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PACS.64.30.+t Equations of state of specific substances

PACS.82.70.Dd Colloids

Abstract, Electrostatically stabilized aqueous suspensions of bromopolystyrene particles
have been studied by scattering and osmotic pressure measurements. We investigated their

structure and the interparticle interactions as a function of the volume fraction at very low

salinity of the order of micromole/I. At slow crystallization speed we observe perfect crystals,
body centrered cubic crystals by light scattering for volume fractions between 0.04 and 0.7% and

face centrered cubic crystals by Ultra Small Angle X-ray Scattering (USAXS) for higher volume

fractions (2-12%). After shear the crystal displays other structures. At low volume fractions

(0.1-0.3%),
some reflexions disappear by light scattering whereas a strong diffuse ~'prepeak"

appears before the first Bragg peak for higher concentrations (2-12%) evidenced by USAXS. This

"prepeak" can be attributed to defects in the crystal. Osmotic pressures have been measured

by difference between the hydrostatic pressure in the solution and in the reservoir separated by

an hemipermeable membrane. The experimental data are very well reproduced by the Poisson

Boltzmann Cell (PBC) theory which shows that the interaction between particles is purely
repulsive. No attractive contribution has been experimentally detected. By calculating the

mean square displacement of a particle inside its cage from the eccentric PBC model, we have

verified that the Lindemann criterion for the existence of crystals (against melting) is satisfied.

This study has allowed to determine the equation of state of an electrostatical colloidal crystal
and is equivalent to an ultraprecise force/distance measurement between latex particles since

the measured forces are of the order of10~~~ N for distances of the order of 4000 I.

Rdsumd, Des suspensions aqueuses de particules de bromopolystyrAne ont 4t4 caract4ris4es

par diffusion de lumibre, diffusion de rayons X aux petits angles et par des mesures de pres-

sion osmotique. Nous avons ainsi 4tud14 leur structure et les interactions interparticulaires en

fonction de la fraction volumique h salinit4 constante de l'ordre de la micromole/I. Lorsque la

cristallisation est lente, nous observons des cristaux parfaits cubiques centrAs par diffusion de

lumibre pour des fractions volumiques comprises entre 0,04 et 0~7 % et cubiques faces centrAes

par diffusion de ravons X aux petits angles pour des fractions volumiques plus AlevAes (2-12 %).
AprAs cisaillement, des d4fauts apparaissent dans les cristaux ils sont caractArisAs par la dis-

parition de certaines raies de Bragg en diffusion de lumibre pour des Achantillons de fraction

volumique comprise entre 0,1 et 0,3 % et par la prAsence d'un prA-pic observA par diffusion de

rayons X aux petits angles avant le premier pic de Bragg, pour des Achantillons plus concentrAs
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(2-12 Vol. Les pressions osmotiques ont 4t4 mesur4es par diff4rence de pression hydrostatique

entre la solution et le r4servoir s4par4s par une membrane h4miperm4able. Les donn4es exp4ri-

mentales sont bien reproduites par la th40rie Poisson Boltzmann R4seau (PBR) qui montre que

les interactions sont purement r4pulsives. Aucune force attractive faible de longue port4e n'a

4tA dAtect4e expArimentalement. En calculant le d4placement moyen d'une particule h l'int4rieur

de sa cage h l'aide du modAle PBR "excentrA", nous avons vArifiA que le critbre de Lindemann

4tait satisfait pour tous les cristaux observ4s. Cette 4tude a permis de d4terminer l'4quation
d'4tat d'un cristal colloidal 41ectrostatique. Les r4sultats sont 4quivalents h une mesure de force

ultrapr4cise puisque les forces d'interaction mesur4es entre particules sont de l'ordre de 10~~~ N

pour des distances centre h centre de l'ordre de 4000 I.

1, Introduction

Like atomic crystals monodisperse colloidal suspensions can display a long range order. The

typical size of latex colloidal particles is 100 to 1000 ~~. Regular lattices can be obser,~ed in

nature such as opals iii or viruses [2-5]. Contrary to molecular crystals, it is easy to control

interaction energy in colloidal crystals by means of the composition of the interparticle medium.

Colloidal crystals have original properties intermediate between liquids and solids. Crystalline
order requires a good monodispersity in size [6].

In the case of electrostatical colloidal crystals for which electrostatic repulsion is dominant,
ionic strength of the solvent is the key parameter to modulate the long range interaction.

These electrostatical colloidal crystals are already observed from less than i%. In contrast

hard sphere colloidal crystals appear above 49% [7].
The structure of synthetic latex colloidal crystals has been extensively studied, particularly

by light scattering, for very low volume fractions [6, 8]. We used a high resolution Bonse-Hart

USAXS (Ultra Small Angle X-ray Scattering)
camera to study samples in the concentration

range 2-12%. Several groups [9-15] have determined the osmotic pressure by the osmotic

compression method I.e. by dialysis against a calibrated stressor solution or with commercial

osmometers for very concentrated samples (up to 60$lo) or for high ionic strength (> 10~~ M). It

has been shown that measuring osmotic pressure in a crystal is equivalent to measuring a force

between colloids. This has been introduced by Parsegian and coworkers [9] for lamellar liquid
crystals of bilayers. Our aim is to extend these works to the regime of cubic colloidal crystals,
focusing on the diluted part of the phase diagram in the absence of salt, where long range

interaction dominate the system. Our final aim is to establish directly the pressure-distance
relation for latex particles on the crystalline lattice, I-e- the equation of state.

In the present work, we report the use of
a closed-loop deionization set-up which allows to

combine the measurement of the osmotic pressure with scattering methods. It is thus possible
to determine simultaneously the interaction forces and the structure. Osmotic pressures are

measured by difference between the hydrostatic pressure in the solution and in the reservoir

separated by an hemipermeable membrane. This approach has been pioneered by Ottewill

et al- [16] for high concentrations. We explore the range of lower concentration (0.04-12%) at

lower salinity (about10~~ M)-
The existence of long range weak attractive interaction mechanism has been a debate for two

decades. For instance, Ise et al. ii 7,18] have observed coexistence of pure liquid and colloidal

crystals. Dosho and coworkers [19] have recently published a review of a large number of

unexplained results in the literature aiming to this possibility. If a colloidal crystal coexists

with a very diluted solution, the osmotic pressure stays constant but low at finite concentration.
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This would be the first unambiguous proof of the existence of these forces and one of our

objectives is to test for existence of these forces. The higher concentration regime for sterically
ordered samples has been previously described by Bonnet-Gonnet et al. [10]-

In this paper, we present results obtained by means of light scattering and ultra small angle
X-ray scattering (USAXS)

on highly charged colloidal crystals at rest and after shear induced

by a peristaltic pump. Osmotic pressure measurements obtained with our closed set-up will

be compared with theoretical models describing the interaction potential. Finally, the phase
diagram of this system in diluted regime in the absence of salt will be established and discussed.

2. Experimental Section

2.I. MATERIAL

2.1.1. Synthesis of Bromopolystj.re~le. In order to increase the electronic density contrast,

we prepared bromopolystyrene particles by copolymerization in emulsion without surfactant.

This type of synthesis has been previously described by Vanderhoff [20]. Parabromostyrene
(C8 H7Br, Fluka) is purified by distillation under reduced pressure in nitrogen before the copoly-

merization with sulfonate styrene (CSH7S03H
=

KVBS, Fluka). The initiator used is potas-
sium persulfate (K2S20s).

We fill a three-necked flask (2 1) with 700 ml of deionized water and stirred for 45 min under

N2 to remove 02 to avoid a pre-initiation of the polymerization as well as an inhibition at the

time of adding the monomers. This flask is immersed in a thermostat bath whose temperature is

fixed to 82 -83 ° C- We add 34 g bromostyrene, 0-5 IS g KVBS and wait for thermal equilibrium.
Then we incorporate into the solution 0.468 g K2S20s. Strong stirring is the key factor to

obtain monodisperse particles. The latex is stirred with a magnetic stirrer. The polymerization
lasts 24 hours under a weak stream of nitrogen. At the end of the polymerization, the solution

is filtered to remove all aggregates. The weight fraction, determined by weighting a
sample

before and after drying in an oven at 80 °C, is about 4% in the reaction bath. The final pH of

the reaction mixture is acid (pH
m 2) and the conductivity is high (130 /tS/cm). Conductivity

has to be reduced in order to avoid flocculation during the concentration of the solution. The

solution is purified by dialysis in membrane bags (Visking 12-14 000 MW, Roth) which have

been previously washed with deionized water. After several days, when the conductivity of the

solution is a few /tS/cm,
we begin to concentrate the solution by osmotic stress with Dextran

Ti10 as stressing polymer, or directly inside the closed set-up that we built and which is

described below.

After washing the latex suspension, the ionic strength is l£ 0.i /tS/cm. The electrostatical

repulsion between charged colloids is strong. Easily observable iridescence appears in the latex

characteristic of the colloidal crystalline state. The distance between particles (comparable to

the Debye length) is of the order of the wavelength of visible light. The irisdescent coloration

of the suspensions investigated in this study depends on the concentration: for our particles

of diameter about 100 nm, the latex dispersion appears pink/green until a volume fraction

about 5$lo with macroscopic crystallites visible with naked eyes, then becomes green/violet,
violet /yellow. At about 7%,

we see only diffuse colorated bands because individual crystallites

are so small that it is impossible to see them with naked eyes. Beyond 12% volume fraction,

distances between particles correspond to ultraviolet wavelength. Therefore the sample appears

milky similar to a sample unable to crystallize due to polydispersity. In this case, it is necessary

to use the X-ray scattering to see
if the sample is ordered or not- The size and shape of the

crystallites have been studied by Okubo [21, 22] with silica and polystyrene particles. The

nucleation and growth process, controlling the size of colloidal crystals have been described by
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Fig. I. Transmission electron micrograph ITEM) of monodisperse bromopolystyrene spheres
(x20 000). The radius of these particles is 50 nm.

Yoshida et al. [23). In completely deionized and diluted suspensions it is possible to observe

macroscopic crystallites of a few mm in size. The general tend is that the size of crystallites
always decreases when the volume fraction 4lv increases.

We determined the density of these particles by densimetry as described in [24] the density
is 1.565 g/cm~. We use this value to convert the volume fraction from the weight fraction.

2.1.2. Determination of the Radius a. As we can see from transmission electron microscopy
(Fig. I), the particles are spherical and monodisperse. The radius is about 50 nm. The

hydrodynamic radius measured by quasielastic light scattering is 55 nm.

In the absence of interactions (dilute screened system, 4lv * 1%), the experimental X-ray
scattering intensity I(q) (Fig. 2) can be assimilated to the form factor P(q) of the spherical
particles: P(q)

=
4lvAp~ f(qa)~V where V is the volume of one particle, Ap the electronic

density constrast, 4lv the volume fraction and f(qa) the Bessel function of zero order:

fiqa)
=

3~~~l~~~ j]j~°~l~~~

Such classical form factor presents a first zero minimum at qa =
4.5 using the USAXS curve

shown in Figure 2, one obtains a =
48 nm for our bromopolystyrene particles. If we try to

fit the ~v.hole X-ray scattered intensity I(q) (knowing Ap and 4lv) with the average radius a

as the fitting parameter, one obtains a =
51 nm (see Fig. 2). These four results obtained

for the radius as determined by transmission electron microscopy, quasielastic light scattering,

minimum of form factor and fitting of X-ray scattering intensity I(q) are consistent within

10$lo, showing that particle distribution is essentially monodisperse to 10% precision.
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Fig. 2. Experimental (squares) and theoretical (solid line) form factor P(q) in log-log scale for a

sample with
a volume fraction equal to 0.I% containing 10~~ M of Nacl. The theoretical form factor
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Fig. 3. Conductimetric titration of a diluted latex suspension (0.13% volume fraction) without

added salt; measurement of the conductivity of the solution in ~S/cm versus added 10~~ M NaOH.

2.1.3. Determination of the Number of Ionizable Sites. The stability of the dispersion is

due to the presence of ionic groups at the surface of particles which come, for the most of

them, from radicals formed by the decomposition of the initiator and sulfonated styrene. The

number of ionizable sites has been assessed by a conductimetric titration (Fig. 3) as described

in [24]. 50 ml of dialyzed latex of concentration 3 x 10~~ part /m~ or
0.13% in volume fraction

(determined by light scattering on the crystallized solution) were titrated against 10~~ M



608 JOURNAL DE PHYSIQUE II N°4

NaOH at 25 °C. A continuous stream of N2 eliminated the atmospheric C02. Two points

of equivalence are
observable in the titration curve: the first corresponds to the number of

strong acid groups at the surface of one particle (sulfate and sulfonate surface groups, 7100

acid groups), and the second to the number of weak acid groups (10 600 groups). These are

probably carboxylate surface groups (pKa m
4.2) due to the oxidation of hydroxyl groups,

which can occur even under nitrogen atmosphere due to the reaction:

20H - H20 + 02.

Thus, it is possible to have some oxygen in the solution. OH groups can be formed by the

hydrolysis of sulfonated groups on the surface through the Kolthofl reaction [25, 26]:

SOj + H20 - HSO/ + OH.

The initiator (S20(~) decomposes itself to give SO/ which lead by hydrolysis to hydroxyl

groups.

In these oxidation conditions occurring during the polymerization, hydroxyl groups of the

surface can be oxidized in carboxyl groups:

RCH2SOj - RCH20H - RCOOH.

Thus, a total number 17 700 ionizable sites corresponding to a maximum charge of 0.54

electron/nm~
are potentially ionizable at the surface of a particle. Knowing the pH of the

solution, the structural charge equal to the number of ionized sites, is weaker than the to-

tal number of ionizable sites. It depends on the concentration but is of the order of 7500 or

0.2 electron/nm~.

2.2. METHODS

2.2.1. &Ieasurement of the Osmotic Pressure. We built an experimental set-up designed

to measure the difference in hydrostatic pressure (water level) between the solution and a

reservoir separated by a dialysis membrane (Fig. 4). This set-up allows to control different

intensive parameters as the ionic strength I, which is the most important parameters to obtain

electrostatic colloidal crystals, or the pH-value. It is composed of two circuits, the reservoir

containing the solvent (and salt) and the solution containing the particles, the counter-ions

(and salt). The two circuits are in contact in a cell, made of two Plexiglas plates (130 mm

diameter), separated in two parts by an ultrafiltration membrane (Millipore, 0.025 /tm pore

size). This filter allows ions and solvent exchanges between the two circuits but prevents
the particles of crossing through the membrane. The Plexiglass plates are grooved in 2 mm

thickness along a "spiral" to force the solution to circulate everywhere in the cell in following
this "spiral" way. This method ensures to obtain a homogeneous concentration in the sample
volume. "Tygon" tubing link this cell to the other elements of the circuits. The conductivity

(C) and the pH in the two circuits are permanently controlled with a conductimeter (WTW)
and a pH-meter (3enco). The presence of ionic exchange resins (R) (Fluka Amberlyst 15 and

A27) in the reservoir and the solution allows to eliminate all ionic impureties and to keep the

ionic strength down to micromoles when needed. A loss of latex due to its adsorption on the

ionic exchange resins cannot be avoided. Therefore the latex volume fraction is determined after

each scattering measurement. Two vertical quartz tubes (I mm diameter and 30 cm
height)

open on the top to the air, are branched to the circuits very near the cell. At equilibrium,

the difference Ah of levels between the two tubes gives the osmotic pressure II through the
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Fig. 4. Experimental set-up used to measure the osmotic pressure and determine the structure

of colloidal crystals simultaneously. (R) ion exchange resin, (Co), (pH) and (Ce), measuring cells

(conductivity, pH and scattering), (P) peristaltic pump, (C) teflou cocks.

hydrostatic law II
=

pgAh (p is the density of water, g the gravity acceleration). We previously
used the same experimental arrangement to measure the osmotic pressure of liquid suspensions

containing polydisperse particles which could not crystallize [24]. In the present work we

study crystallized suspensions in a wider concentration range; these two factors contribute

to the increasing of viscosity of the samples and equilibrium times. For this reason, some

improvements have been introduced in the apparatus in order to reduce the equilibration

times. First we decided to reduce the overall volume of the circuit. Then, the quartz tubes are

located as close as possible from the membrane. We added three ways cocks (C) at the exit of

the cell in the two circuits to disconnect the cell and tubes from the rest of the circuit during
the equilibration of the water levels.

The experimental procedure is as follows: first, we filled the two circuits with deionized

water and pumped with two peristaltic pumps (P) during a few hours to eliminate all ionic

impurities. When the conductivity is about 0.I /tS/cm, we stopped the circulation. Then we

verified that the levels in the two tubes were the same (zero osmotic pressure). We replaced

water with about 50 ml latex solution in one of the two circuits. We pumped again in the two

circuits to eliminate impurities. At equilibrium, we measured the water levels in the two tubes

by using a cathetometer. The water level differences typically were from one millimeter to a

few centimeters. The incertitude on the measurement was about one millimeter or +15 Pa.

Errors due to differences of interfacial tension and density between the latex and the solvent

were negligible.

In order to reduce the time needed for obtaining the value of an osmotic pressure and to

improve the precision of the water level data, we used the dynamic method described by Fuoss

and Mead [27]. This method is based on the measurement at different times of the water
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height difference Ah between the two parts of the closed circuit. It consists to determine

the asymptote of the curve
(Ah)

=
f(t) (pressure

versus
time). First the levels in tubes are

imposed such that Ah is I or 2 cm above the estimated final equilibrium value Aheq; when the

two menisci move respectively down and up, the measurement of the height difference between

the levels of the two compartments is made every 30 s during 8 to 10 minutes. After this typical

time the menisci move more and more slowly and many hours or days would be necessary to

reach the asymptotic value. Then the same operation is carried out starting with Ah levels I

to 2 cm below the estimated final equilibrium value. The arithmetic sum
(half-sum) of the two

measurements, at equal intervals, is plotted against time. This value reaches the equilibrium
value much more rapidly and gives the osmotic pressure of the solution after just a few minutes.

Because of the viscosity of the sample it was necessary to stir the latex between two con-

secutive measurements. A vibrating plate was placed against the cell and tubes to accelerate

equilibrium. After 1-2 minutes we stopped the vibration and waited for
a

few minutes, which

is the time needed to reach the local equilibrium in the vicinity of the membrane; then we

noted down the Ah values. We started again to agitate for a few minutes and determined the

new Ah values until we obtained the true equilibrium which is reached when the concentration

in the cell and in the tubes is homogeneous. We worked in this way in the two directions from

height differences higher and smaller than the presumed value. Thanks to this method, we

considerably reduced error bars and obtained two points per day in concentrated range (> 4%)
and three or four for more diluted samples.

A quartz capillary or a cell (Ce) were inserted in the latex circuit to determine simultaneously
the structure of the sample by X-ray or light scattering, respectively. The cylindrical quartz
cell used for light scattering had a diameter of 0.8 cm and a height of about 5 cm; the rounded

quartz capillary was I mm in diameter and open-ended.

2.2.2. Scattering Apparatus. Light scattering experiments have been performed with (a)
a

correlation spectrometer with photomultiplier [28] and with (b) a multichannel spectrometer
with CCD-camera [29). Light sources were respectively a helium-neon (632.8 nm) and an

argon (532 nm) laser.

The small angle X-ray apparatus is a Bonse-Hart camera [30) which has been built in our

laboratory and is described elsewhere [31, 32]. All scattering curves have been deasmeared to

the method proposed by Strobl [33]. The resolution was of the order of 3 x
10~~ i~~ The

vertical resolution of the Bonse-Hart machine was set to 7 x
10~~ i~~

I-e. 200 times the

horizontal plane resolution. q range of USAXS measurement was from qmm =
5 x

10~~ to

qmax =

10~~ i~~ for a typical countage time of 4 h with a 8 kW source.

3. Results and Discussion

3.I. SCATTERING RESULTS. For extremely low volume fractions (0.04 < Iv < 0.3% in our

case), colloidal crystals can be studied by light scattering. Multiple scattering is negligible and

peaks are in the correct scattering vector q range for light scattering (qmin
=

I.I x
10~~ to

qmax =
3.2 x

10~~ I ~
in that concentration range. In this case, one observes perfect crystals:

the peak at lowest q is the first Bragg peak (qB) and no diffuse peak is observed.

Perfect crystals without diffuse peak have also been observed with USAXS in the range

2 < Iv < 12% without added salt for samples in sealed capillaries (I
mm

diameter) containing
ionic exchange resins. The dispersion has been injected in the capillary using a syringe and was

kept at rest for a few hours. Optical microscopy has shown that samples are polycrystalline;
they appear as a "powder" of small randomly oriented crystallites.
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The scattering intensities are plotted in reduced units, qn /qB. One obtains results as shown

in Figure 5a for light scattering and 5b for USAXS. Indexing for bcc and fcc is indicated.

The large number of Bragg peaks allows unambiguously the identification of a bcc packing
at low concentration turning towards fcc packing at high volume fractions as expected and

already observed by Sirota et al. [34] and Monovoukas and Gast [35].
Diluted samples (0.I to 0.3% in volume fraction) have been studied in a quartz glass cell of

0.8 cm in diameter. After shearing they presented coloured bands on the cell walls, which could

be interpreted as a hexagonal structure of uncorrelated layers. As one can see in Figure 6a

definite crystallites at the bottom of the cell can be seen as well. We determined the structure

of these samples by light scattering at different heights in the cell and found al~v-ays at the

bottom a perfect bcc equilibrium structure. This can be seen in Figure 6b, where the first five

bcc peaks are identified definitly. In the same figure one can see a scattering curve measured for

the "layered" structure: here the second and fifth peaks are missing and the peak relations in

q are
vi:vi:v1. This is expected for a two-dimensional hexagonal structure. Such structures

have been theoretically described [36] and observed under shear [37-39] and at rest [38, 39].
Particles can form independently layers which are oriented by shearing and slide over each

other. After stopping the shear the structure corresponding to the equilibrium structure is not

observed on the time scale of the experiment but laterally uncorrelated layers remain frozen in

a layer structure.

Nevertheless, one might expect a peak shift, if the internal crystalline structure of the same

latex sample changes from one packing into an other [40, 41]. Such a peak displacement cannot

be observed in our case.

There are many points which confirm our conclusion of a hexagonal layer structure. Ex-

perimental results were absolutely reproducable with any sample and with any optical set-up.
Quartz cells were rotated during scattering experiment permanently to avoid any loss of peaks.
The above mentioned "coloured-bands-structure" occurred at the beginning of crystallization
and was only observable directly on the cell walls [41]. Besides this structure is stable even

under shearing in the closed circuits.

We turn now towards the more concentrated regime measurable with USAXS

(2 < Iv < 12%).
Consider a colloidal crystal of volume fraction 4lv

"
3.5%. The USAXS curve obtained

during circulation of the latex sol in the set-up previously described is shown as a solid line

in Figure 7. The dashed line corresponds to the USAXS curve measured when the fluid is

at rest in the capillary. The circulation of the dispersion in a quartz capillary of a diameter

of I mm and a flow rate of the order of 0.I ml/s induces enough shear to melt the crystal
into a sol. This experiment underlines one of the characteristics of colloidal crystals; they

are destroyed by stirring due to the weak value of their elastic modulus (between 0.I and

1000 dyn/cm~). The size of one colloidal particle is about 1000 times higher than that of

an atom and the density of the system is 10~~ times weaker explaining the high elasticity
of the colloidal crystals [42, 43]. The peak Bi (q

"
qB) observed in these two experiments

corresponds to the average distance between repulsive particles and is not very different in the

liquid and crystalline states. The strong peak Di appearing at lower q (q
= qD at rest does not

correspond to this distance. This observation demonstrates that the origin of this peak cannot

be the distance between the nearest neighbours because it would correspond to a hypothetical
volume fraction 4l)~~

=
0.85% for a fcc crystal, instead of the known value of 4lv

"
3.5%.

As mentioned in the introduction we could be in the presence of a microphase separation

between a colloidal crystal and large holes filled with a sol of concentration close to 4l)~~, as

suggested by Ise and coworkers [17-19]. However, this explanation is incoherent with measured

osmotic pressures as well as the observation of a constant ratio between the positions of the
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fraction of 0.07% in reduced units qn/qB. qn is the position of the n~~ Bragg peak, and qB = qi Peak

positions corresponding to a bcc structure are
indicated. b) Small Angle X-ray scattering (USAXS)

curve of a sample with a volume fraction of 4Slo in reduced units qn /qB Peak positions corresponding

to a fcc structure are indicated.
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Fig. 6. a) Light scattering curve (1
=

632.8 nm) of a sample with a volume fraction 0.2Sl. The

solid line corresponds to the scattering of the sample containing crystallites in the bottom of the cell

(bcc structure). The dashed line represents the scattering of perceptibly layers in the upper part of

the cell. b) Photography of a diluted colloidal crystal. In the lower part, one observes crystallites (bcc
structure) while in the upper part layers appear characteristic of non equilibrium structure.
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Fig. 7. Small angle X-ray scattering (USAXS) deasmeared curves of a deionized sample with a

volume fraction equal to 3.5Sl placed in the set-up describedj at rest (dashed line) and under shear

(full line).

first peak observed at q = qD and the second peak obtained at rest at q = qB. Figure 8

shows the positions of these two peaks versus 4l)/~ Any microphase separation between two

compositions such as a crystal and a diluted sol would produce constant positions for qD and

qB together with different relative intensities. We observe a constant ratio qD/qB
"

0.66. The

first peak observed for the crystal at rest cannot be the first Bragg peak: its origin has to

be related to defects producing diffuse scattering inside the first cell in reciprocal space. A

similar observation of a strong diffuse peak has been reported by Pusey outside the first lattice

cell [44].
For volume fractions between 2 and 12% the diffuse peak Di located at q = qD is always

obtained for samples in the closed circuit. A coexistence between two types of cubic crystals
(bcc and fcc) could explain these observations. The samples at volume fractions between 2

and 8% are drawn in arbitrary units in Figure 9. A systematic trend towards broadening of

Bragg peaks related to smaller size of crystallites limits the number of observed peaks when

volume fraction increases above 8%. We recorded the intensity of a sample in the circuit after

6, 8, and 10 days. We notice that the diffuse scattering peak corresponding to the presence of

defects does not disappear. The crystal has not enough time to reorganize itself in a few days.
Particles are frozen or their movements are very slow; a reorganization would need maybe a

few months or years.

The strong diffuse peak Di ibserved with USAXS is always observed at qD/qB
"

0.66.

Stacking faults have already been observed in colloidal crystals. For instance, opals can be

arranged in random hexagonal layers hcp (fl
=

0.5) where fl is the defect parameter. A

coexistence between fcc and hcp with defect domains has been already observed [45]. Pusey

et al. [44] observed by light diffraction
a 3D hcp structure with growth defects. Laun et al. [46]

investigated the behaviour of concentrated dispersions electrostatically stabilized in ethylene

gjycol under shearing by Small Angle Neutron Scattering (SANS). The intensity profiles I(L)

along these Bragg rods give an information on the stacking order. Versmold [47] gave an
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Fig. ii. Experimental H/pkT (open circles) are compared to the theoretical H/pkT (solid line)
calculated with the Poisson Boltzmann Cell (PBC) model for a salinity in the reservoir equal to 10~~ M

and a particle radius of 510 I.

We plotted the data in reduced units II/pkT versus the volume fraction 4lv in Figure 11

where p is the number concentration of the colloids. The value of II/pkT is nearly constant

(m 500) in the volume fraction regime 2-12% and lies between the value I for perfect gas

pressure of colloid particles alone and the value Z~~~ for perfect gas pressure of all counterions.

This can be understood as the number of "free", uncondensed counterions per colloid or as

the effective colloidal charge. Note that this notion of effective charge is introduced just for an

illustration and is not of absolute necessity at this point.
We used the classical Poisson Boltzmann Cell (PBC) theory to calculate the osmotic pressure

of these solutions: the solution is divided in spherical, globally neutral, cells of radius R. A

colloidal particle is located at the center of each cell. The volume fraction 4lv
"

(a/R)~
determines the radius of the cell. The ionic profiles c+(r) of the monovalent counter-ions and

cc-ions calculated between the surface of the particle and the surface of the cell a < r < R are

related to the reduced electrostatic potential ~7(r) =

~~~~~
by c+(r)

=
c[ exp(+~7(r)) where

kT
c[ is the salinity in the reservoir. These two relations implicitly assume that

~7 =
0 in the

reservoir and state the equality of the chemical potential of the salt in the solution and in the

reservoir (Boltzmann approximation).
~7(r) is deduced from the Poisson-Boltzmann equation

A~7(r)
= ~7" +

~7'
=

~t'~Sh(~7(r))

with the boundary conditions (constant charge assumption)

~2
Z~~~ is the structural colloidal charge (number of ionized sites), LB

" ~ ~~
is the Bjerrum

~reoe

length and ~t'= (8~rLBc))~/~ the Debye screening constant in the reservoir.
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Note that when the salinity in the reservoir c) tends to zero, the potential ~7(r) diverges as

lnc), the cc-ion concentration vanishes and the counterion profile becomes independent of

the value of c), as expected.
The Poisson Boltzmann equation is solved numerically by iterations [50]. After numerical

resolution the osmotic pressure II is determined from the total ionic concentration at the edge
of the cell [51, 52]

II
=

kT(c+(R) + c-
(R) 2c))

=
4kTc)sh~

~~~~
2

As usual for highly charged colloids, what happens "far" from the particle near the edge of the

cell and thus osmotic pressures are independent of Z~~~

We calculated the osmotic pressure with PBC model and noticed that our experimental data

are in agreement with these calculations. The Poisson Boltzmann Cell (PBC) [10,51,52j model

allows to predict the pressure knowing only the salt concentration in the reservoir evaluated

by conductimetry and the radius previously determined equal to 510 I. The theoretical curve

II/pkT
=

f(4lv) calculated by the PBC model decreases very quickly below I% and it is nearly
constant in the region 2-12% and reproduce very well the experimental data. Here again, the

existence of any weak long range attrative interaction is excluded. This is due to the finite,

non zero, salt concentration in the reservoir (10~~ M). At zero volume fraction II /pkT reaches

the value I as expected for a very dilute colloidal solution in presence of salt (in absence of

salt, the asymptotical value of II/pkT at zero volume fraction would be Z~~~). It is important
to note that there is no need for any attractive intervention to interpret our results, even at

vanishing concentration.

Another theoretical approach which can be investigated to calculate the osmotic pressure
is the so-called One Component Model (OCM). The starting point of this approach which

considers explicitly only the colloids is an eRective, in-averaged, colloid-colloid potential. We

take the simple, screened-Coulombic, DLVO expression:

fl~f( Z~&~B ~XP(~l~(~ 2~))
~

r
(I + tza)~

Ze~ is here an effective charge which is introduced to correct in some artificial way the linearized

Debye Hfickel colloid-ion approximation implicitly assumed in the DLVO expression. In our

highly charged systems Ze~ is much lower than Zstr. ~t(i~~)
=

0.33 1(mol/I) depends on

the ijnic strength I of the solution, sum of the salt and the free counterions contribution

~ ~~ ~ ~~'

Using the classical statistical mechanics theory of liquids based on the Ornstein-Zernike

(OZ) equation and the HNC integral equation [53], we have calculated the pair distribution

function g(r) from the potential V(r). Lastly, the osmotic pressure has been deduced from the

virial equation: ~
~ %~ ~~~~~

~~~~~
~~~~~~'

Note that, due to the strong repulsion between the colloids, g(r) presents a high and narrow

first peak located at the mean distance between neighbours r =
dv if one approximates this

peak by a delta function (of same integral), the virial equation becomes:
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Fig. 12. Experimental osmotic pressure results (open circles) are compared with the PBC model

(solid line) and the One Component Model (dashed lines): (- -) HNC + virial equation, (- -)
g(r) mdelta function + virial equation (relation (1)).

where Nv is the number of nearest neighbours, dv the distance between nearest neighbours,

equal to d/v§ where d is the lattice constant for a fcc cell F(dv)
= ~~j~~~ and the DLVO

r
force between them.

Taking a fixed effective charge Ze~ equal to 700 in agreement with those used for the phase
diagram which we'll discuss below, one obtains pressures which are lower than measured pres-

sures and the PBC pressures as shown Figure 12. This is because only a part of the interaction

is included in this way. A similar effect has been o[served in concentrated sol [10] and in

diluted suspensions with polydisperse particles [24]. This reflects the fact that the pressure is

essentially due to the counterions. Since the OCM does not take them explicitly into account,
it intrinsically fails to correctly reproduce the osmotic pressure. Note in Figure 12 that the

relation (I) is a good approximation of the virial pressure.

It is possible to relate the osmotic pressure II to a force F between particle F
=

~~
The

Nv
unit Wigner-Seitz cell associated to the fcc crystal is a regular rhombic dodecahedra with

Nv
=

12 square faces. The total surface S can be assimilated to a sphere of radius dv/2.
Since the osmotic equilibrium experiments consist in compressing the Wigner-Seitz cell, the

observed pressure is the pressure calculated from the excess ion concentration at the edge of

the Wigner cell modelled theoretically by a sphere. Difference between sphere and dodecahedra

is not experimentally measurable. The measurable force by our technique is about 10~~~ N

(shown in Fig. 13) which is very weak compared to the performances of the force balances

developed in the ten last years.

4. Comparison with Theoretical Phase Diagrams

Many theoretical phase diagrams of charged colloidal systems have been established [55-58j.
For highly charged systems the colloidal particles adopt spontaneously a 3D ordered structure
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Fig. 13. Force in Newton obtained by dividing the measured osmotic pressure by the surface of

a sphere (radius dv/2 where dv is the distance between the nearest neighbours) and the number of

nearest neighbours Nv versus lattice constant d.

to minimize the repulsive interparticular interaction energy. The structure of the crystal is

determined by parameters as the concentration of particles, the effective charge, the ionic

strength of the solution and the diameter of the particles. Statistical mechanics simulation

show univirsal behaviour according to the two reduced variables.

Robbins et al. [55] have established a phase diagram kT/U(dv as a function of I by molecu-

lar dynamic simulations (MD ). I represents the number of Debye length ~t~~ existing between

two neighbour particles in the lattice (~
=

kdv) where dv is the mean distance between two

particles. kT/U(dv) represents the "stiffness" of the colloidal crystal in reduced units. They
used a Yukawa potential for point like charged particles:

kT dv

U(dv) Zj~LBexp(-~tdv)

We compared our data to those predicted from theoretical results obtained by Robbins et al.

Remember that our diluted samples have a bcc structure which has been determined by light
scattering and are representated by open circles in Figure 14. More concentrated samples have

a fcc structure observed by X-ray scattering (full circles). In Figure 14, the top of the figure
is a soft dispersion while the bottom is a stiff solution. Note that going from the most diluted

sample to the most concentrated, the crystal first broadens and than softens under the effect

of his own counter-ions.

We have located our charged system in this diagram with one adjustable parameter which is

the effective charge. Our experimental results are in agreement with those founded by Robbins

et al. using the Alexander effective charge [59] or a fixed charge equal to 700 to calculate the

potential.

As it can be seen in Figure 14:

I) the transition from bcc to fcc is at the expected location;
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Fig. 14. Phase diagram kT/U(dv)
versus I

=
~dv. Filled circles are obtained from our X-ray data

(fcc structure) and open circles from our light scattering results (bcc structure) of bromopolystyrene
dispersions. Salinity in the reservoir is 10~~ M. The Alexander effective charge was used to calculate

the potential U(dv ). Comparison is made to the calculations of reference [55] using molecular dynamics
(solid lines).

it) a crystal is obtained in a region where a liquid is expected: the solid is slightly "stiffer"

than predicted by the model. If one takes in account the finite size of the particles in the

Yukawa potential, a better agreement may be obtained.

Lindemann [60] proposed a useful and very general empirical criterion for predicting the

liquid-crystal transition which states that a crystal melts when a =
(u~)~/~ /dv > 0.I. a is

the ratio of the mean square displacement of a particle around its equilibrium position in the

crystal divided by the size of its cage (or the distance dv between neighbours). In the following,

we will use the eccentric PBC model to calculate (u~ )~/~ and to test the validity of Lindemann

criterion [61].
In the usual PBC configuration the colloid is located at the center of the spherical cell and

feels no force. In order to be able to evaluate the mean square displacement, it is necessary to

know the price to pay to shift the colloidal particle away from its equilibrium position. In the

eccentric spherical cell model, the colloid in centered at the position u relative to the center

of the cell. By axial symmetry, the force F felt by the particle is opposite to u
and, for small

displacement
u

(harmonic approximation) and can be expressed as F
=

-ku where k is a

spring constant. The particle moves inside a potential well of the form U(u)
=

Uo + 1/2ku~.
(u)

=
0 by symmetry while (u~) can be obtained from:

j~2j
i~

~
~~~~~~~~~ ~

f°~ ~-flU(u)y~2d~ flk
0

Note that the precise value of the upper limit in the integrals of the equation above is not

important and can be taken as infinite.

In the Appendix the eccentric PBC model is solved in the limit of small eccentricity. The

spring constant k is obtained as a simple integral of the classical (centered) PBC solution ~go(r)
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Fig. 15. Lindemann parameter a
(see text) calculated in the PB eccentric model for our data as a

function of I
=

kdv. The critical value for melting is ac % 0.1.

(see Eq. (A.7)). This leads for (u~) to:

(U~) 9LB £~
~ 1411il°~~~

dS (2)

/~
Then, the Lindemann parameter is given by o = 2R

This approach has the advantage not to use the effective charge. In Figure 15 we plotted
this parameter as a function of I for a constant salinity in the reservoir equal to 10~~ M.

Only the volume fraction varies. If one considers that the crystal melts when o is higher than

0.I (criterion valid for molecular crystals),
our experimental points correspond to a crystalline

phase whatever the volume fraction. The parameter increases for weak volume fractions since

particles have a bigger freedom in movement. On the other hand we have not any informations

about the structure of the crystal. We find here that Lindemann criterion is always valid,

since the structure is crystalline and the average distance from equilibrium position for a given
particle is always less than 10$lc of the lattice constant.

Conclusion

In the absence of salt, the electrostatical colloidal crystals that we have studied in diluted

regime are dominated by repulsive electrostatical interaction. Knowing the osmotic pressure

and the structure of the crystal, we established the pressure-distance relation I.e. the equation
of state and its phase diagram at a constant salinity.

At larger distances than the nearest neighbour distances we observed by USAXS a strong

diffuse band. l/he history ofthe sample strongly influences the presence of this diffuse peak. We

observed a perfect fcc structure during a slow crystallization. Under shear by a peristaltic pump

the crystallization is very quick and particles have no time to organize themselves perfectly;

one observes (in this case) a diffuse peak related to the presence of defects in the crystal.

This peak is situated before the first Bragg peak and is likely due to the presence of holes
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in the crystal. The reorganization is extremely slow, it does not occur at the time scale of

one week.

After shear for very diluted samples layers appear. These samples have been studied by light
scattering. Some Bragg peaks are missing. That could be interpretated as a 2D hexagonal

layer structure.

With a precision of millimeter water level pressure purely electrostatic interaction is the

dominant term in all our samples. We translated these pressures in forces between particles.
Order of magnitude is about 10~~~ N.

Our osmotic pressure measurement technique is equivalent to a very precise force apparatus
for large distances. This property may be used to investigate the eRect of adding mono and

multivalent salt on our colloidal system to modulate the interparticle interaction.
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Appendix

Eccentric Poisson-Boltzmann-Cell Model

The spherical colloid is now centered at the position u = uz with respect to the center of the

spherical cell (kept
as the origin of the coordinates). By axial symmetry a point inside the cell

is characterized by the spherical coordinates
r and 9, where 9 is the angle between r and

u
(see

Fig. 16). In the following we will assume that the shift u is small and expand all quantities up

to the first order in u.
This linear expansion is sufficient to deduce the spring constant k. For

example, the reduced electrostatic potential is expressed as:

l~(r, oj
=

~go(rj + ~7i(rj case

where ~7o(r) is the solution of the spherically symmetric PB equation previously calculated.

The function ~7i is proportional to u.

The full solution ~7(r, 9) must verify the non
spherically symmetric PB equation A~7 =

~t'~sh~7.

Expanding sh~7 up to first order leads to the following linear differential equation for the

function ~7i (r):

i7l'+ )i7l i7i /~ch(~Jo)i7i
=

0. (A.i)

The symbols ' and represent the first and second derivatives.

The boundary condition at the edge of the cell (r
=

R) is simply ~7[ (R)
=

0 (Gauss's law for

the neutral cell). That at the colloidal surface (r
=

a+u cos 9) is deduced from the Gauss's law,

already satisfied by ~7o, which relates the normal electric field to the colloidal charge (constant
charge assumption):

i~l (U) "

~"i~llU).

Equation IA. I) verified by ~7o can be integrated in first time to give:

2 fi ~ ~ ~)
r §7o§7l~1~0i~l "
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Fig. 16. Eccentric PB cell geometry.

As it is shown below the constant C is directly related to the force experienced by the colloid.

Indeed, in the PB approximation this force is obtained by integrating the Maxwell tensor

T
=

Tel + Tth on any closed surface containing the particle inside (since div T
=

0).

T
= eoe (~~) (V~7 V~7 V~7~I) kTcionI. (A.3)

e

~

2

Choosing as closed surface the surface of the sphere of radius r, the force F, obviously aligned
with u, becomes:

F
=

/ /(T dS)z
=

~~ r~ (~7[~7[ ~7[~7i ). (A.4)
r

3LB

Thus, the first primitive (A.2) just expresses that the calculation of F is independent of the

choice of the integration surface. Moreover, C
=

3LBfIF. Equation (A.2) can be integrated
another time to give:

~

~7i(r)
=

~7[(r) C' + C
/

~
~~ (A.5)

a
s

7'o(s)~

The constants C and C' will be obtained from the two boundary conditions. Some precaution

must be taken in using equation (A.5) at r =
R since ~7[(R)

=
0 and the integral diverges.

Starting from the PB equation verified by ~7o an integration by part of the integral allows to

eliminate this problem:

£~
~/l(~) s~k~i(I)k~[(S) II £~

~ ~ l)ii~~~~ ~~ ~~'~~

Then the two boundary conditions on r = a and r =
R can be directly applied to give the

two integration constants and consequently the force F applied on the colloid and the spring

constant k
=

-Flu:

k
-

3flLB £~
~ + iiliil° ~~~

s)
(A.7)

Equation (2) for the mean square displacement (u~) follows from equation IA.?).
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This powerful eccentric PBC approach allows to calculate non spherically symmetric prop-
erties without solving anything but the usual spherical PB equation.

References

[1] Sanders J-V-, Nature 204 (1964) list.

[2] Stanley W-M-, Science 81 (1935) 644.

[3] Bernal J-D- and Fankuchen I., J. Gem. Physiol. 25 (1941) ill.

[4] Williams R.C. and Smith K.M., Nature 179 (1957) l19-120.

[5] Klug A., Franklin R.E. and Humphreys-Owen S.P.F, Biochim. Biophys. Acta 32 (1959)
203-219.

[6] Pusey P.N., in "Liquids, Freezing and Glass Transition", Les Houches Session LI,
D. Levesque, J.P. Hansen and J. Zinn-Justin, Eds. (Elsevier, Amsterdam, 1991).

[7] Pusey P.N. and Van Megen W., Nature 320 (1986) 340.

[8] Hfirtl W. and Versmold H., J. Chem. Phys 88 (1988) 11.

[9] Parsegian V.A., Fuller N. and Rand R-P-, Proc. Natl. Acad. Sci 76 (1979) 2750.

[10] Bonnet-Gonnet C., Belloni L. and Cabane B., Langmuir10 (1994) 4012-4021.

[ll] Rohrsetzer S., Kovacs P. and Nagy M., Colloid Polym. Sci. 264 (1986) 812-816.

[12] Barclay L., Harrington A. and Ottewill R.H., Kolloid Z. Z. Polym. 250 (1972) 655-666.

[13] Homola A. and Robertson A-A-, J. Call. Interface So. 54 (1976) 286-297.

[14] Dickinson E. and Patel A., Call. Polym. Sci. 257 (1979) 431-433.

[15] Goodwin J.W., Hearn J., Ho C-C- and Ottewill R-H-, Br. Polym. J. 5 (1973) 347-362.

[16] Goodwin J.W., Ottewill R.H. and Parentlich A., Colloid Sci. 268 (1990) l131-l140.

[17] Ise N., Okubo T., Sugimura M., Ito K. and Nolte H.J., J. Chem. Phys. 78 (1983) 1.

[18] Ise N. and Matsuoka H., Macromolecules 27 (1994) 5218-5219.

[19] Dosho S., Ise N., Ito K., I~vai S., Kitano H., Matsuoka H., Nakamura H., Okumura H.,
Ono T., Sogami I.S., Ueno '~., Yoshida H. and Yoshiyama T., Langmuir 9 (1993) 394-411.

[20] Vanderhoff J.W., J. Colloid Interface Sci. 28 (1968) 336-337.

[21] Okubo T., Colloid Polym. Sci. 271 (1993) 190-196.

[22] Okubo T., Langmuir10 (1994) 1695-1702.

[23] Yoshida H., Ito K. and Ise N., J. Chem. Sac. Faraday. Trams 87 (1991) 371-378.

[24] Reus V., Belloni L., Zemb T., Lutterbach N. and Versmold H., J. Chim. Phys. 92 (1995)
1233-1256.

[25] Stone-Masui J. and Watillon A., J. Colloid Interface Sci. 52 (1975) 479-503.

[26] Dunn A-S- and Chong L.C., Sym. J. 2 (1970) 49.

[27] Fuoss R.M. and Mead D-J-, J. Phys. Chem. 47 (1943) 59.

[28] Hirtl W., Versmold H. and Wittig U., Langmuir 8 (1992) 2885.

[29] Hirtl W., Klemp R. and Versmold H., Phase Transitions 21 (1990) 229-242.

[30] Bonse U. and Hart M., Appl. Phys. Lett. 7 (1965) 238-240.

[31] Lambard J., Lesieur P. and Zemb Th., J. Phys. I France 2 (1992) l191-1213.

[32] Lesieur P., Lindner P., Desforge C., Lombard J. and Zemb Th., Physica B 180&181

(1992) 564-566.

[33] Strobl G.R., Acta Cryst. A 26 (1970) 367.

[34] Sirota E-B-, Ou-Yang H-D-, Sinha S-K-, Chaikin P.M., Axe J.D. and Fujii Y., Phys. Rev.

Lett. 62 (1989) 1524-1527.

[35] Monovoukas Y. and Gast A., J. Colloid Interface Sci. 128 (1989) 533-548.



626 JOURNAL DE PHYSIQUE II N°4

[36] Brindley G-W- and MAring J., Acta Cryst. 4 (1951) 441-446.

[37] Ackerson B-J- and Clark N-A-, Phys. Rev. Lett. 46 (1981) 2.

[38] Ashdown S., Markovic I., Ottewill R.H., Lindner P.. Oberthfir R-C- and Rennie A-R-,

Langmuir 6 (1990) 303-307.

[39] Versmold H. and Lindner P., Langmuir10 (1994) 3043-3045.

[40] Dux Ch. and Versmold H., Physica A to be published.

[41] Clark N-A-, Hurd A-J- and Ackerson B.J., Nature 281 (1979) 57-60.

[42] Lindsay H.M. and Chaikin P.M., J. Chem. Phys. 76 (1982) 3774-3781.

[43] Okubo T., Colloid Polym. Sci. 271 (1993) 873-883.

[44] Pusey P-N-, van Megen l§~., Bartlett P., Ackerson B-J-, Rarity J-G- and Underwood S-ii-,
Phys. Rev. Lett. 63 (1989) 25.

[45] Sanders J-V, Acta Cryst. A 24 (1968) 427-433.

[46] Laun H-M-, Bung R., Hess S., Loose W., Hess O., Hahn K., Hidicke E., Hingmann R.,
Schmidt F. and Lindner P., J. Rheol. 36 (1992) 743-787.

[47] ifersmold H., Phys. Rev. Lett. 75 (1995) 763-766.

[48] Guinier A., X-ray- Diffraction (Freeman, London, 1963).

[49] Welberry T-R- and Galbraith R., J. Appl. Cryst. 6 (1973) 87-96.

[50] Katchalsky A., Alexandrowicz O. and Koden O., Chemical physics of ionic solutions,
B-E- Conway and R.G. Barradas, Eds. (Wiley, 1966) p. 295.

[51] Bell G.M. and Dunning A-J-, Trans. Faraday Sac. 66 (1970) 500.

[52] Belloni L., ThAse de l'universitA P-M- Curie Paris VI (1982) pp. 21-34.

[53] Hansen J-P- and McDonald I-A-, Theory of simple liquids (Academic Press, New-York

1986).

[54] Verwey E-J-W- and Overbeek J.Th.G., Theory of the Stability of Lyophobic Colloids

(Elsevier, Amsterdam, 1948).

[55] Robbins M-O-, Kremer K. and Grest G-G-, J. Chem. Phys. 88 (1988) 3286.

[56] Hone D., Alexander S., Chaikin P.M. and Pincus P., J. Chem. Phys. 79 (1983) 1474-1478.

[57] Shih W-Y-, Aksay I-A- and Kikuchi R., J. Chem. Phys. 86 (1987) 5127-5132.

[58] Tejero C-F-, Lutsko J-F-. Colot J.L. and Baus M., Phys. Rev. A 46 (1992) 3373-3379.

[59] Alexander S., Chaikin P.M., Grant P., Morales G-J-. Pincus P. and Hone D., J. Chem.

Phys. 80 (1984) 11.

[60] Lindemann F-A-, Z. Phys. ii (1910) 609.

[61] Ohtsuki T., Mitaku S. and Okano K., Jpn J. Appl. Phys. 17 (1978) 627.


