Therefore, after a few collisions, an excess of one

polarization state will be established. This excess is maintained all over the slab and results

in a residual correlation between the incident and emergent polarization. In experiments, this

effect should be observable.

6. Conclusions

In this paper we studied multiple scattering of light from long-range dielectric fluctuations in an

anisotropic medium, taking polarization effects into account. Dyson's equation for the average
field amplitude has been solved analytically. We generalized a previous work [12] concerning
the angular dependence of the imaginary part of the mass operator. The dispersion law of

the ordinary ray becomes anisotropic because of multiple scattering processes. Moreover, the

contribution of the longitudinal wave leads to a divergent term that has to be renormalized, a

fact that remains to be interpreted.
The logarithmic divergence of the imaginary part of the mass operator at the frequency

shell, that was already observed within a scalar approximation [9], is also observed in the more

rigorous tensor approach. However, the maximum for the ordinary component Zoo is shifted

because of a selection rule that applies to ordinary polarization. Therefore, the anomalous

line shape of the spectral function, predicted by the scalar approximation is removed for the

ordinary polarization. We determined the average Green's function and found a weak coupling
between the longitudinal wave and the extraordinary ray, caused by multiple scattering.

A numerical approach was adopted in order to determine the average intensity. Using a

Monte-Carlo simulation program, the coherent backscattering cone was calculated. We in-

vestigated the angular anisotropy of the cone qualitatively and concluded that only low order

scattering processes are sensible to a change of the detection plane. The transport mean free

path which depends on the direction of propagation relative to the optical axis was obtained

quantitatively by analyzing the triangular top of the cone under the assumption that the the-

oretical line shape stays valid in anisotropic media. A similar analysis of the transmission

coefficient offers an alternative way to obtain the geometry-dependent transport mean free

path. The two methods lead to comparable results. This confirms the idea that the energy

transport is in fact diffusive, since an analysis based an the diffusion approximation leads to

consistent results.
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The asymptotic behavior of the time-of-flight distributions turn out to be well-described

by the analytic expression obtained for an isotropic disordered medium taking an anisotropic
diffusion coefficient into account. However, we note a crucial difference concerning the ratio of

the diffusion coefficient and the transport mean free path. In an isotropic medium this ratio

is constant, meaning that the transport velocity is a scalar constant. We find a dependence of

the velocity on the angle of detection relative to the slab normal. This result has been obtained

independently from an analytical solution of the Bethe-Salpeter equation [8].
Finally, we studied the polarization of the diffuse light. Contrary to the isotropic case,

multiple scattering processes in anisotropic media do not depolarize the incident wave. The

residual polarization depends on the anisotropy of the medium. This effect
can be understood

from a difference between the weight of the transport modes.
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Appendix A

Some Details of the Calculation of E

In this appendix, we present some details of the calculation of the tensor mass operator E(p, uJ).
We have to solve the integral (13) taking into account the problems of convergence for the real

part of E mentioned in Section 3.2. The imaginary part of E involves a delta-function and can

easily be integrated. Since it does not possess a pole in the complex plane, the longitudinal
part of the Green's function does not contribute to the imaginary part of E. We find

~ e 2

~~~~~'~~
6~~

~~~ ~
=pj

~~~~ ~
1

nj unit«iii + jai Inijii @ il«ijiIni + Inijii«ii
~ ~~

COS~ dj lqJln)~ + Aiqj lqJln)~l + i/f~

The remaining solid angle integralis taken over the surface of constant energy: k
= pj = njuJ /c.

qj denotes the quantity jpj pi. We used the relation dok
=

(cosdj/n)) dot. The angular
dependence of the numerator is shown in Table 1.

~

Obviously, the contributions of the "transverse" field components to the real part of E do

not diverge either. The integral over the absolute value of k gives:

~ %~ ak2 ~~~
+ c uJ2

~j
(k)

~~'~~

pj i i c

4 apj bpj + c apj + bpj + c

~ apj

~
(~~/~~(pj

~c) ~ 4~jli(/~c) ~~'~~

2

fir
b

~@fi
2

~~~~~~@fi
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We used the following notations:

a =
cos~ 6 + A sin~ 6,

b
=

2p(cos 6 cos d + A sin 6 sin d cos #),

c =
p~(cos~ d + A sin~ d) + 1/(~.

Here, 6 is the angle between k and the optical axis no, d denotes the angle between p and no

and # corresponds to the angle between the projection of k and the projection p on the plane
perpendicular to no. The integrals over 6 and # can be solved numerically.

However, when treating the longitudinal contribution, we are confronted with an integral of

the following type:

%~ ak2
~~~

+ c

~ ~2
~~~~~~ ~ ~~ ~

~~ j

~
~~ a~~~

%~ ak2
/~k

+ c

~~'~~

Only the third term is convergent:

'
2~ a~~~b2 ~

"~~~°
~~

~~ ~~

The second term vanishes after the integration of the solid angle. The first term remains present

even after the angular integration. It has to be renormalized by limiting the integration interval

by a cut-off at k
=

liar which corresponds to the inverse ofthe size of a liquid crystal molecule.

The "divergent" part can now be integrated analytically:

The angular coefficients Mj/ and Nil are given in Table VI. Note, that the anisotropy is

entirely hidden in the relative parameters A
=

Ki /K3 and e = ejj let
Finally, we obtain the following expression for the real part of the mass operator:

~2~~jn~4 ~ i i i
~~~~~'~~

)2ir)3K
/

~~~

~°
cos2 dj

~~~f ~
z2 (kjejkl'~~f ~ ~~~~'~' ~~'~~

J"°

The integration over the solid angle was done numerically. We find, that the absolute value of

ReE is dominated by the contribution ReEdiv.

Appendix B

Monte-Carlo Simulation

We simulated multiple scattering processes numerically, using a Monte-Carlo simulation pro-

gram. The principle part of this program is the probabilistic kernel, where the distance between
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Table VI. The angular coejJicients of equation (A.6) for the divergent part of Re E.

Mif Nzf

o~o 1 0

e( cos2 d e( sin~ d e( sin~ d

e ~ e ~ej cos2 d + e( sin~ d e( cos2 d + e( sin d

p ~ p
sin~ d cos~ d cos~ d

(e + El sin d cos d El sin d cos d

~ ~ ~ le( cos2 d + e[ sin~ d le( cos2 d + e[ sin~ d

two scattering events, the direction of propagation of the scattered wave and the polarization
after scattering is determined randomly, but follo~v.ing known probability functions. The knowl-

edge of those functions is crucial for the quality of the simulation.

The probabilities of a wave with polarization a; and incident direction 6;, #; to be scattered

in the direction 6s, is with polarization as is completely determined by the differential cross

section [10] normalized on the total cross section:

$
la;, 6; as, 6s, hi)

~~~~'~' ~~ ~~ ~~~
~j /

(a;, 6; as, 6s, hi) d cos 6sd#I
~~ ~~

~

d
k

While this probability depends in a complex way on the direction of incidence and scattering
with respect to the optical axis, only the relative polar angle hi

=
is #; enters in equation

(B.I). It can be parametrized in the following way:

p(a;, 6; as, 6s, hi)
=

fl(a;, 6; os)P(a;, 6;; as 6s)P(a;, 6;; as, 6s hi). (B.2)

The different terms have the following physical meanings.

.
The conditional probability of the polarization as

/ ~°
la;, 6; as, 6s, Ail d cos 6s d#s

~~~'~ ~ ~~~
~j

~~°
jai, 9; as, 6s, hi) d cos 6sd#s

~~ ~~

~

dok

Knowing the polarization a, and the angle 6i between the direction of propagation of the

incident wave and the optical axis, ala;, 6; as) enables us to determine the polarization

as of the scattered wave.
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.
The conditional probability of the angle of propagation 6s relative to the optical axis:

/
(a;, 6; as, 6s, hi) dis

~~~'~ ~ ~~ ~~~ / °~~,
6; as, 6s, hi) d cos 6sdis

~~ ~~

dok

Once the polarization state of the scattered wave is known, the angle between the scat-

tered wave vector and the optical axis can be obtained.

.
The conditional probability of the relati,~e polar angle hi:-

jai, 6j as, 6s, hi)
~~~'~ ~'~ ~~ ~~ ~~~ / f(a;,

6; as, 6s, hi) dis
~~ ~~

k

Moreover, we need the step length distribution P(r). We assumed an exponential distribution,
I.e. the Lambert-Beer law, with the scattering mean free path [(6;) as characteristic length.
This is an approximation since we know that the step length distribution decreases slightly
faster than an exponential [12].

Like the conditional probabilities, the scattering mean free path, obtained from the solution

of Dyson's equation, is parametrized by 6; and a;. In fact, since [(6;) depends on the polar-

ization, we cannot follow the ordinary and extraordinary ray at the same time. Instead of

superposing the two linear polarizations, we choose one polarization state which may change

at each collision. Therefore, we deal with four random variables.

We generated the azimuthal angle by the cumulative function [3, 28], whiih is less time

consuming in computing time than the rejection method. The relative polar angle can be

obtained analytically for crossed polarization channels
o ~ e, e ~ o, but an approximation

was made for the e ~ e channel. This approximation underestimates slightly the anisotropy
of the scattering process.
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