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Abstract. We incorporate the effects of fluctuations in a density functional analysis of the

freezing of a colloidal liquid in the presence of an external potential generated by interfering
laser beams. A mean-field treatment~ using a density functional theory, predicts that with

the increase in the strength of the modulating potential, the freezing transition changes from

a first order to a continuous one via a tricritical point for a suitable choice of the modulating
wavevectors. We demonstrate here that the continuous nature of the freezing transition at large

values of the external potential Ve survives the presence of fluctuations. We also show that

fluctuations tend to stabilize the liquid phase in the large l& regime.

1. Introduction

A few years ago Chowdhury, Ackerson and Clark ill reported an interesting light scattering
experiment on laser induced freezing of a two-dimensional suspension of strongly interacting
colloidal particles. They showed that the colloidal liquid freezes into a two-dimensional crys-

talline phase with predominantly hexagonal order, when it is subject to a one-dimensional

potential induced by a standing wave pattern of interfering laser beams. The wavevector qo of

the modulating potential was chosen to coincide with the ordering wavevector of the colloidal

liquid, i.e., the location of the first peak of the direct correlation function (DCF) cl~l (q). This

observation motivated experimental studies involving direct microscopic observations [2] and

Monte-Carlo simulations [3] which confirmed the existence of such a laser induced freezing tran-

sition. However, the conclusions regarding the nature of the transition between the modulated

liquid and the crystal have not been definitive. In the original paper where the experimental
results were reported, Chowdhury et al. ill also theoretically analyzed the phenomenon of laser

induced freezing in terms of a simple phenomenological Landau-Alexander-McTague theory
and concluded that the transition from the modulated liquid to the 2-d (modulated) crystalline
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phase can be made continuous for sufficiently large laser fields. The phenomenological Landau

theory~ based on a polynomial expansion of the free energy in powers of the order parameter
truncated up to a finite degree, has well-known limitations in the case of a first order transition

where the order parameter shows a jump. Apart from this, the coefficients in a phenomenolog-
ical Landau type of free-energy are unknown and have unknown dependence on experimental

parameters. In contrast the density functional theory (DFT) [4] pioneered by Ramakrishnan

and Yusouff has led to a very successful approach for studying the strongly first order liquid-
solid transitions for various systems including colloidal suspensions [5]. In contrast to the

Landau-type free-energy functions, the density functional free-energy [4] is a non-polynomial
function, (important) terms involving arbitrary powers in the order parameters being present.
Furthermore~ the coefficients of the density functional free energy are determined from the

experimentally measured liquid correlation functions. It is of obvious interest to carry out

DFT studies of Laser Induced Freezing. Recent density functional studies [6,7] have dealt with

Laser Induced Freezing transition.

In reference [7] it has been shown how the freezing (modulated liquid ~ crystalj transition

changes from a first order to a continuous one via a tricritical point with the increase in the

external potential I~, if the modulation wave-vector is tuned at the ordering wavevector of the

liquid. The order parameters in this theory [7] are the Fourier components of the molecular

field f(r) (e In(p(r) /po)) with wavevectors equal to the reciprocal lattice vectors (RLV) of the

periodic structure, into which the liquid would have frozen in the absence of [. Here p(r) is

the local density in the modulated liquid or the crystal and po is the mean density of the liquid.
Symmetry considerations show that in the presence of l~, the order parameters corresponding
to the smallest set of RLVS of the crystal divide into two classes: (1) those corresponding to

the RLVS parallel to the modulation wave-vectors (gf) of I~ denoted by if; and (2) those

corresponding to the rest of the RLVS in the smallest set (gd) denoted by id One can choose

the wavevectors pertaining to the external potential in such a way that an integral combination

of vectors in the class (gf) cannot be obtained from an odd combination of vectors in the class

(gd). Under this condition it is shown [7] that the Landau free energy obtained by expanding
the DFT free energy about the modulated liquid phase (ff # 0) in powers of id has only even

powers of id and the transition changes from first order for low values of -fll~ [7] (where the

quartic coefficient of the Landau free energy is negative) to a continuous one for large values of

-fl[ [7] (where the quartic coefficient is positive). Note that this symmetry argument holds

good under the inclusion of arbitrarily large RLV and liquid direct correlation functions of any
order [7].

The analysis of reference [7], however, is of a mean field nature. We clarify below in what

precise sense the theory presented in reference [7] is a mean field theory. The density p(r),

or equivalently the molecular field fir), contains the freezing modes, I-e-, the modes with

wavevectors equal to the reciprocal lattice vectors (RLV) of the periodic structure (into which

the liquid would have frozen in the absence of Ve ), and other modes which we
fall the fluctuating

modes. So we can write that fir)
=

£ fgexp(ig r) +
£' fqexp(iq r) where the first

summation runs over the freezing modes a~d the second sumii~tion
runs over the fluctuating

modes. In the present problem, for instance, if and id are the freezing modes corresponding to

the smallest RLVS parallel to the wave-vectors of l~ and the rest of the RLVS in the smallest

set respectively. In reference [7] only the freezing modes are retained and all the fluctuating
modes are completely neglected. Thus the theoretical analysis presented in reference [7] is

a mean field one. In general, the fluctuating modes can have an important effect on the

freezing transition. This motivates us to extend the mean field treatment of reference [7] by
including the fluctuating modes in addition to the freezing modes which are already present in

the mean
field study of reference [7]. In this context we recall the work of Brazovskii [9-11].
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He considered the transition from an isotropic liquid to a cholesteric liquid crystal. Here the

mean field Landau free energy in terms of the order parameter contains only even powers and

T(~J, the coefficient of the quartic term is positive; hence the transition is predicted to be

continuous. He demonstrated that fluctuations transform a continuous transition to a first

order one. The large effect of fluctuations in Brazovskii's theory is due to a considerable

softening of the order parameter modes at a nonzero value qo of the wavevector. As a result,
the effect of fluctuations comes from a large surface area (ci 47rqo~) in the momentum space.
After integrating out these fluctuation modes, the coefficient of the quartic term in the effective

Landau free energy becomes negative where the coefficient of the quadratic term changes sign,
indicating that the continuous freezing transition is preempted by a first-order one. So an

obvious point to investigate is to what extent the fluctuating wavevectors close to the ordering
wavevector qo of the liquid are important in the presence of an external modulation -five

tuned at qo (1-3, 7]. More specifically we ask if the quartic coefficient in the effective Landau

expansion can become negative (where the quadratic coefficient changes sign) in the context

of Laser Induced Freezing transition in the large -fll~ limit, where the transition is predicted

to be continuous in reference [7]. We consider a two-dimensional colloidal system subject to

a
one-dimensional external potential for the sake of simplicity. Furthermore, it is well-known

that the effect of fluctuations is more prominent in two dimensions than in three dimensions.

Our starting point is the free-energy cost of creating a density inhomogeneity over a uniform

liquid (in the incompressible limit), in terms of fq [7,8]:

flF((fq)
=

In
/ d~r exp[ff ~j e(~~l'~ ~l] exp[~ fqe~~'~]

V
J q

+
~j f(/C(~~ + nfflTff/C[~~ Ii)

q

where the summation over q includes the set ((gd)) and the fluctuating modes. Here c(~
is the direct correlation function of the liquid, V is the volume of the system and nf is the

number of vectors in the class (gf). We generate a Landau expansion from equation (I)
about the modulated liquid phase (ff # 0) in powers of fq (where the transition is continuous

according to the mean field theory) and then integrate out the fluctuating modes to form an

effective Landau expansion in powers of id This free energy has been used to obtain the phase

diagram. Note that the odd invariants of id are forbidden in the effective Landau free-energy
due to symmetry restrictions as in the mean field case [7]. In this work we follow Brazovskii's

approach to form the effective Landau free-energy. In particular, Brazovskii shows that the

most dominant corrections to the twc-point and four-point correlation functions come from

diagrams with a single loop. As a consequence, it is sufficient to evaluate self consistently the

self-energy corrections to one-loop order. Similarly, it is shown [9] that the corrections to the

four-point vertex functions are dominated by a restricted class of one-loop diagrams and their

ladders. Here we have a liquid of strongly interacting colloidal particles characterized by a static

structure factor S(q), with a sharp maximum at q t qo. Equivalently, this implies that [S(q)]~~
has a prominent minimum at q cd qo, a feature present in Brazovskii's theory as well. However,

in this situation there are a few additional complications which are absent in Brazovskii's

problem. Here we consider a phase transition induced by an external potential. The coupling
of the external potential to certain density modes of the isotropic liquid leads to a nontrivial

structure of the correlation matrix in the modulated liquid phase which plays a central role in

the computation of the renormalized four-point vertex functions. Furthermore, the momentum

conservation laws appearing in the present work involve the additional wavevectors pertaining
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to the external modulation. Also, the bare vertex functions appearing in our free energy have

a complicated dependence on the external potential. For the sake of simplicity we confine

ourselves to asymptotically large values of the external potential. In this limit, we neglect
fluctuations in the modes if (pertaining to the external potential) since a zero temperature

normal mode analysis shows that the external potential creates a gap (/l ci )Ve)) in the phonon

spectrum along the direction of externally induced ordering. Consequently fluctuations in these

order parameter modes are energetically unfavorable for )fll~) » I. We therefore treat the

modes if non-perturbatively [7]. We calculate the correlation matrix in the modulated liquid
phase by considering one-loop Hartree corrections to the self-energy (Sect. 3). It is easy to

evaluate the coefficient (T2) of the quadratic term in this effective Landau free energy from a

knowledge of the correlation matrix in the modulated liquid phase (Sect. 3). We determine

the point in the phase diagram where T2 goes to zero. We then use the correlation matrix

to evaluate the renormalized four-point vertex function and consequently T4> the coefficient

of the quartic term in the effective Landau free energy at that point (Sect. 4). We find that

T4 remains positive in our regime of interest indicating that the freezing transition remains

continuous for large values of l~ even in the presence of fluctuations. We also show, as we will

elaborate later, that fluctuations tend to stabilize the liquid phase relative to the solid phase
in the limit of large [.

The paper is organized as follows. In Sections 2, 3 and 4, we give a detailed account of our

calculation leading to the determination of the nature of the laser induced freezing transition

and in Section 5 we present our numerical results. We conclude the paper in Section 6 with a

few remarks.

2. Free Energy

Expanding the free-energy in equation (I), in a power series and retaining terms to quartic
order in fq(q # gf or

zero),
we get:

flF(itqi)
=

~ ti/c12J ~ )Aqi,q~tqitq~ ~ Tqi,q~,q~tqitq~tq~

q q~q~ qiq~,q~-j ~ Qqi,q~,q~,q~tqitq~tq~tq~ (2)

qi,q~,q~,q~

where

J d~r exp[ff £ e~?~(~~J'"]e~~~,=1 2
~~ ~'~

~~~'~~
J ddr exp[ff £~ e~~~(~~ ~)]

J d~r exp[ff £~ e~~~(~~ ~l]e~~~>=~ 3

~~~'~

~~~'~~'~~
J ddr exp[ff £~ e~~~(~~ ~)]

~/ Q(ij ~ Q<2) (3)
q~,q2,q3,q4 q~,q2,q3,q4 qi,q2,q3,q4

with

~d~j~ £ ~<igj'~ r)j~i( ~_~~q,).r
Q(ij

~

i
f

j

~

~~'~~'~~'~~ J ddr exp[ff £ el~~(~~ "]

~l~~,q2,q3,q4 "
~~~qi,q2~q3,q4 (4)
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One can easily verify that each of these coefficients is nonzero if and only if the sum of the q-

vectors appearing in the coefficient is Gf, which is an arbitrary integral combination of vectors

(gf). This is the momentum conservation condition for the present problem. For instance,

Aq~,q~ in equation (3) will be nonzero if qi + q2 "
Gf. The cubic term in equation (3) will

have nonzero value if £~~~~~qi
=

Gf. Similarly Q~i~,q~,q~,q~ in equation (4) is nonzero if

£I=1,4 ~i Gf.
The mean field calculation shows that in the absence of Ve a 2-dimensional liquid freezes into a

triangular lattice 11,12] with its 6 smallest reciprocal lattice vectors (RLV)
(go )

=
(0, +1)qo, (+1/2, +v$/2)qo. Here qo, as is known from DFT, corresponds to the first

peak of DCF. We choose the wavevectors of ii to be (gf)
=

(0, +1)qo in this set. This choice

simplifies the geometry of the problem greatly. With this choice, the vector Gf can be written

as mgf where m is an arbitrary integer and gf =
(0,1)qo. Since there is a one-dimensional

ordering created by ~[, there is a periodicity in the z-direction- This symmetry of the prob-
lem enables us to write a general wavevector p as a sum of q, a vector in the first Brillouin

Zone (BZ) and an arbitrary number of gf. Here the first BZ is the strip between qy =
-0.5

to qy =
0.5. Now we introduce some simplifications in our notation. Let us consider, for

instance, Aq~,q~ defined in equation (3). Note that the momentum conservation demands that

qi + q2 = mgf. So if we choose a vector q in the first Brillouin Zone such that qi = q + igf,
then the momentum conservation demands that q2 " -q +jgf, so that I +j

" m. So we define

Aq~,q~ e A(q+ig~j,j-q+jg~j e A~(q), where the momentum conservation law £~ qi = mgf, is

automatically satisfied. One can write similar simplified notations for the cubic and the quartic
vertices.

In the large -fll~ limit, the integrals appearing in the various coefficients in equation (3) can

be evaluated by means of an asymptotic expansion. Let us consider the vertex in equation (3).

For the 2-d hcp lattice and the given choice of gf, we have if e £~ exp(igj° r)
=

2 cos( fix).
In the large -fll~ limit one can expand if about its maximum and the resulting Gaussian

integral can be computed exactly. In this way the following expressions can be derived:

3(I + j)~
~lij ~~~ 647r~ff

3ji + j + k)~
TiJk

" eXP

~
647r~ff

3ji + j + k +1)~
Q)~(1 ~~~ 647r~ff

~

Q~~~l ~~~~
~~~~~~~

~~~ ~~~~~ ~~~

In the large -fl[ limit the vertices do not depend on the momentum labels. Note that -fll~

enters the calculation through if. In equation (1) we set fq
=

0 for all q except q = gf and

make an asymptotic expansion as above. The self-consistency condition at the minimum of

the resulting free energy with respect to if yields the follolv.ing expression for if:

if
"

~flii + POC~~~(Q0) +1/(4flT)

to Oil /fll~) in this limit.

3. Correlation Matrix

The first step is to calculate the bare correlation matrix for the modulated liquid phase. Since

the effect of the external potential is to scatter a mode with momentum q into that with
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I+~+mi
I+'$ I+I$

(a)

-1+l~ I T+I, j

_ _

- -

q+lg~ ~~+)~f

~" "

$~~+m~$
~+P+~l2~f

(b)

Fig. 1. Lowest order correction to the self-energy due to la) the 4-point vertices and 16) the

3-point vertices.

momentum q + mgf, where m is any integer, the quadratic part of the free-energy equation (2)
has off-diagonal couplings, the strength of which is given by Azj in equation (5). The elements

of this matrix are:

The bare rrelation atrix G))~ for the modulated
phase

is btained in terms of
~~l(q)

and

-five (via if) by merically inverting the

the
correlation

matrix is of infinite order.
At this point we introduce some proximations that enable us to deal with

simple and finite imensional correlation matrix. We estimate the ntributions of the correc-

tions coming
from the ubic and the

the

. =
~~

j7)

This correction does not depend on the external momentum label

the order ntribution due
o the

cubic
ertex

~

This correction, however, depends on the external momentum q (see Fig. lb). The integrations

in both cases are over the first BZ. We determine the more dominant of these two self-energy

corrections. Near qo we take a simpler form for the liquid direct correlation function:

11/Pocl~~ ()q))) I
= Co + dlq qo)~, (9)
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where co and d parametrize the liquid direct correlation function.

Note that:

poc~~J(qo)
"

i/(i + co),

I-e-, co pertains to the first peak height of the liquid direct correlation function and d corre-

sponds to the width]. We compute E( (Eq. (7)) and E[ (Eq. (8)), using the bare correlation

matrix (see Eq. (6)). We go to the diagonal basis and compare the eigenvalues of E( and

E[ for various q. It turns out that the most dominant eigenvalue of E((q) gives smaller

corrections than that of E( for all )q) lying in the region near qo. This means that the pre-

dominant correction comes from E( for )q)
r~ qo. We also observe that the most dominant

eigenvalue does not change significantly with increased dimensionality of E( beyond 3 (I
=

+1

and j
=

+1). To summarize, we confine
our calculations to the region )q)

+~ qo Ii. e., we confine

to fluctuations in the low energy modes of the order parameter spectrum), keeping only E( in

the self-energy correction and restrict to the block (I, j) E (-1,1) of E(.
Notice that the off-diagonal elements of Gp~ depends only on the magnitude of (I +j) and not

on I and j separately. This means that there are only two independent off-diagonal elements.

Hence within our approximation the 3 x 3 bare correlation matrix is as displayed below:

)2 Go ~~° ~ ~~~~

~

~~~ ~~

Co + ~~~ ~~~~

~ + d()Q + 9f) ~°~~

Gil
=

~( a0

Here ao "
-exp[-3/647r~ff] is the off-diagonal coupling with (I + j)

"
1. Similarly,

bo
"

exp[-(12/647r~ff)] is the off-diagonal coupling with ii + j)
=

2. We refer to co,

ao, bo and d as the bare parameters.
Dyson's equation for the corrected correlation matrix Gig is:

iGzj lq)l~~
=

iGl)~lq)l~' Eu (q) (lo)

where

Since the correction E( does not depend on q, the
-dependent

term in the bare

corrected matrix are the
ame (I.e., d is affected by the orrection). The bare

paraJneter co gets
to c as a result

s. 1
)2 a ~ ~

C
+

l'~

g-1 = ~

where now a and b are
renormalized

off-diagonal couplings. ence the self-consistency

qua-

tions
derived

from equation (10) involve hree parameters c, a and b. It is

in rder
to ame

these
uations

t is sufficient to
diagrams

to momentum

transfers
ii. e. ii + j) ) of magnitude 0, 1

C # Co E(o,o)>

a = ao E(-i,o)>

b
=

bo Ej-i,ij, (12)
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fl+$ -J-$
~(°,°)

~_~~~ +
_~_

~ (l) ~ j (2) _j
_~'~ ~~~+ ~ ~~~~~-~-- -~-

f (3)_j f (4)_~

+ T fi I

1 ~~~ l

Fig. 2. The diagrams whidi contribute to L(o~o)

where E~o,o), E~-i,o) and E~-i,i) are given by:

Eio,oi =

/
dPlR(Go,oiP) + Gi,i iP) + G-i,-iiP)) + SGI,oiP) + TG-i.i(P)I

Ei-i,oi
=

/
dPlU(Go,oiP) + Gi,i (P) + G-i--i (P)) + VGI,o (P) + IVG-i,i iP)I

E(-i,ii
"

/
dPlmlGo,olP) + Gi,ilP) + G-i,-ilP)) + NGI.oiP) + PG-i,ilP)1. (13)

Here,

R
=

1/(27r)~

S
=

4exp(-3/647r~ff)/(27r)~

T
=

2exp(-12/647r~ff)/(27r)~

U
=

exp(-3/647r~ff)/(27r)~

V
=

(-2exp(-12/647r~ff) +12exp(-6/647r~ff) + 3exp(-1/647r~ff) 2)/2(27r)~

W
=

(- exp(-27/647r~ff) + 6exp(-15/647r~ff) exp(-3/647r~ff))/2(27r)~

M
=

exp(-12/647r~ff)/(27r)~

N
=

(-2 exp(-3/647r~ff) + 12 exp(-15/647r~ff) 2 exp(-27/647r~ff))/2(27r)~

P
=

(-4exp(-24/647r~ff) exp(-48/647r~ff) 1)/2(27r)~. (14)

Let us consider diagram (4) in Figure 2 for the purpose of illustration. The sum of the momenta

at the vertex is -gf. Hence the contribution of Q(~) is exp(-3/647r~ff). To calculate the

contribution from Q~~~, we note that the sum of the momenta of the two free legs is zero and

that of the internal lines is -gf. So the contribution is -3exp(-3/647r~ff). Adding the two

contributions and multiplying the sum by the symmetry factor and ) coming from the phase
volume, one gets the expression for S in E<o,oj. Similar consideration yields the other numerical

coefficients.

We solve the coupled equations in equation (12) numerically for c, a and b for a given co

and -five (I.e., given bare parameters co, ao and bo). From the self-consistent values of c,

a and b, one has to construct the coefficient of the term (fd)~ in the effective Landau free-

energy. To this end we enumerate the freezing modes as follows: g~'~ =

(v$/2)(1,1/v$),
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gd~~~

_

gd~~~

~~~'~ ~
~

~
~

m, m~

,~ -~i~ - ~, ~~
$~"+m,]1 ~~ ~~~~~

-j,j
1 ]~(l'

gd

(a) (b)

ff+~
+

(c)

Fig. 3. (a) The choice of the external legs for a typical 4-point vertex that appears in the quartic
term in the effective Landau free energy. (b) A one-loop correction to a 4-point vertex with external

legs as in la). The labels on the lines indicate the number of gf to be added to the momentum

concerned, for instance label ii indicates that the momentum is g(~~ + ii gf. Similarly the labels ni and

n2 on the internal line indicates the nin2th element of the matrix. (c) The ladder corresponding
to (b).

gf~
=

(vi12)11, -1/vi), gi~
=

(Vi12)1-1, -1/v$), gf~
=

(v$/2)(-1,1/vi). If we assume

that all the freezing modes are degenerate, the coefficient of the quadratic term is given by:

T~
=

Gil lg(~~) + 2Gi~ ilg(~~) + GII,-i(g(~~) + Gil lgi~) + 2Gil(g(~~) + Gil (gi~). (15)

We find the point in co (-fl~[) plane for which T2
=

0.

4. Renormalization of the 4-Point Vertices

In Section 3 we locate the position at which T2 goes through zero in the co (-fll~) parameter

space. Our aim here is to investigate the sign of the coefficient T4 of the quartic term in

the effective free energy at this point. The first step towards investigating this question is to

evaluate the renormalization of the four-point vertices appearing in the free energy expansion
given in Section 2. Here we outline the calculation of the corrections to the four-point vertex

functions.

The terms quartic in the freezin) mode id, correspond to diagrams with four external legs
labelled by the wavevectors belonging to the class (gd) (See Fig. 3a). Given the pair of

wavevectors g(~ and gf~
=

-g(~~, one can generate the remaining two vectors in the class

(gd) by add1ilg to them a suitable integral multiple mgf with m taking integral values between

-1 and +1. We restrict ourselves to the lowest order (I.e. one-loop diagrams and their ladders)
fluctuation corrections coming from intermediate interactions between various modes. We use

the renormalized correlation functions obtained via Dyson's equation (Sect. 3) to evaluate

the one-loop corrections to the four-point vertex functions. We notice that for the four-

point vertices shown in Figure 3a there are no one-loop corrections coming from interactions

mediated by cubic vertices. This is due to the absence of such cubic vertices in the effective free

energy which follows from the fact that we choose the wavevectors pertaining to the external



738 JOURNAL DE PHYSIQUE II N°5

potential in such a way that an integral combination of vectors in the class (gf) cannot be

obtained from an odd combination of vectors in the class (gd). Thus, corrections to the bare

four-point vertex functions come entirely from intermediate scattering processes involving the

four-point vertices. We emphasize that the four-point vertices have two parts, Q(~) and Q(~)
(see Eq. (4)). Clearly Q~~J corresponds to a more stringent momentum conservation condition

compared to Q°J. Consider for instance a general one-loop diagram of the form shown in

Figure 3b. It is easy to see by inspection that corrections to Q(~) come from such a loop only

if q = g(~~ In contrast, one-loop corrections to Q~~~ come from the entire range of values of q.

We define a function Xm~m~mi ml as follows:

~~~ ~~~~ ~~
~~~"-l ~~~"-l (~~~ nl2nl n2

~/~~ ~i ~i + fl~)
~~~~ ~~

Q~~~
, ,

~ ~ l"2
1 2

nln2m~m~

where

~~~(ki
k(

/
(~(2 ~lil( (~)$ki k(

(~~)

and

~~~(kik) 2~)2~lil)~~~~)$kik((~~~~l'

Summing over the ladders of one-loop diagrams (Fig. 3c),
we obtain the correction to the

vertex Q~
~

~, ~,
i 2 1 2

/~V~~ ~~~[~[ "
~nl,n2~mlm2nln2 ~m~nl~m~n2

Xnln2m~m~~

where Q~n~m~n~
n~ = Q~~m~i~ k~ llj~j,

~ ~>
Qj/j,

, ,
+ Qf~

~~~ ~ llj~~i
~ ~>

Qjfj>
i ,

Thus the cor-
i ~ i 1 ~

ifin2 1 1 1 ii 1.~ i
inin2

rected four-point vertex function corresponding to external legs labelled by ml, m2, ml and
m[ is given by

Q~
i i

#Q '~(/~V)
1

mlm2m~m~ m~m2m~m2 m~m2m~m~

with Qm~m~mjmj the bare four-point vertex.

The relevant quantity which dictates the nature of the phase transition is, of course, T4
which is the coefficient of the term quartic in id in the effective free energy. It is given by

T4
= EQ$~m~m,

~>
(16)

~ 2

where the summation is over those values of ml, m2, m[ and m[ which correspond to the

vertices with external legs labelled by the vectors belonging to the class (gd).

5. Numerical Results

In Figure 4, we show the renormalized c and the bare co (= 1/poc~~) (qo) -1) for different values

of -fll~ at which T2
"

0 (Eq. (15) ). We notice that the values of c are always larger than co.
This indicates that fluctuations tend to reduce the strength of the correlation in the system.
The enhanced effect of fluctuations with increasing -fll~ may probably be attributed to the

partial ii-d) ordering caused by the external potential. We find that T4 (evaluated from Eq.

(16)) at the point T2
"

0 is positive, which is the signat~re ala contin~o~s transition. So, the

transition is continuous as found in the mean field calculations as well.
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Fig. 4. The values of c
(dashed line) and co (solid line) at T2

=
0 for different -flI&.
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Fig. 5. The phase diagram, i.e.~ T2
=

0 line in the poc~~~(qo) (-five) plane obtained from the

calculations including fluctuation effects (solid line) and from the mean field calculations (dashed line).

The phase diagram in the poc~~l(qo) (-fill) plane is shown in Figure 5. Notice that as

one goes to higher -fll~, in comparison to the mean field theory the fluctuations enhance

the stability of the liquid phase relative to the crystal phase but the transition line eventually
saturates as in the mean field theory. However, in the mean field phase diagram the critical line

asymptotes to poc<~~ (qo)
"

0.5 for large -five from above, while that in the present calculation
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asymptotes to pocl~) (qo)
"

0.509 from below, a feature found in recent simulations as well [13].
Thus there is a difference in the curvature of the critical line in the poc<~)(qo) (-fll~) plane

in the two cases, which represents a q~alitative difference between the present phase diagram
and the mean field phase diagram.

6. Conclusion

In conclusion we have presented a theory of laser induced freezing which accounts approxi-
mately for the effect of fluctuations on the freezing transition. The freezing transition in our

calculation remains continuous even in the presence of fluctuations for large values of the ex-

ternal modulating potential. This implies that one can perform light scattering experiments to

look for critical opalescence indicating the presence of divergent static correlations of density
fluctuations.

The main qualitative result of this study is contained in Figure 5. As mentioned in Section 5,
the curvature of the critical line in the poc(~)(qo) (-five) plane changes sign when fluctuations

are taken into account. Thus, fluctuations tend to enhance the stability of the liquid phase
relative to the crystal phase. It would be interesting to find out if this feature of the freezing
transition is seen in real experiments.

Due to the inherent complexity of the problem, we have confined ourselves to self-consistent

one-loop corrections to the self-energy and incorporated only the one-loop diagrams and

their ladders into the renormalization of the four-point vertex. Furthermore, we have con-

fined ourselves to the dominant corrections to the vertices coming from the low energy region
(I.e. )q)

r~
qo) of the order parameter spectrum. At this level of approximation there are no

significant corrections to the self-energy from the interactions mediated by the cubic vertices.

However, for small values of q, these corrections can be quite significant (compared to the one-

loop correction mediated by the quartic vertices included in this paper). In future it would be

certainly worthwhile to carry out a more systematic analysis of the role of fluctuations in the

laser induced freezing transition.
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