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Abstract. In this article,
we

deal with the propagation of ultrasonic waves in monodisperse
concentrated oil-in-water emulsions. Using the approximation of Isakovich, we propose two

different models, a mirror model and a core-shell model, aiming to describe the temperature
field in the dense medium and to supply a correct expression of the ultrasonic wave vector. The

comparison between experimental data and theoretical models shows that the core-shell model

leads to a very accurate description ofthe ultrasonic attenuation, in a wide range of frequencies
and concentrations, in the case where the thermo-elastic effect, due to the scattering of thermal

waves by the particles, is the dominant loss mechanism.

1. Introduction

Application of ultrasonic absorption measurements to the determination of the size of particles
suspended in a fluid is being given more and more attention [I]. The major advantage of this

technique resides in the fact that it is non destructive and can be employed with concentrat.ed

systems. The theory of the propagation of ultrasonic waves in dilute suspensions is now well-

established [2-6], but recent studies [7,8] have shown that, at concentrations higher than about

10%, classical models fail to explain quantitatively the ultrasonic attenuation, particularly for

small droplets at low frequencies for which attenuations much smaller than the predicted values

are observed. This discrepancy has been attributed [7, 8] to the interactions between particles
which set up in these circumstances.

The propagation of ultrasonic waves is controlled, in the case of emulsions at moderate

frequencies, by. essentially one mechanism named the thermo-elastic effect, related to the ir-

reversibility. of heat exchanges between the two phases. The theory of this effect has been

established in 1948 by Isako,>ich [9j in the case of dilute suspensions. An attempt for modeliz-

ing concentrated suspensions has been proposed by Fukumoto et al. [10] who have developed

a model in which the particles occupy- the nodes of a periodic network~ but the complexity of

the calculations involved seems to limit the practical interest of their ap~roach.

In this paper we propose a modelization of the propagation of ultrasonic waves in concen-

trated emulsions by using approximations which lead to manageable formulations. The first
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one consists in approximating the zero heat flux surface around each droplet by a spherical

mirror. The second is a core-shell approximation, where the core is the oil droplet, the shell

is the layer of water in contact with the droplet and outside the shell lies an effective medium.

Both these models use no adjustable parameter, it will be seen that the core-shell model offers

very accurate results. We will first recall the method of Isakovich for calculating the ultrasonic

propagation in an inhomogeneous medium with heat transfer. We will then describe the mirror

and the core-shell models by using a generalization of the method of Isakovich. Finally we will

present a comparison between our predictions and experimental results.

2. Theory

2.I. IsAKovicH APPROACH oF THERMAL SCATTERING. In order to modelize the part

of the sound absorption due to thermal dissipation in an heterogeneous medium Isakovich [9]
has proposed a general method which can be applied to any medium as soon as the pressure

wavelength is large compared to the typical heterogeneity lengthscale in the sample. In fact

this approximation facilitates the computation of the spatial dependence of the heat fluxes

induced in the medium by the modulation of the pressure.

The approach of Isakovich has been fully described by Fukumoto et al. [llj. We recall

here the essential points. By writing the conservation of momentum, mass, and energy in the

medium, two linearized expressions are obtained [llj:

odT iv.
(~vbT)

~
~~) ° ))0t PCp

~~ ~((~ V ()V~~) ~~~~ ~

where bP is the pressure fluctuation, T and bT the temperature and its fluctuation. p is

the density, fl is the thermal expansion coefficient, XT the isothermal compressibility, ~t the

thermal conductivity and Cp the specific heat at constant pressure. The first equation is just
the equation of heat propagation, but where the last term expresses the fact that the pressure

variations act as heat sources. The second equation describes the propagation of the pressure

wave in a medium whose compressibility is affected by the modulation of the temperature.
The last terms of these two equations are conjugate and describe the coupling between the

temperature field and the pressure wave. At first view, solving this system is difficult as each

thermodynamical variable depends on the position; the approximation of Isakovich is helpful
because the local variations of the pressure are going to be neglected.

Consider now a periodic pressure wave and a periodic temperature field of frequency uJ, the

pressure field is assumed to be homogeneous and such that it can be approximated by:

bP
=

bPoe~~(~~~~~) (3)

where k is the wave vector. The temperature field, for the moment, is simply assumed to be

periodic:
bT

=
bTo(r)e~~ (4)

Equation (2) is averaged in order to get the propagation equation for the pressure wave:

k2
=

w21pi(x~ fl()
(5)

where (...) stands for spatial average. The main assumption is that the pressure field is not

affected at small scale by the thermal field. This is true as long as the sound wavelength'is
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Fig. I. (a) Model of Isakovich: an isolated oil droplet exchanges heat with the water outside. (b)
The mirror jpproximation: the droplet is placed at the center of a spherical mirror simulating the

heat radiated by neighbor droplets. (c) The core-shell model: the oil core is at the center of
a water

shell surrounded by an elective medium.

large compared to the thermal wavelength (in liquids this condition is verified up to the GHz

range).
Using equation (I), the following relation for the acoustic wave vector is then obtained:

k~
= W~Pol /~ [[xT

Ill iv
[~lt~~~ II dv (61

where V is the volume of the system, T the temperature at rest and po the average density.
This expression allows to calculate the propagation of the ultrasonic wave in a dilute sus-

pension of particles, in the case where only thermal waves are scattered.

2.2. SOUND PROPAGATION IN DILUTE SYSTEMS SPHERICAL PARTICLES. Consider a spher~
ical particle of type I and of radius a, embedded in a matrix of type 2 (Fig. la). The subscripts
I and 2 will stand for the properties of medium I and 2 respectively.

In equation (6) the first term in the integral is the adiabatic compressibility of each medium,

so that the integration of this quantity over the whole volume is simply the average adiabatic

compressibility xo. The average density and compressibility are the volume averages of the

properties of the components, given by:

Po =
<Pi + (i jjp~

,
xo =

<xi + (1 4)x2. (7)

These two quantities lead to the limiting average velocity:

Co -

p~xl~i/~ (8)

which will be shown to be the limit of the velocity at very high frequencies. Equation (6) can

now be rewritten as:

~~ ~i
~

w)o
'

Iv
~p

~
~~~~~~~~~

~~ ~~~

Assuming that the wavelength of the compression wave is large compared to the size of

the particle, so that the pressure can be considered as uniform in an around the particle,
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the thermal field in each medium is then obtained from equations (1), (3) and (4). In spherical
coordinates, with the center of the sphere at the origin, the thermal field in each medium will

be given by the following expressions:

bTi
"

~~~
+

~~ inh(nir)j
bPoe~~ for

r < a (10)
Picpi

r

bT2
"

~~~
+

~~
exp(-n2r)j bPoe~~~ for

r > a
ill)

P2Cp2 r

where n~ =
(I I)(wp~cp~ /2~tj)~/~ is the wave number of the diRusive thermal wave travelling

in medium j, solution of equation (I) for a periodic excitation. The form of these solutions

results from the fact that the temperature fluctuation must be finite at the center of the

particle, and must vanish at large distances.

The amplitudes Al and A2 are obtained by applying the boundary conditions which express

the continuity, at the surface of the particle, of both the temperature and the thermal flux;
these conditions read:

bTi~~=a
= bT2~~=~ and ~i

°)
= ~2°j~/ (12)

~=a ~=a

The volume integral in equation (9) is evaluated at first for a single particle~ by transforming
the volume integral of the divergence into a surface integral by use of Gauss's theorem, taking
into account equation (12) and noting that the heat flux vanishes at infinity:

/ ~(l) + ~(2)
=

~(l) (2) +
~(2j 4~ra2

fli fl2 0bTi

~

Pl~pl
P2Cp2

~~ ~r
~~~

~~~~

where (j) stands for the integrand in medium j.
An approximation has then to be made for summing over the N particles which are found in

the volume V: it is supposed that, at a distance comparable to the separation between particles,
the heat flux has sufficiently decreased so that it may be neglected. This approximation is

precisely the reason why the model fails to describe the ultrasonic beha,>ior of concentrated

suspensions.
Noting that the volume fraction of the droplets is given by:

#
=

~~ ~7ra~ (14)

the result of Isakovich is finally obtained:

~~~~ ~ ~~~ ~P~pl
~~p2 '~~ ~~~

~~~~

~~~~~

l ~~

~
tzi[ma/tanh(ma) lj ~

tz2(1 +

2a)~

The real part Re(k) and the imaginary part Im(k) of the ,vave vector lead to the celerity of

the wave c(uJ), to the absorption coefficient a(uJ), and to the loss per cycle o .1(~):

c(uJ)
=

uJ/Re(k)

a(&J)
=

Im(k)

o I(wj
=

27r Im(kj /Re(kj. (16j
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At low frequencies, the range of the thermal wave is large compared to the size of the particles,
and the loss per cycle scales in uJ, as in any other relaxation process. At high frequencies, where

the range of the thermal wave is small compared to the size of the particles, the dissipation

occurs within thin layers surrounding the interface. The loss per cycle scales then in uJ~~/~
as

the range of the thermal wave. Between these two regimes the loss per cycle goes through a

maximum at a frequency for which the product RI a is close to unity, that is where the range
of the thermal wave is comparable to the size of the droplet. It is interesting to remark that in

the above propagation equation the loss per cycle appears as a function of a reduced variable

equal to the product of the frequency by the square of radius of the particle [7, 8j.
This analysis oRers excellent results as far as the distance between particles is large enough, so

that the thermal field (Eqs. (10, 11 is not deeply modified by the presence of the surrounding
particles. In order to describe the temperature field in a concentrated solution, we have tried,

in a first time, a "mirror" approximation.

2.3. THE MIRROR APPROXIMATION. Let us consider a crystalline array of spherical parti-
cles, as in [10j. Each plane equidistant between two neighboring particles is a symmetry plane
such that there are as many heat sources on one side of this plane as on the other. Thus, if

we assume that the pressure wavelength is large compared to the distance between particles,
all these heat sources will be nearly in phase, and the heat flux will vanish on each of the

symmetry planes. The Wigner-Seitz cell that these planes build around each particle is a

polyhedron where the heat flux is equal to zero, so that this polyhedron may be considered as

a mirror which reflects the heat flux. As it is quite intricate to compute directly the heat flux

in a polyhedron, we will approximate the polyhedron by a sphere (Fig. lb) whose radius b will

be equal to half the mean distance betlv.een particles.
We have now to consider one more wave: the thermal wave reflected by the mirror. For

computing the amplitude 82 of this wave we take advantage of one more condition: the thermal

flux must vanish on the mirror. The wave number of the acoustic wave is thus calculated by
taking into account the perturbation of the temperature field around the particle due to the

reflected thermal wave. An expression similar to equation (15) is obtained, but in which the

quantity A is somewhat more complicated:

~
tzi

[ma/
ar~h(ma)

lj ~
tz2[1 + n2a(1 B) /(I B)] ~~~~

where
1 + n2b

2n~(b a)B
=

e~
l n2b

This model does predict a decrease of the attenuation at low frequency, where the range of

the thermal wave is large compared to the radius of the mirror so that the thermal gradient
around the droplet is lowered. At high frequency, as the thermal wavelength goes to zero, the

classical result of Isakovich is found again.
But for obvious geometrical reasons, this model is limited to concentrations below the close-

packing, for which the thermal exchanges would be blocked by the mirror! In fact it appears

that the model underestimates the attenuation in the whole concentration domain. This un-

derestimation is probably related to the replacement of a polyhedron by a sphere. In a sphere,
there is only one typical length for a field with a radial symmetry: namely the radius. But in a

poly.hedron, as the wave is reflected by plane surfaces linked by edges, smaller typical lengths
have to be taken into account which result in larger temperature gradients. Equivalently it

could be said that the mirror reflects the thermal wave too strongly, and that a "porous" sphere
could improve the result. We will now present such an approach.



642 JOURNAL DE PHYSIQUE II bT°4

2.4. THE CORE-SHELL MODEL. We shall now assume that the space next to the droplet is

occupied by pure water, while an eRective medium occupies the rest of the space, as sketched

Figure lc. The boundary between the ~v.ater and the eRective medium is assumed to be a

sphere whose radius b is such that the oil volume fraction is the same inside the sphere and in

the eRective medium. The value of b is then given by:

j~/3 ~~~~

It is to be emphasized that this model does not require any other supposition or adjustable

parameter. A similar approximation has been used by several authors [12-14j in other mechan-

ical situations. This model should describe correctly what happens at low frequency, where

the eRective medium approximation has been shown to be adequate [8], as well as at high fre~

quency, where the range of the thermal wave is smaller than the distance between droplets. The

eRective medium, denoted by- the subscript 3, is described by the following thermodynamical

constants [8j:

P3 =
<Pi + (i jjp~

p3Cp3
"

lpi Cpi + (1 #)p2Cp2 (19)

fl3
"

4fli + (1 jjfl2

which are the volume averages of the properties of the components, obtained as in equation
(7) (p3 is the same quantity as po). As regards the thermal conductivity, which cannot simply
be obtained as a volume average, use has been made of the expression given by Torquato [lsj
for a random dispersion of hard spheres:

1 + 2#+~ 2(1 ~)l't~
(20)~~ ~~

l #'t 2(1 #)l't~

where
+~ =

'~~ )~ and (
=

0.21068# 0.04693#~.
lti + 1t2

In the three successive regions, the temperature field is then given by the following expressions:

.
for

r < a, inside the droplet itself:

.
for

a < r < b. in the water shell:

~~ ~/j/)~ ~
~

~XP(-n3r bp_ (23)

The values of the amplitudes Ai and Bi are worked out by using the boundary conditions on

the temperatures and the heat fluxes at both interfaces, for
r = a and for

r =
b. By use of
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relation (9), we finally get a dispersion relation for the ultrasonic wave similar to equation (15),
but in which the quantity A is now given by:

where

gj =
fly/(Pjc~j) (24)

C
=

e"2(~~~l[~2(n2b 1) + ~3(n3b + 1)]

D
=

e~"2(~~~) [~2(n2b + 1) ~3(n3b + 1)]

E
= Kinia + [~2(n~a + I) ~i)tanh(ma)

F
= ~inia [~2(n2a 1) + Kijtanh(ma).

It is easily verified that the above expression reduces to equation (15) both for high frequencies
and for low concentrations (in these two cases the term C diverges because n2 .b goes to infinity).
In fact in these conditions the reflected thermal wave is entirely attenuated before it can reach

the droplet so that no perturbation of the temperature field occurs and the formulation of

Isakovich is perfectly valid.

It is interesting to notice that, here also, the losses appear as a function of the reduced

variable f a~, which oRers a convenient way of presenting the results pertaining to different

classes of size on a single plot.
Concerning the above expression~ an important point has to be made clear: we have deliber-

ately omitted one term in the deri,>ation of equation (24). We have to integrate the divergence
of the heat flux over the whole volume, this integral can be symbolically decomposed, as in

,
relation (13):

/~(i 2) + /~(2 3) +
/~ (3) (25)

o o o

where (1), (2) and (3) stand for the integrand in each successive medium:

.
the first term is exactly what we need, namely the losses due to the oil core in a thermal

field which is perturbed by- the thermal1v.ave reflected from the outside;

.
the last term is equal to zero because the heat flux vanishes at large distances;

.
the second term must be discarded as it represents the virtual contribution of

a suspension
of water droplets in the effective medium, which would interfere with the first term and

result in an overestimation of the losses if it was taken into account. In other ,vords

this contribution is already taken into account when the contribution of the first term is

summed over all the particles.

Figure 2 presents a comparison of the results of the core-shell model with the model of

Isakovich for a typical emulsion. The variations of the loss per cycle a I. are plotted as a

function of the volume fraction # for different frequencies. In order to clarify the presentation
the vertical scale has been adapted for each frequency in such a way that all curves present
identical slopes at the origin. The frequencies indicated are relative to the frequency for which

the range of the thermal wave is comparable to the size of the droplet.
As expected, the fundamental result is that the losses start to lessen; compared to the

predictions of Isakovich. above a threshold concentration which increases with the frequencv.
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Fig. 2. The predictions of the core-shell model (solid lines) are compared to the model of Isakovich

(dashed line). The loss per cycle is plotted as a function of the oil volume fraction for a number of

frequencies (for
an easier comparison the vertical scale is adapted in such a way that all curves present

the same slope at the origin, in this representation the curves predicted by the model of Isakovich

have essentially the same shape for all frequencies). It can be seen that the departure between the

two models occurs for a volume fraction which is lower at low frequencies, where thermal waves can

propagate at large distances, than for high frequencies, where thermal interactions vanish.

3. Experimental Verification

In order to confirm the validity of our model two series of ultrasonic experiments have been

performed. We have studied two kinds of emulsions, made of a polysiloxane oil and of

n-hexadecane respectively. These oil /water emulsions are prepared by using a magnetostrictive
homogenizer, they are stabilized with sodium dodecyl-sulfate as surfactant, and finally they

are fractionated by- using the selective creaming method proposed by Bibette [16]. The samples

present a very narrow size distribution, so that the results can be adequately compared to the

theory. The ultrasonic attenuation has been measured using a modified version of the acoustic

resonator described by Eggers [17], between 500 kHz and 10 Mhz at room temperature. All the

experimental details have been reported in a previous publication [8j. The thermo-physical

constants of the components needed for the modeling are listed in Table I.

The ultrasonic absorption spectra obtained for both type of emulsions are presented in

Figures 3 and 4, along with the predictions of the model of Isakovich and of our core-shell

model. For each concentration the data pertaining to the different classes of size are presented

as a single spectrum by use of the f.a~ representation. The losses due to the intrinsic absorption
of the constituents have been subtracted from the measurements, so that the quantity which is

shown is the excess absorption due to the thermo-elastic losses. It can be seen that the core-

shell model is successful in the whole size and frequency range, up to concentrations of 50%,

for which the model of Isakovich is seriously mistaken. In fact an estimation of the particle
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Fig. 3. Comparison be/ween the core-shell model (solid lines) and the model of Isakovich (dashed
lines) for 4 monodisperse emulsions of polysiloxane oil in water, the sizes of the droplets range between

230 nm
and 760 nm, the volume fraction varies from 5% to 50% For each sample the value of the radius

has first been determined by a leat-squares fit of the model of Isakovich to the spectrum measured

at 10% volume fraction. The values thus obtained are then used to place each spectrum, at each

concentration, on the f a~ plot.

Fig. 4. Comparison between the core-shell model (solid lines) and the model of Isakovich (dashed
lines) for 10 hexadecane/water emulsions, the sizes of the droplets range between 46 nm and 900 nm,

the volume fraction varies from 5 to 45%. The deviation visible at high frequency is due to the visco-

inertial effect induced by the slight difference between the densities of n-hexadecane and water [8].
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Table I. Thermo-physical constants of materials at 25 °C (taken from Ref. f8j).

n-hexadecane silicone oil aqueous phase

Sound velocity c
(m s~~) 1357.9 1004 1482

Density. p (kg m~~ 773.0 975 998.2

Thermal expansivity fl (K~~) g-I x
10~~ 9.4 x

10~~ 2.13 x
10~~

Specific heat Cp (J kg~~ K~~) 2215 1460 4182

Thermal conductivity ~
(W m~~ K~~) 0.143 0.15 0.591

size based on this model would lead to underestimating the radius by more than 25%.

In the case of hexadecane emulsions a divergence from the model can be noticed at high
frequencies. This difference is to be assigned, as shown in reference [8j, to the visco-inertial

effect arising from the non-negligible density. difference between water and hexadecane. In

the case of polysiloxane emulsions the fact that the densities of the two media are nearly
equal explains why the model matches so accurately the experimental results, in this case the

thermo-elastic effect is the dominant loss mechanism. The price to pay is that the preparation
of small droplets is much more difficult, so that the spectra are limited to higher values of the

variable f a~.

4. Discussion, Conclusion

The above results establish that the core-shell model offers a very accurate prediction of the

ultrasonic attenuation in concentrated emulsions, up to 50% in oil,volume fraction, without

resorting to any adjustable parameter. For applying the model in actual practice it is important
however to be aware of the conditions in which it is pertinent. Namely the other sources of

attenuation must be either negligible or known with enough accuracy. Two mechanisms may
be responsible for such losses: the visco-inertial effect and the scattering of the elastic wave.

Existing theories are able to describe these effects accurately when the concentration is low

enough; however for higher concentrations the modelization of multiple scattering, on one

hand, becomes increasingly difficult, and we are not aware of any theory taking into account

the hydrodynamic interactions between particles which may affect the visco-inertial effect on

the other hand.

Scattering losses may be safely predicted to be negligible, for liquid-liquid suspensions, if

the frequency range does not exceed 10 MHz and if droplets sizes remain under a few microns.

As regards the visco-inertial losses, the results that we have obtained on hexadecane emulsions

indicate that, despite a significant density contrast, their influence does not affect seriously the

determination of the size of droplets in the low f a2 regime.
It must also be observed that our model stands for monodisperse systems, we do not know

how to manage the case of polydisperse systems. It seems impossible to be satisfied with a

mere superposition of the contributions of all size classes, as particles of different sizes will

interact with each other. lleasurements performed on mixtures of known fractions would be

useful in this respect.

The model predicts that the losses must vanish when the volume fraction tends toward

unity, which is obviously consistent because there would be no heat exchanges in pure oil.

Measurements on highly concentrated creams would thus be interesting, in order to determine

up to which concentration the predictions remain valid. Finally we think that a reason why our
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model is successful is due to the fact that it is adequate at both ends of the frequency domain.

At high frequencies it reduces to the model ofIsakovich which is fundamentally correct because

each droplet acts separately. At low frequencies, as the particle interacts with more and more

neighbor particles, and because thermal equilibrium between each droplet and the surrounding
water can be reached within the period of the wave, then the idea of an effective medium

appears to be adequate. As the ultrasonic absorption varies in a very monotonous way when

the frequency increases, the connection between the two regimes cannot deviate much from

the reality.
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